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The ability to accurately predict gene
function based on gene sequence is an
important tool in many areas of biologi-
cal research. Such predictions have be-
come particularly important in the ge-
nomics age in which numerous gene se-
quences are generated with little or no
accompanying experimentally deter-
mined functional information. Almost
all functional prediction methods rely
on the identification, characterization,
and quantification of sequence similar-
ity between the gene of interest and
genes for which functional information
is available. Because sequence is the
prime determining factor of function,
sequence similarity is taken to imply
similarity of function. There is no doubt
that this assumption is valid in most
cases. However, sequence similarity does
not ensure identical functions, and it is
common for groups of genes that are
similar in sequence to have diverse (al-
though usually related) functions.
Therefore, the identification of se-
quence similarity is frequently not
enough to assign a predicted function to
an uncharacterized gene; one must have
a method of choosing among similar
genes with different functions. In such
cases, most functional prediction meth-
ods assign likely functions by quantify-
ing the levels of similarity among genes.
I suggest that functional predictions can
be greatly improved by focusing on how
the genes became similar in sequence
(i.e., evolution) rather than on the se-
quence similarity itself. It is well estab-
lished that many aspects of comparative
biology can benefit from evolutionary
studies (Felsenstein 1985), and compara-
tive molecular biology is no exception
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(e.g., Altschul et al. 1989; Goldman et al.
1996). In this commentary, | discuss the
use of evolutionary information in the
prediction of gene function. To appreci-
ate the potential of a phylogenomic ap-
proach to the prediction of gene func-
tion, it is necessary to first discuss how
gene sequence is commonly used to pre-
dict gene function and some general fea-
tures about gene evolution.

Sequence Similarity, Homology,
and Functional Predictions

To make use of the identification of se-
quence similarity between genes, it is
helpful to understand how such similar-
ity arises. Genes can become similar in
seqguence either as a result of convergence
(similarities that have arisen without a
common evolutionary history) or de-
scent with modification from a com-
mon ancestor (also known as homology).
It is imperative to recognize that se-
quence similarity and homology are not
interchangeable terms. Not all ho-
mologs are similar in sequence (i.e., ho-
mologous genes can diverge so much
that similarities are difficult or impos-
sible to detect) and not all similarities
are due to homology (Reeck et al. 1987;
Hillis 1994). Similarity due to conver-
gence, which is likely limited to small
regions of genes, can be useful for some
functional predictions (Henikoff et al.
1997). However, most sequence-based
functional predictions are based on the
identification (and subsequent analysis)
of similarities that are thought to be due
to homology. Because homology is a
statement about common ancestry, it
cannot be proven directly from se-
quence similarity. In these cases, the in-
ference of homology is made based on
finding levels of sequence similarity that
are thought to be too high to be due to
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convergence (the exact threshold for
such an inference is not well estab-
lished).

Improvements in database search
programs have made the identification
of likely homologs much faster, easier,
and more reliable (Altschul et al. 1997;
Henikoff et al. 1998). However, as dis-
cussed above, in many cases the identi-
fication of homologs is not sufficient to
make specific functional predictions be-
cause not all homologs have the same
function. The available similarity-based
functional prediction methods can be
distinguished by how they choose the
homolog whose function is most rel-
evant to a particular uncharacterized
gene (Table 1). Some methods are rela-
tively simple—many researchers use the
highest scoring homolog (as determined
by programs like BLAST or BLAZE) as the
basis for assigning function. While high-
est hit methods are very fast, can be au-
tomated readily, and are likely accurate
in many instances, they do not take ad-
vantage of any information about how
genes and gene functions evolve. For ex-
ample, gene duplication and subsequent
divergence of function of the duplicates
can result in homologs with different
functions being present within one spe-
cies. Specific terms have been created to
distinguish homologs in these cases
(Table 2): Genes of the same duplicate
group are called orthologs (e.g., B-globin
from mouse and humans), and different
duplicates are called paralogs (e.g., a-
and B-globin) (Fitch 1970). Because gene
duplications are frequently accompa-
nied by functional divergence, dividing
genes into groups of orthologs and para-
logs can improve the accuracy of func-
tional predictions. Recognizing that the
one-to-one sequence comparisons used
by most methods do not reliably distin-
guish orthologs from paralogs, Tatusov
et al. (1997) developed the COG cluster-
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Table 1. Methods of Predicting
Gene Function When Homologs
Have Multiple Functions

Highest Hit
The uncharacterized gene is
assigned the function (or frequently,
the annotated function) of the gene
that is identified as the highest hit
by a similarity search program (e.g.,
Tomb et al. 1997).

