
346 

Finding the genes in genomic DNA 
Christopher B Burge* and Samuel Karlint 

Genome sequencing efforts will soon generate hundreds of 
millions of bases of human genomic DNA containing thousands 
of novel genes. In the past year, the accuracy of computational 
gene-finding methods has improved significantly, to the point 
where a reasonable approximation of the gene structures within 
an extended genomic region can often be predicted in advance 
of more detailed experimental studies. 
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Abbreviations 
bp base pair 
EST expressed sequence tag 
HMM hidden Markov model 
IMM interpolated Markov model 
LINE long interspersed nuclear element 
MDD maximal dependence decomposition 
ORF open reading frame 
SINE short interspersed nuclear element 
TSS transcription start site 
WWAM windowed weight array model 

I n t r o d u c t i o n  
Identification of all of the genes in the human genome 
(and in thc gcnomcs of various model organisms) is a major 
objectivc of the human genome project. Reccntl> as thc 
genome project has entered the phase of large-scale 
sequencing, computational approaches to gene finding 
have begun to draw significant attention from the nqolccu- 
lar biology and gcnomics community. In addition, signifi- 
cant advances in gene-finding methodology have taken 
place in the past two years, and the current methods are 
significantly more accurate, reliable and useful than those 
available in thc past. Among recent revicws relatcd to genc 
finding, we specifically mention a stimulating overview of 
the subject by Fickett [1], an excellent summary of avail- 
able programs by Claverie [2"], the landmark comparative 
study by Burset and Guigo [3"'], as well as the more tech- 
nical article by Gelfand [4]. Additional information can be 
found in the extensive bibliographies maintained by Li 
(http://linkage.rockefeller.edu/wli/gene) and Gelfand [5]. 
Here, we summarize the recent developments in gene- 
finding algorithms, highlight open problems in this area, 
and discuss future research directions. 

F i n d i n g  g e n e s  in p r o k a r y o t i c  g e n o m e s  
Gene discovery in prokaryotic genomes is a quite differ- 
ent problem from that encountered in eukaryotic 

sequences, owing to the highcr gcnc density typical of 
prokaryotes and the absence of introns in their protein 
coding genes. These properties generally imply that most 
open reading frames (ORFs) encountered in a prokaryot- 
ic sequence that are longer than some reasonable thresh- 
old, such as 300 or 500 base pairs (bp) will likely 
correspond to genes. The primary difficulties arising from 
this simple approach arc that very small genes will be 
missed and that the occurrence of overlapping long ORFs 
on opposite DNA strands (genes and 'shadow genes') 
often leads to ambigt, itics. To resolve these problems, 
several methods have been devised that use different 
types of Markov models (see below) in order to capture 
the compositional differences among coding regions, 
'shadow' coding regions (coding on the opposite DNA 
strand), and noncoding DNA. Such methods, including 
ECOPARSE [6], the widely used GENMARK algorithm 
[7], and the recently introduced Glimmer program [8], 
appear to be able to identify most protein coding genes 
with Rood specificity, but still have difficulties in predict- 
ing the precise position of the start of translation. 

Some degree of caution must be exercised in using such 
statistically-based methods in view of the relatively high 
frequency of genetic transformation, the occurrence of lat- 
eral gene transfer in many bacteria [9], and other factors 
that lead to heterogeneity in gene composition. Thus, 
using a principal components-type method to cluster 
genes on the basis of codon usage, Medigue eta/. [10] par- 
titioned Es~e l~ ia  ~v]i genes into three groups: 'typical 
genes' (about 70%), 'highly expressed genes' (about 15%, 
including ribosomal protein genes, chmgation factor 
genes, and other genes involved in transcription and trans- 
lation) and a third group (about 15%) consisting of mostly 
laterally transferred genes. (Similar subdivisions may 
apply to other bacterial genomes.) The drastic differences 
in cndon usage observed between these three groups indi- 
cates that distinct Markov models could be used to find 
and classify genes of different types. Recently a system 
called GENMARK Genesis has been developed that auto- 
matically clusters ORFs from an uncharacterized bacterial 
genomc and derives separate Markov models fi)r each 
cluster obtained [11]. The possibility that et,karyotic 
genomes may also contain distinct clusters of genes is an 
interesting ()pen problem [12]. 

