
BioE/MCB/PMB C146/C246 Spring 2005

Lecture 1: Course Overview and Sequence Alignment

Lecturer: S. Brenner Scribe: G. Leung

1 Course Overview

There are several distinct areas of computational biology. One area is based on statistical principles, where
associations and distinctive features are discovered by statistical analysis, such as in microarray analysis.
Modern genetics is also based on these principles. Another area is based on physical principles, which are
the basis of protein folding studies. There has been limited success in studying molecular processes, but
there has been more success using these principles to study large scale questions, such as how organs move.

The area of computational biology covered in this course will be based on evolutionary principles, starting
with sequence analysis. The evolutionary conservation of proteins allows us to make functional inferences
based on sequence comparison alone. BLAST, the most well-known tool used for sequence comparison, is run
4 × 1014 times a year at NCBI alone, which is indicative of how widely used sequence analysis has become.

Some computational biology courses aim to familiarize students with the application of tools, introducing
available bioinformatics software and demonstrating how to use these tools effectively to address biological
questions. Other courses are more theory-based, presenting the underlying computer science algorithms used
in building effective and efficient bioinformatics tools. This course will present principles and applications,
which lies in the middle ground between tools and theory. Existing tools will be presented, but the goal is
to be able to critique and evaluate tools that are coming out today.

2 Sequence Alignment and Dynamic Programming

2.1 Näıve Approach

Suppose we would like to align the following two strings:

T H A T T I N H A T
C A T I N H A T

We can easily produce a reasonable alignment by eye, especially since the last 6 characters of each string
exactly match. Suppose we would like to computationally determine the longest common substring between
two strings. A näıve approach would be to enumerate all possible substrings for each of the two strings, and
then pairwise compare the substrings, keeping track of the longest match found thus far. How long would
this take? There are O(n2) subsequences for each string, considering each starting point and each ending
point. Pairwise comparison of these substrings would take O(n2) · O(n2) = O(n4) time.

Clearly, we need to consider a more efficient algorithm, such as dynamic programming. Let’s consider a
simpler example of DP first.

1



2.2 Fibonacci Numbers

Fibonacci numbers are recursively defined as follows:

Fib(n) = Fib(n − 1) + Fib(n − 2)

Fib(0) = 1

Fib(1) = 1

We can calculate the 6th Fibonacci number, Fib(6), by straightforward application of the above definition:

Fib(6) = Fib(5) + Fib(4)

= Fib(4) + Fib(3) + Fib(3) + Fib(2)

= Fib(3) + Fib(2) + Fib(2) + Fib(1) + Fib(2) + Fib(1) + Fib(1) + Fib(0)

= Fib(2) + Fib(1) + Fib(1) + Fib(0) + Fib(1) + Fib(0) + 1 + Fib(1) + Fib(0) + 1 + 1 + 1

= Fib(1) + Fib(0) + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 2

= 1 + 1 + 1 + 2 + 3 + 3 + 2

= 13

This procedure takes exponential time. Note that in the calculations above, Fib(i) for all i < 5 are calcu-
lated multiple times. This observation can lead us to a more efficient algorithm, where values for Fib(i) are
computed only once. Suppose we calculate Fib(i) for i = 0 . . . 6 in increasing order of i:

Fib(0) Fib(1) Fib(2) Fib(3) Fib(4) Fib(5) Fib(6)
1 1 1 + 1 = 2 1 + 2 = 3 2 + 3 = 5 3 + 5 = 8 5 + 8 = 13

This algorithm runs in linear time. The speed-up clearly comes from storing intermediate results instead of
re-calculating them, which is called memoization. Note that memoization only works when the intermediate
results don’t have other intermediate dependencies.

There is also an analytic solution to finding Fibonacci numbers, providing a constant time look-up solution:

Fib(n − 1) =
φn − øn

φ − ø

φ =
1 +

√
5

2

ø =
1 −

√
5

2

2.3 Longest Common Substring

How can we solve the longest common substring problem using dynamic programming? Suppose we keep
track of potential matches by pairwise comparing the characters of each string to each other. Let 0 represent
mismatches and 1 represent matches.