Top Hits
Identify top 10+ hits for the
uncharacterized gene. Depending
on the degree of consensus of the
functions of the top hits, the query
seguence is assigned a specific
function, a general activity with
unknown specificity, or no function
(e.g., Blattner et al. 1997).

Clusters of Orthologous Groups
Genes are divided into groups of
orthologs based on a cluster
analysis of pairwise similarity scores
between genes from different
species. Uncharacterized genes are
assigned the function of
characterized orthologs (Tatusov et
al. 1997).

Phylogenomics
Known functions are overlaid onto
an evolutionary tree of all
homologs. Functions of
uncharacterized genes are predicted
by their phylogenetic position
relative to characterized genes (e.g.,
Eisen et al. 1995, 1997).

ing method (see Table 1). Although the
COG method is clearly a major advance
in identifying orthologous groups of
genes, it is limited in its power because
clustering is a way of classifying levels of
similarity and is not an accurate method
of inferring evolutionary relationships
(Swofford et al. 1996). Thus, as sequence
similarity and clustering are not reliable
estimators of evolutionary relatedness,
and as the incorporation of such phylo-
genetic information has been so useful
to other areas of biology, evolutionary
techniques should be useful for improv-
ing the accuracy of predicting function
based on sequence similarity.

Phylogenomics

There are many ways in which evolu-
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tionary information can be used to im-
prove functional predictions. Below, |
present an outline of one such phylog-
enomic method (see Fig. 1), and | com-
pare this method to nonevolutionary
functional prediction methods. This
method is based on a relatively simple
assumption—because gene functions
change as a result of evolution, recon-
structing the evolutionary history of
genes should help predict the functions
of uncharacterized genes. The first step
is the generation of a phylogenetic tree
representing the evolutionary history of
the gene of interest and its homologs.
Such trees are distinct from clusters and
other means of characterizing sequence
similarity because they are inferred by
special techniques that help convert pat-
terns of similarity into evolutionary re-
lationships (see Swofford et al. 1996). Af-
ter the gene tree is inferred, biologically
determined functions of the various ho-
mologs are overlaid onto the tree. Fi-
nally, the structure of the tree and the
relative phylogenetic positions of genes
of different functions are used to trace
the history of functional changes, which
is then used to predict functions of un-
characterized genes. More detail of this
method is provided below.

Identification of Homologs

The first step in studying the evolution
of a particular gene is the identification
of homologs. As with similarity-based
functional prediction methods, likely
homologs of a particular gene are iden-
tified through database searches. Be-
cause phylogenetic methods benefit
greatly from more data, it is useful to
augment this initial list by using identi-
fied homologs as queries for further

database searches or using automatic it-
erated search methods such as PSI-
BLAST (Altschul et al. 1997). If a gene
family is very large (e.g., ABC transport-
ers), it may be necessary to only analyze
a subset of homologs. However, this
must be done with extreme care, as one
might accidentally leave out proteins
that would be important for the analy-
sis.

Alignment and Masking

Sequence alignment for phylogenetic
analysis has a particular purpose—it is
the assignment of positional homology.
Each column in a multiple sequence
alignment is assumed to include amino
acids or nucleotides that have a com-
mon evolutionary history, and each col-
umn is treated separately in the phylo-
genetic analysis. Therefore, regions in
which the assignment of positional ho-
mology is ambiguous should be ex-
cluded (Gatesy et al. 1993). The exclu-
sion of certain alignment positions (also
known as masking) helps to give phylo-
genetic methods much of their discrimi-
natory power. Phylogenetic trees gener-
ated without masking (as is done in
many sequence analysis software pack-
ages) are less likely to accurately reflect
the evolution of the genes than trees
with masking.