F i n d i n g  g e n e s  in e u k a r y o t i c  s e q u e n c e s  
The remainder of this review is dew,ted to the more con> 
plex problem of finding genes in eukaryotic sequences. At 
this point, it is convenient to define a few essential terms 
that have specialized meanings in the gene-finding litera- 
ture. First, the accuracy of prediction of particular gene 
featnres, such as exons, coding nucleotides, and splice 
sites, by a gene-finding method is typically measnred in 
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terms of the 'sensitivity', defined as the proportion of 
' true'  sites (e.g. exons or donor splice sites) that are cor- 
rectly predicted, and the 'specificity', defined as the pro- 
portion of 'predicted'  sites that are correct. It should be 
clear that an accurate and thorough prediction has been 
achieved by a method only when the sensitivity and speci- 
ficity are simultaneously high. Since most methods seek 
primarily to predict coding exons (as opposed to exons cor- 
responding to 5' or 3' untranslated regions), four types of 
exons are typically distinguished: 'initial exons' (initiation 
codon to first 5" splice junction); 'internal exons' (3' splice 
site to 5' splice site); 'terminal exons' (3' splice site to stop 
codon); and 'single-exon' (intronless) genes (initiation 
codon to stop codon). As will be seen below, these four 
types of cxons present different challenges for gene-find- 
ing methods, and the methods differ significantly in their 
ability to predict the four exon types. 

Transcriptional signals 
The  most natural way to find genes computationally would 
be to mimic as closely as possible the processes of tran- 
scription and RNA processing (e.g. splicing and polyadeny- 
lation) that define genes biologically. Although this direct 
approach to gene finding is not yet feasible, a number of 
important signals related to transcription, translation and 
splicing are now sufficiently well characterized as to be use- 
fill in computer predictions of the location and exon-intron 
organization of genes. The  transcriptional signals most 
often used in gene finding are the initiator or cap signal, 
located at the transcription start site (TSS), and the A+T- 
rich TATA-box signal, typically located about 30 bp 
upstream of the TSS [13]. These core promoter elements 
arc, however, present in only about 70% of human promot- 
ers and, even when present, are not sufficiently precise to 
allow reliable prediction of promoter locations (reviewed in 
[14]). Even when the full spectrum of characterized tran- 
scription factor-binding sites is used in a promoter recogni- 
tion algorithm [15], there does not appear to be a significant 
improvement in the prediction of precise promoter loca- 
tions when tested on novel promoter sequences [14]. This 
somewhat disappointing result is probably related to the 
variability in the location of transcription factor-binding 
sites relative to the location of the TSS and to the difficul- 
ty of accounting for their combinatorial activity. Other fea- 
tures known to play a role in promoter function, such as 
transcriptional enhancers and silencers, CpG methylation, 
chromatin structure and DNA curvature, could prove use- 
ful in prediction when they are better understood. 

The  p(;lyadenylation signal appears to have a much sim- 
pler structure, comprising a consensus AATAAA hexamer 
sequence followed by a more complex signal (not yet com- 
pletely characterized), located some 20 to 30 bp down- 
stream [16]. Even this signal is not trivial to predict, 
however, and recent studies of public expressed sequence 
tag (EST) databases have shown that the consensus 
AATAAA hexamer is absent from more than half of all 3' 
untranslated regions [2"]. Thus, development of improved 

methods for identifying the polyadenylation signal and, in 
particular, promoter regions, is an important challenge for 
the next several years. 

Translational signals 
The principal translational signals that have been used in 
gene finding are the 'Kozak signal', located immediately 
upstream of the initial ATG [16], and the termination 
codon, useful primarily for its absence (in frame) in coding 
exons. Since these signals contain far too little information 
to allow discrimination in bulk genomic DNA, reliable pre- 
diction of translation start and stop sites may not be possi- 
ble until more progress has been made towards predicting 
the sites of transcription initiation and termination (see 
above), which would dramatically reduce the amount of 
sequence that needs to be searched. Using simple weight 
matrix descriptions of the Kozak and translation termina- 
tion signals in the context of the integrated gene-finding 
program GENSCAN [17"'], about two thirds (66%) of 
translation initiation sites and about three quarters (78%) 
of termination codons have been correctly predicted 
(Table l a), with specificities of 84% and 91%, respectively. 
Although these levels of accuracy are high enough to be 
useflll, they are significantly lower than those achieved for 
splicing signals (see below), and lead to poorer prediction 
of initial and terminal exons than has been achieved for 
internal exons (qhble lb). 