2



T H A T T I N H A T
C 0 0 0 0 0 0 0 0 0 0
A 0 0 1 0 0 0 0 0 1 0
T 1 0 0 1 1 0 0 0 0 1
I 0 0 0 0 0 1 0 0 0 0
N 0 0 0 0 0 0 1 0 0 0
H 0 1 0 0 0 0 0 1 0 0
A 0 0 1 0 0 0 0 0 1 0
T 1 0 0 1 1 0 0 0 0 1

The longest common substring, TINHAT, corresponds to the longest diagonal of 1’s. Using this method,
although it takes O(n2) time to fill the table, it could take potentially O(n3) time to trace back through
the table - at each cell of the table, the associated diagonal (substring match) needs to be checked. To
reduce the trace back time to O(n2), we can store the count of the longest substring at each cell of the table
(M(i, j)) by looking at the previous diagonal cell (M(i−1, j−1)). The table would then be filled in as follows:

T H A T T I N H A T
C 0 0 0 0 0 0 0 0 0 0
A 0 0 1 0 0 0 0 0 1 0
T 1 0 0 2 1 0 0 0 0 2
I 0 0 0 0 0 2 0 0 0 0
N 0 0 0 0 0 0 3 0 0 0
H 0 1 0 0 0 0 0 4 0 0
A 0 0 2 0 0 0 0 0 5 0
T 1 0 0 3 1 0 0 0 0 6

Finding the longest common substring is now equivalent to finding the maximum value in the above ta-
ble and tracing back along that diagonal.

2.4 Dynamic Programming

2.4.1 Initialization

The recursive nature of dynamnic programming necessitates an initialization step where the base case(s) is
set. For example, in the DP algorithm for Fibonacci numbers, the initialization sets the first two Fibonacci
numbers to 1 (Fib(0) = 1; Fib(1) = 1).

For the longest common substring problem, where the previous diagonal cell needs to be considered, a zero
row and a zero column need to be added to the table described above.

T H A T T I N H A T
0 0 0 0 0 0 0 0 0 0 0

C 0 0 0 0 0 0 0 0 0 0 0
A 0 0 0 1 0 0 0 0 0 1 0
T 0 1 0 0 2 1 0 0 0 0 2
I 0 0 0 0 0 0 2 0 0 0 0
N 0 0 0 0 0 0 0 3 0 0 0
H 0 0 1 0 0 0 0 0 4 0 0
A 0 0 0 2 0 0 0 0 0 5 0
T 0 1 0 0 3 1 0 0 0 0 6

3



2.4.2 Recursion

The recursive step of the Fibonacci dynamic programming algorithm corresponds to the definition of Fi-
bonacci numbers presented above. For the longest common substring problem, each cell M(i, j), which
corresponds to the ith character of sequence X aligned to the jth character of sequence Y , can be computed
by the following recursion:

M(i, j) =

{

M(i − 1, j − 1) + 1 if X(i) = Y (j)
0 otherwise

}

2.4.3 Trace back

To report the longest matching substring, trace back along the diagonal starting from the cell with the
largest number, L. If M(i∗, j∗) = L, then the diagonal M(i∗ − L + 1, j∗ − L + 1), M(i∗ − L + 2, j∗ − L +
2), . . .M(i∗, j∗) corresponds to the longest common substring. The desired substring of length L is then
X(i∗ − L + 1)X(i∗ − L + 2) . . .X(i∗), or equivalently, Y (i∗ −L + 1)Y (i∗ − L + 2) . . . Y (i∗). Note that when
there are multiple common substrings of maximum length L, more than one cell in M will contain L, each
corresponding to the endpoint of a substring of length L.

2.5 Sequence Alignment

In a local alignment, the ”TH” in the first string and the ”C” in the second string may be left off, producing
one of the alignments below:

A T T I N H A T
A - T I N H A T

A T T I N H A T
A T - I N H A T

T T I N H A T
A T I N H A T

In a global alignment, the entirety of both sequences are included in the sequence alignment, while a semi-

global alignment will only include the entirety of one sequence and a subseqeuence of the other. Another
type of global alignment can be implemented which will not penalize for gaps at the ends of the alignment.

In all of these alignments, a scoring scheme needs to be established in order to return the ”best-scoring”
alignment. For example, each match could score +1, each mismatch -1, and each gap -2. Note that this
scoring scheme would result in an optimal local alignment containing only the exact match, TINHAT, while
reducing the gap penalty to -1 would allow the two left-hand local alignments above to score equally well as
the exact 6-character match. There is no principled way of assigning the gap penalty; in practice, the gap
penalty is decided upon emprically.

How many possible alignments are there to consider? If the length of the longer sequence is m and the length
of the shorter sequence is n, let k = m − n. There are k possible gaps for each sequence,

(

m

k

)

ways to put

k gaps in the longer sequence, and
(

n

k

)

ways to put k gaps in the shorter sequence. For any given value of

k, there are
(

m

k

)(

n

k

)

alignments. To consider gaps of all lengths, there are
∑

m

k=0

(

m

k

)(

n

k

)

alignments, which
is ∼ 4n by Stirling’s approximation. For sequences of length 100, there are ∼ 1075 alignments to consider.
Given the number of BLAST queries performed, it is clear that efficiency is of paramount importance.

4


