BioE/MCB/PMB C146/246, Spring 2005

Problem Set 3

Due 7 February 2005 by midnight to lfl@compbio.berkeley.edu

1. 15 points Sequence Alignment with Affine Gaps

Revise your alignment program from the last problem set using the following parameters:

```
Identity+4Transition-2Transversion-4Gap-8 (first position), -1 (each gap position)
```

Given the sequences

ATTTTAAGCGCATACCGC TCGCAAATATAC

Perform a global alignment on the two sequences and report the score. Attach all dynamic programming matrices (no tracebacks) to your email as *jrandom_ps3_1.txt*

2. 20 points

A. Perform linear-space alignment on the following sequences: HECYDWH and HEWGH. Extra credit for implementing the Hirschberg/Myers/Miller algorithm.

B. Perform any ONE of the following alignments, using the scoring matrix from Problem Set 2. You may use a program to assist you, though implementations are not required.

2			1			
(i)	Repeated matches, threshold 10	HECYDWH	and	HEWGH		
(ii)	Banded alignment	HECYDWH	and	HEWGH		
(iii)	Sub-optimal global alignment	HEAGAWGHE	and	PAWHEA		
(iv)	Global alignment with three-parameter gaps $(-8, -1, -2)$ for the sequences					
	SSFTLT and SCH	KDIL				

Include dynamic programming matrices, traceback paths, alignments and scores in your answer. Attach the dynamic programming matrix to your email as *jrandom_ps3_2.txt* (tracebacks can be added by hand in the paper version).

3. 5 points

Why are sub-additive gap penalties used? Give (at least) two reasons.

4. 5 points

Compare and contrast the construction and features of the BLOSUM and PAM series of matrices. Mention the strengths and weaknesses of each.

5. 5 points

A 1-PAM matrix changes on average of 1% of amino acids. Does a 2-PAM matrix change on average 2%? Explain.

6. 5 points

For alignments performed with PAM matrices, explain the meaning of a substitution score and the score of the alignment.

7. 5 points

Why are gap parameters NOT estimated the same way as substitution matrix parameters?

8. 15 points

Given the following BLOCK (multiple sequence alignment of proteins):

MMKE MKKE IKIE IMKI IKKE MKME IKKE IKKE

- (A) (10 points) Compute the joint probabilities q_{ij} and the marginal probabilities p_i for each *i*, *j* in the amino acid alphabet.
- (B) (5 points) Compute the BLOSUM matrix for this BLOCK.

9. 15 points

Given the initial mutability matrix below, calculate the corresponding 3-PAM matrix. Normalize your answer such that each row and column sums to 1000.

	S		Т	V
S		990	7	3
Т		7	993	0
V		3	0	997