Splicing signals 
Even if one could reliably predict promoter and 
polyadcnylation signals, and translation start and stop sites 
in genomic sequences, this knowledge would generally 
help only in predicting the location of the first and last 
exons of a gene. Since most vertebrate, invertebrate and 
plant genes contain several exons, accurate prediction of 
gene structure in these organisms is much more dependent 
upon the ability of predictions to pinpoint splice signals. 
Nuclear pre-mRNA introns are excised from the primary 
transcript by a large ribonucleoprotein complex known as 
the spliceosome (reviewed in [18]), which recognizes sites 
at the 5' and 3' ends of the intron (the donor and acceptor 
splice sites, respectively), as well as an internal site known 
as the branch point. With a few interesting exceptions (see 
[19°]), virtually all spliceosomal introns begin with G T  and 
end with AG, and this nearly invariant rule is used by the 
majority of gene-finding programs to narrow the search 
space of possible exon and intron boundaries. 

Many early gene-finding methods used simple weight 
matrix (independence) models of the position-specific 
compositional biases present in 5' and 3" splice sites and 
of the bias towards pyrimidine nucleotides upstream of 3' 
splice sites. More recently, several authors have observed 
statistically significant dependencies between positions 
within both the donor and acceptor splice sites 
[17°',20-22]. Certain observed dependencies between 
donor splice site positions can be interpreted in terms of 
the thermodynamics of RNA duplex formation between 
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Table 1 

Accuracy of GENSCAN for different signal and exon types. 

(a) Prediction of individual splice sites and translational signals. 

Type of signal Type of exon Annotated exons Predicted exons 
Number % Correctly predicted Number % Correctly predicted 

Initiation Initial only 570 66 450 84 
Termination Terminal only 570 78 487 91 
5' splice site Initial only 570 88 450 89 
5' splice site Internal only 1510 93 1682 89 
5' splice site Initial and internal 2080 91 2132 89 
3' splice site Terminal only 570 81 487 92 
3' splice site Internal only 1510 92 1682 83 
3' splice site Internal and terminal 2080 89 2169 85 

(b) Accuracy for initial, internal and terminal exons. 

Exon type Annotated exons Predicted exons 
Number % Exactly % Partially % Missed Number % Exactly % Partially % Wrong 

Initial 570 65 25 9 457 81 9 10 
Internal 1510 90 5 4 1707 80 11 8 
Terminal 570 76 8 15 509 84 6 8 
All types 2650 81 10 8 2678 81 10 9 

Accuracy statistics are shown for forward-strand exons predicted by the GENSCAN program [17°°], as tested on the Burset and Guigo dataset of 
570 vertebrate gene sequences [3"°]. (a) Accuracy is shown for four types of signals: initiation codons, termination codons and 5' and 3" splice 
sites. For each signal type, the number of (true) sites according to the GenBank CDS (coding sequence) annotation and the percentage of sites 
predicted correctly by GENSCAN are shown in columns 3 and 4, respectively. Columns 5 and 6 show the number of sites predicted by 
GENSCAN and the percentage of predicted sites that were correct, respectively. For 5' and 3' splice sites, accuracy data are also shown 
separately for initial versus internal exons, and internal versus terminal exons, respectively. (b) Accuracy data at the exon level. The percentages of 
annotated exons that were predicted exactly (both endpoints correct), predicted partially (one endpoint correct) or missed (not overlapped by a 
predicted exon) are listed in columns 3, 4 and 5, respectively. Columns 7, 8 and 9 show the percentages of predicted exons that were exactly 
correct (both endpoints correct), partially correct (one endpoint correct), or wrong (not overlapping an annotated exon), respectively. In addition, 
five single-exon genes were predicted by GENSCAN in this set (not given a separate row, but included in the totals). 

I l l  small nuclear RNA (snRNA) and the 5' splice site 
region of the p re -mRNA [17"°]. Of  the dependencies  
observed for human acceptor splice sites, some appear to 
result simply from the compositional heterogenei ty of the 
human gcnome,  whereas others probably relate to the 
specificity of pyrimidine tract-binding proteins [23]. T h e  
development  of more complex splice signal models that 
are capable of capturing such dependencies  has been a 
significant recent trend in the gene-finding literature: 
examples include the 'maximal dependence  decomposi-  
tion' (MDD)  and ~windowed weight array' (\V\YAM) 
models [17"'], hidden Markov models [20], decision tree 
methods [21] and multilaver neural networks [22]. These  
more complex models typically yield significant, but not 
dramatic, improvements  in splice site discrimination over 
the simpler models  which assume i n d c p c n d c n c e  
between positions. T h e  final level of accuracy achieved 
depends critically on whether  prediction is measured 'in 
isolation' or in the context of an integrated gene-finding 
method (see below). 