Phylogenetic Trees

For extensive information about gener-
ating phylogenetic trees from sequence
alignments, see Swofford et al. (1996). In
summary, there are three methods com-
monly used: parsimony, distance, and
maximum likelihood (Table 3), and each
has its advantages and disadvantages. |

Table 2. Types of Molecular Homology

Genes that are descended from a common ancestor

Homologous genes that have diverged from each other

after speciation events (e.g., human B- and chimp

Homologous genes that have diverged from each other

after gene duplication events (e.g., B- and y-globin)

Homolog

(e.g., all globins)
Ortholog

B-globin)
Paralog
Xenolog

Homologous genes that have diverged from each other

after lateral gene transfer events (e.g., antibiotic
resistance genes in bacteria)

Positional homology

Common ancestry of specific amino acid or nucleotide

positions in different genes
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Figure 1 Outline of a phylogenomic methodology. In this method, information about the
evolutionary relationships among genes is used to predict the functions of uncharacterized
genes (see text for details). Two hypothetical scenarios are presented and the path of trying to
infer the function of two uncharacterized genes in each case is traced. (A) A gene family has
undergone a gene duplication that was accompanied by functional divergence. (B) Gene func-
tion has changed in one lineage. The true tree (which is assumed to be unknown) is shown at
the bottom. The genes are referred to by numbers (which represent the species from which these
genes come) and letters (which in A represent different genes within a species). The thin
branches in the evolutionary trees correspond to the gene phylogeny and the thick gray
branches in A (bottom) correspond to the phylogeny of the species in which the duplicate genes
evolve in parallel (as paralogs). Different colors (and symbols) represent different gene func-
tions; gray (with hatching) represents either unknown or unpredictable functions.

prefer distance methods because they
are the quickest when using large data
sets. Before using any particular tree it is
important to estimate the robustness
and accuracy of the phylogenetic pat-

terns it shows (through techniques such
as the comparison of trees generated by
different methods and bootstrapping).
Finally, in most cases, it is also useful to
determine a root for the tree.
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Functional Predictions

To make functional predictions based
on the phylogenetic tree, it is necessary
to first overlay any known functions
onto the tree. There are many ways this
“map” can then be used to make func-
tional predictions, but | recommend
splitting the task into two steps. First,
the tree can be used to identify likely
gene duplication events in the past. This
allows the division of the genes into
groups of orthologs and paralogs (e.g.,
Eisen et al. 1995). Uncharacterized genes
can be assigned a likely function if the
function of any ortholog is known (and
if all characterized orthologs have the
same function). Second, parsimony re-
construction techniques (Maddison and
Maddison 1992) can be used to infer the
likely functions of uncharacterized
genes by identifying the evolutionary
scenario that requires the fewest func-
tional changes over time (Fig. 1). The in-
corporation of more realistic models of
functional change (and not just mini-
mizing the total number of changes)
may prove to be useful, but the parsi-
mony minimization methods are prob-
ably sufficient in most cases.

Is the Phylogenomic Method Worth
the Trouble?

Phylogenomic methods require many
more steps and usually much more
manual labor than similarity-based
functional prediction methods. Is the
phylogenomic approach worth the
trouble? Many specific examples exist in
which gene function has been shown to
correlate well with gene phylogeny (Ei-
sen et al. 1995; Atchley and Fitch 1997).
Although no systematic comparisons of
phylogenetic versus similarity-based
functional prediction methods have
been done, there are a variety of reasons
to believe that the phylogenomic
method should produce more accurate
predictions than similarity-based meth-
ods. In particular, there are many condi-
tions in which similarity-based methods
are likely to make inaccurate predictions
but which can be dealt with well by phy-
logenetic methods (see Table 4).

A specific example helps illustrate a
potential problem with similarity-based
methods. Molecular phylogenetic meth-
ods show conclusively that mycoplas-
mas share a common ancestor with low-
GC Gram-positive bacteria (Weisburg et
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Table 3. Molecular Phylogenetic Methods

Method

Parsimony

Distance

Maximum likelihood

Possible trees are compared and each is given a score that is a reflection of the minimum number
of character state changes (e.g., amino acid substitutions) that would be required over
evolutionary time to fit the sequences into that tree. The optimal tree is considered to be the
one requiring the fewest changes (the most parsimonious tree).

The optimal tree is generated by first calculating the estimated evolutionary distance between all
pairs of sequences. Then these distances are used to generate a tree in which the branch
patterns and lengths best represent the distance matrix.