This important distinction between 'isolated' and 'integrat- 
ed'  splice-site prediction can be illustrated by comparing 
the performance of the M D D  5' and W\\:AM 3' splice site 
models in isolation with that achieved when these models 
are integrated into G E N S C A N  [17"]. B\. themselves, the 

specificity of these models is 34% for 3' splice sites and 
36% for 5' splice sites at a 50% sensitivity threshold (i.e. at 
a threshold that identifies half of the true sites) in bulk 
genomic sequences [23], stronglx suggesting that splice- 
site selection is dependent  on factors other than the 
strength of the splice signals. This conclusion is consistent 
with a large amount  of experimental data showing that 
splice-site usage is often influenced by specific cxonic 
and intrnnic enhancer (and repressor) signals located some 
distance from the splice junctions [24]. On the other hand, 
when additional types of information, such as thc compo- 
sitional propcrtics of exons and intrnns and the rcading 
frame compatibility of adjacent exons, arc incorporated 
into the integrated G E N S C A N  model, the accurac\  of 
prediction improves dramatically. In particular, scnsitivit\  
increases to 91% o r s '  splice sites and 89% of 3' splice sites 
from the Burset and Guigo data set [3"]  at specificity lev- 
els of 89% and 85%, respectively ('Ihble Ix), and full\  90% 
of internal exons ~ere predicted exactly with 80% speci- 
ficity (lZable l b). These  latter numbers max be compared 
with accuracy data reportcd using the MZEt ;  computer  
program (78% sensitivit,v, 86% spccificity), a recenth  
intr{}duced method designed specifically t{} predict intcr- 
hal coding cx{}ns [25"]. Although these numbers arc {luitc 
promising, it should be emphasized that the accuracy for 
larger genomic contigs containing multiple genes and 
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significant amounts  of  intergenic D N A  is likely to be 
somewhat  lower for both programs. 

M a r k o v  s e q u e n c e  m o d e l s  
Compositional differences between coding and noncod- 
ing D N A  were recognized very early on and a number  of 
methods were developed in the mid to late eighties that 
used such differences in order to identify putative coding 
regions in genomic D N A  (reviewed in [2"]). T h e  prolifer- 
ation of  properties reported to be useflll in identifying 
genes prompted Fickett  and Tung [26] to undertake a 
systematic comparison of  more than twenty different 
compositional properties in terms of  their ability to dis- 
tinguish coding from noncoding DNA. T h e  conclusions 
of this study were that measures based on reading-frame- 
specific hexamer composit ion gave the best discrimina- 
tion, and most subsequent  gene-f inding methods have 
used hexamer composit ion in one form or another. 

Several recent genc-f inding methods use Markov models 
of coding and noncoding regions in order to classify 
sequence segments  as either exons or introns. Simply 
stated, a Markov model of  order k captures local depen-  
dencies in sequence at the level of k+l-mers,  for exam- 
pie, a f i f th-order  model  rcflects de pe ndenc i c s  in 
hexamers. In a homogeneous  model, all positions are  

treatcd the same, whereas in an inhomogeneous  modcl, 
different transition probabilitcs are used at differcnt posi- 
tions. G E N S C A N  [17"]  uses a homogeneous  fifth order 
Marko~ model of  noncoding regions, and both G E N -  
SCAN a n d  G E N M A R K  [7] use a three periodic (inhomo- 
geneous)  fifth order M a r k m  model of coding rcgions 
(illustrated in Figure la). In the former model (illustrated 
in Figure lb), the conditional probability of  the identity 
of  the next nucleotide depends  on the identities of thc 
previous five bases, thus incorporating biases in the hexa- 
mer composition. T h e  latter model (Figure la) differs 
from this in that separate conditional probabilities arc  

used for nucleotides that occur in the three distinct codon 
positions, rcsulting in a modcl that can account for the 
differential usage of  hexamers in the two out of frame 
positions. This  relatively complicated model thus incor- 
porates a combinat ion of biases related to amino acid 
usage, codon usage, di-amino acid and dicodon usage, as 
well as other factors (see also [12]). 

T h e  parameters for such models are typically est imated 
using the nlaximum likelihood method,  that is, by using 
the observed conditional frequencies of  an appropriate 
training set of known genes to estimate the correspond- 
ing conditional probabilities. An alternative approach, 
proposed recently by Salzberg eta/. [8], is to use ' interpo- 
lated Markov model '  ( ]MM) estimation, in which the 
conditional probabilities of  a high order Markov chain 
model are est imated from an average of lower order con- 
ditional frequencies. Some authors have also used sepa- 
rate coding  and/or noncod ing  region models  for 
sequences of  high and low C+G composition to account 

for the well known ' isochore '  organization of the human 
genome [27,28]. 

Beyond simply identifying gene components  such as splice 
signals or coding exons in isolation, several recent methods 
use more elaborate models of gene architecture that 
require specific subcomponents  of a gene to occur in the 
appropriate order, and allow exon and intron length distri- 
butions to be accounted for. One way to combine several 
different types of  sequence generating models into a uni- 
fied scheme is to use a 'hidden Markov model '  (HMM) 
frantework (Figure lc). In this approach, first applied to 
gene finding by Haussler and colleagues [6] and also used 
by Henderson eta/. [20], transitions between submodels 
corresponding to particular gene components  are modeled 
as unobserved ( 'hidden')  Markov processes (the upper cir- 
cles in Figure lc), which determine the probability of gen- 
erating particular (observable) nucleotides (the lower 
circles in Figure lc). The  HMM architecture is in fact 
quite general and has been applied successflllly to many 
problems in computational biology and in other fields [29]. 

All HMMs have a limitation in that blocks of  the same 
hidden-state type (e.g. an exon considered as a block of 
'coding'  states) can only be modeled as geometric (expo- 
nential) random variables. Since exon and intron lengths 
appear to be constrained by factors related to p re -mRNA 
splicing (e.g. [3()]), and do not exhibit geometric distribu- 
tions, more general models are required to accurately 
account for the lengths of exons and introns in real genes. 
A model in which subseqt,ent states are generated accord- 
ing to a Markov chain but have arbitrary (instead of fixed 
unit) length distributions is called a ' semi-Markov'  model 
(e.g. [31], illustrated in Figure ld). In the general model 
architecture used by G E N S C A N  [17"'] and Genie [32"] 
(Figure le), D N A  nucleotides (represented bv small cir- 
cles) are generated according to the probabilistic rules 
derived from an under ly ing  (hidden)  semi-Markov 
process (represented by the large circles above). Such a 
model structure has been described variously as an 
'explicit state duration H M M '  [29], a 'generalized H M M '  
[32"], or a 'h idden semi-Markov model '  [33]. A key practi- 
cal adx antage of  (hidden) Markov-type models is that effi- 
cient (linear time) recursions can be devised in order to 
determine, for example, the most likely gene structure 
corresponding to a given sequence [29,33,34]. Another 
important distinction between model architectures used 
in gene finding is that some programs (e.g. G E N S C A N  
a n d  G E N M A R K )  use explicitly double-stranded models 
that allow for the occurrence of  multiple genes on either 
or both D N A  strands, whereas most  others (e.g. 
F G E N E H  [351, Genie and VEIL)  analyze only one strand 
at a time and assume that the input sequence contains a 
single complete gene. 