Maximum likelihood is similar to parsimony methods in that possible trees are compared and
given a score. The score is based on how likely the given sequences are to have evolved in a
particular tree given a model of amino acid or nucleotide substitution probabilities. The optimal
tree is considered to be the one that has the highest probability.

Bootstrapping Alignment positions within the original multiple sequence alignment are resampled and new data
sets are made. Each bootstrapped data set is used to generate a separate phylogenetic tree and
the trees are compared. Each node of the tree can be given a bootstrap percentage indicating
how frequently those species joined by that node group together in different trees. Bootstrap
percentage does not correspond directly to a confidence limit.

al. 1989). However, examination of the This is because mycoplasmas have un- Bacillus subtilis (a low GC Gram-positive

percent similarity between mycoplasmal dergone an accelerated rate of molecular species) will result in a list in which the

genes and their homologs in bacteria evolution relative to other bacteria. mycoplasma homologs (if they exist)

does not clearly show this relationship. Thus, a BLAST search with a gene from score lower than genes from many spe-
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cies of bacteria less closely related to B.
subtilis. When amounts or rates of
change vary between lineages, phyloge-
netic methods are better able to infer
evolutionary relationships than similar-
ity methods (including clustering) be-
cause they allow for evolutionary
branches to have different lengths.
Thus, in those cases in which gene func-
tion correlates with gene phylogeny and
in which amounts or rates of change
vary between lineages, similarity-based
methods will be more likely than phy-
logenomic methods to make inaccurate
functional predictions (see Table 4).

Another major advantage of phyloge-
netic methods over most similarity
methods comes from the process of
masking (see above). For example, a de-
letion of a large section of a gene in one
species will greatly affect similarity mea-
sures but may not affect the function of
that gene. A phylogenetic analysis in-
cluding these genes could exclude the
region of the deletion from the analysis
by masking. In addition, regions of
genes that are highly variable between
species are more likely to undergo con-
vergence and such regions can be ex-
cluded from phylogenetic analysis by
masking. Masking thus allows the exclu-
sion of regions of genes in which se-
quence similarity is likely to be “noisy”
or misleading rather than a biologically
important signal. The pairwise sequence
comparisons used by most similarity-
based functional prediction methods do
not allow such masking. Phylogenetic
methods have been criticized because of
their dependence (for most methods) on
multiple sequence alignments that are
not always reliable and unbiased. How-
ever, multiple sequence alignments also
allow for masking, which is probably
more valuable than the cost of depend-
ing on alignments.

The conditions described above and
highlighted in Table 4 are just some ex-
amples of conditions in which evolu-
tionary methods are more likely to make
accurate functional predictions than
similarity-based methods. Phylogenetic
methods are particularly useful when
the history of a gene family includes
many of these conditions (e.g., multiple
gene duplications plus rate variation) or
when the gene family is very large. The
principle is simple—the more compli-
cated the history of a gene family, the
more useful it is to try to infer that his-
tory. Thus although the phylogenomic

method is slow and labor intensive, | be-
lieve it is worth using if accuracy is the
main objective. In addition, informa-
tion about the evolutionary relation-
ships among gene homologs is useful for
summarizing relationships among genes
and for putting functional information
into a useful context.

Despite the evolution of these meth-
ods, and likely continued improvements
in functional predictions, it must be re-
membered that the key word is predic-
tion. All methods are going to make in-
accurate predictions of functions. For
example, none of the methods described
can perform well when gene functions
can change with little sequence change
as has been seen in proteins like opsins
(Yokoyama 1997). Thus, sequence data-
bases and genome researchers should
make clear which functions assigned to
genes are based on predictions and
which are based on experiments. In ad-
dition, all prediction methods should
use only experimentally determined
functions as their grist for predictions.
This will hopefully limit error propaga-
tion that can happen by using an inac-
curate prediction of function to then
predict the function of a new gene,
which is a particular problem for the
highest hit methods, as they rely on the
function of only one gene at a time to
make predictions (Eisen et al. 1997). De-
spite these and other potential prob-
lems, functional predictions are of great
value in guiding research and in sorting
through huge amounts of data. | believe
that the increased use of phylogenetic
methods can only serve to improve the
accuracy of such functional predictions.
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