S e q u e n c e  s imi lar i ty  
Sequence similarity is a very powerful, but not infallible, 
type of  ev idence  used to assign funct ion to novel 
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Figure 1 
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The five different types of Markov models discussed in the text are illustrated. Throughout, circles represent DNA nucleotides or more general 
'states' and arrows indicate dependencies. (a) Three periodic fifth order Markov models. Circles represent consecutive DNA bases, numbers 
indicate the codon position, and the arrows indicate that the next base is generated conditionally on the previous five bases and on the codon 
position. (b) Homogeneous fifth order Markov model. Circles represent consecutive DNA bases, and the arrow indicates that the next base (i) is 
generated conditionally on the previous five (i-5 ..... i-1 ) in the sequence. (c) Hidden Markov model. The upper circles represent unobserved or 
'hidden' states, perhaps corresponding to whether the position is coding or noncoding; arrows between upper circles indicate that the states are 
generated according to a (first order) Markov chain. The lower circles correspond to (observable) DNA bases; downward arrows indicate that each 
base is generated conditionally on the identity of the corresponding hidden state. (d) Semi-Markov model. The circles represent hidden states; 
single-headed arrows indicate the Markov dependence of the hidden states; double-headed arrows represent the (variable) lengths of the hidden 
states. (e) Hidden semi-Markov model. The large circles and associated arrows are as in (d). The large downward arrows indicate that the 
nucleotides (small circles) are generated conditionally on the identity and length of the corresponding hidden state. 
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sequences. In gene finding, sequence similarity can be 
used in at least six different ways, outlined below. First, a 
direct comparison of a genomic sequence with databases 
of expressed sequence tags (ESTs), using programs such 
as BLASTN 2.0 [36] and AAT [37], can identify regions 
of a contig that correspond to processed mRNA. Second, 
comparison of a genomic sequence that is translated in all 
six reading frames with protein sequence databases, 
using a program such as BLASTX 2.0 [36], can identify 
probable coding regions. Third, 'spliced alignment' of a 
genomic sequence containing a single complete gene 
with a homologous protein sequence, using PRO- 
CRUSTES [38], may enable reconstruction of the exon 
and intron organization of the gene. Fourth, comparison 
of predicted peptides, derived from programs such as 
GENSCAN or FGENEH,  with protein sequence data- 
bases can be used to confirm predictions and/or to assign 
putative function to predicted proteins. Fifth, a compari- 
son of a translated genomic sequence with a translated 
genomic or cDNA sequence using TBLASTX 2.0 [36] 
can identify similarities among coding regions. Finally, 
comparison of genomic sequences with homologous 
genomic sequences from closely related organisms (e.g. 
human versus mouse or chicken), using BLAST 2.0 [36] 
and pairwise alignment programs such as CLUSTAL W 
[39], can be used to identify conserved regions, which 
often correspond to coding exons or important transcrip- 
tional or splicing signals. 

Each of these methods can provide usefld information 
about gene locations, as well as clues to gene function, 
although similarity-based methods are currently able to 
identify only about half of all human genes, and this pro- 
portion is increasing rather slowly. It should also be kept in 
mind that similarity-based methods are only as reliable as 
the databases that are searched, and apparent homology 
can be misleading at times. For example, cDNA clones 
may occasionally correspond to incompletely processed 
messages containing one or more introns, which could lead 
to misclassification of a genomic segment as an cxon rather 
than an intron. Automatic similarity-based methods may 
also be led astray by the inclusion of (potentially incorrect) 
predicted proteins in sequence databases; this problem 
could be easily avoided if the sequence databases would 
require more detailed computer readable annotations of 
the source of each annotated coding region (e.g. complete 
cDNA sequence, partial cDNA, GENSCAN and GRAIL 
[40] predictions, etc.). Even spliced alignment methods 
[38,41"] can be misleading if the target (database) protein 
used is not a true ortholog of the source (genomic) gene 
and only shares some domains, likely causing portions of 
the gene to be missed. One possible solution to this dilem- 
ma is to use a combination of composition-based and 
homology-based methods, as in the recently developed 
GSA program (X Huang, H Zhou, AR Kerlavage, MD 
Adams, personal communication), which combines data- 
base similarity information from the AAT program [37] 
with exons predicted by GENSCAN. 

Besides sequence similarity to individual known pro- 
teins, another possible approach is to search translated 
genomic sequences for the occurrence of the short pep- 
tide motifs that are characteristic of common protein fam- 
ilies, such as zinc finger motifs, ATP and GTP-binding 
motifs, and general PROSITE patterns. For example, 
some of the regular expressions characteristic of the ser- 
ine protease family include: CGGS[ILMV][ILMV];  
[FWY][IV][FLMV][ST]AAHC; and G[DE]SGGP[FILMV] 
(where [XZ] indicates the occurrence of either residue X or 
residue Z). For example, a genomic sequence were found 
to contain all three of these motifs on the same strand, and 
in the appropriate order, that might indicate the presence 
of an undetected serine protease gene. For this type of 
approach to become a useful tool for genome analysis will 
require stud.ies of the frequencies of particular peptide pat- 
terns in (conceptually translated) noncoding genomic 
DNA, in order to establish appropriate benchmarks for sta- 
tistical significance. 

Repetitive elements 
Just as sequence similarity to known proteins can help to 
identify probable coding regions, similarity to known 
classes of interspersed repeats, such as LINEs  and 
SINEs (reviewed in [42]), can be useful in identifying 
probable noncoding regions. These types of elements 
are so abundant in the human genome that powerful 
repeat-finding programs such as RepeatMasker (Smit 
and Green, personal communication) can often classify 
as much as 30 to 40% of a human genomic contig as 
repetitive elements [42]. The presence of such repeats 
in the 5' and/or 3' untranslated regions of some cDNAs 
makes it absolutely essential to prescreen genomic 
sequences with a program such as RepeatMasker or 
Censor [43] before BLAST searching it against the pub- 
lic EST database, for example. 

Open problems and future directions 
Existing gene-finding programs, although signifcantly 
advanced over those available a few years ago, still have 
several important limitations. First, most programs only 
predict protein coding genes and not genes whose prod- 
ucts function exclusively at the RNA level. Although spe- 
cialized programs exist that identify tRNA genes [44], and 
rRNA genes may generally be identifiable through homol- 
ogy, no method has yet been developed for the identifica- 
tion of novel spliced or unspliced functional RNA genes 
such as XIST [45]. Another limitation is that no current 
method can deal effectively with overlapping genes in 
eukaryotes, and prediction of multiple genes in a single 
sequence is still difficult. This latter challenge is illustrat- 
ed in Figure 2, which compares the GENSCAN predicted 
genes of a 66 kb portion of the human MHC class II region 
[46] with those annotated in the GenBank entry (accession 
number X66401). Although accuracy at the exon level is 
quite high (34 of 40 = 85% of annotated coding exons are 
predicted exactly and 34 of 37 = 92% of predicted exons 
are exactly correct), only one out of five genes is predicted 
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Figure 2 
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C u r r e n t  O p i n i o n  i n  S t r u c t u r a l  B i o l o g y  

A schematic representation of predicted and annotated genes in a 66 kb portion of the human M H C  II region (GenBank accession number 
X66401 ) is shown. Annotated genes are labeled according to the names given in the GenBank annotation; predicted genes are labeled GS1 
through GS4 as they occur along the sequence. Genes coding on the forward and reverse DNA strands are shown above and below the 
sequence line, respectively. Predicted exons are shown in grey, annotated exons in black; the shape of the exon indicates its type, as shown in the 
key. Exon sizes and locations are drawn approximately to scale. 

perfectly, and one of the predicted genes (GS2) corre- 
sponds to the flnsion of  exons from two annotated genes 
(TAP1 and [~N'IP7 - -  see Figure 2). 

As promoter regions often correspond to CpG islands, 
one approach, which might help to ' segment '  a long 
genomic sequence into regions corresponding to single 
genes, would be to prescreen the sequence fl)r CpG 
islands, identified using, for example, score-based statis- 
tics [47]. In this approach, scores are assigned to local 
sequence features (e.g. dinuclcotides and trinucleotides) 
that are proportional to the logarithm of the ratio of  their 
f requency in target regions (e.g. known CpG islands and 
coding rcgions) to that obscrved in background genomic 
DNA. Statistical significance thresholds are then used to 
define significantly high scoring regions of  a sequence 
(e.g. the predicted CpG islands). Another approach for 
single-gene segmentat ion of  a genomic region is to use 
the locations and polarities (DNA strands) of  matches to 
5' and 3' ESTs [48]. 

Finally, and perhaps most importantl,,; the problem of muhi- 
ple protein products that correspond to a single gene through 
alternative splicing, alternative transcription and/or alterna- 
tive translation has not vet been dealt with efl'ectivel.v, 
although some current gene-finding programs are able to 
predict sets of alternative exons or genes. Alternative splicing 
in particular is an important regulatory mechanism in higher 

eukaryotes, as cxcmplified by the elaborate regulatory cas- 
cade involved in Drosophffa sex determination (reviewed in 
[18]) and by the regulation of the ./)'uitless gene that is 
involved in courtship behavior in the male Drosophila [49]. 
Aside from a few well-studied cases, however, thc roles gov- 
erning alternative exon and intron choice arc not well under- 
stood, presenting significant challenges to both experinaental 
and computational biologists. 
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