
JOURNAL OF COMPUTATIONAL BIOLOGY
Volume 7, Numbers 1/2, 2000
Mary Ann Liebert, Inc.
Pp. 261–276

Evaluation Measures of Multiple
Sequence Alignments

GASTON H. GONNET, CHANTAL KOROSTENSKY, and STEVE BENNER

ABSTRACT

Multiple sequence alignments (MSAs) are frequently used in the study of families of protein
sequences or DNA/RNA sequences. They are a fundamental tool for the understanding of
the structure, functionality and, ultimately, the evolution of proteins. A new algorithm, the
Circular Sum (CS) method, is presented for formally evaluating the quality of an MSA. It is
based on the use of a solution to the Traveling Salesman Problem, which identi� es a circular
tour through an evolutionary tree connecting the sequences in a protein family. With this
approach, the calculation of an evolutionary tree and the errors that it would introduce can
be avoided altogether. The algorithm gives an upper bound, the best score that can possibly
be achieved by any MSA for a given set of protein sequences. Alternatively, if presented
with a speci� c MSA, the algorithm provides a formal score for the MSA, which serves as
an absolute measure of the quality of the MSA. The CS measure yields a direct connection
between an MSA and the associated evolutionary tree. The measure can be used as a tool for
evaluating different methods for producing MSAs. A brief example of the last application is
provided. Because it weights all evolutionary events on a tree identically, but does not require
the reconstruction of a tree, the CS algorithm has advantages over the frequently used sum-
of-pairs measures for scoring MSAs, which weight some evolutionary events more strongly
than others. Compared to other weighted sum-of-pairs measures, it has the advantage that no
evolutionary tree must be constructed, because we can � nd a circular tour without knowing
the tree.
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1. INTRODUCTION

One of the most important applications of the data being generated from genome sequencing
projects is to reconstruct the evolutionary histories of proteins, nucleic acids, and the organisms that

carry them. A model for an evolutionary history typically consists of three parts: (a) an evolutionary tree,
which shows the relationships of evolutionary objects (proteins, for example), (b) a multiple sequence
alignment (MSA), which shows the evolutionary relationships between parts of these objects (in this case,
individual amino acids in the protein sequence), and (c) reconstructed ancestral sequences, models for
objects that were intermediates in the evolution of the family. Evolutionary histories are important in
deducing biological function in biomolecules, predicting the folded conformation of protein sequences,
and reconstructing the history of life on Earth.
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Example. In the MSA in Figure 1, � ve sequences are aligned (n 5 5). In this example, we assume
that the sequences are related and that we have the correct tree. The internal nodes represent unknown
ancestor sequences.

De� nition 1.1. Given is a set of sequences S 5 fs1, .., sn g with si 2 §¤ where § is a �nite alphabet.
A Multiple Sequence Alignment (MSA) consists of a set of sequences A 5 ha1, a2, .., ani with ai 2 §

0¤

where § 0 5 § [ f“_”g 62 § . 8ai 2 A : jai j 5 k. The sequence obtained from ai 2 A by removing all “_”
gap characters is equal to si .

De� nition 1.2. The character “_” or any contiguous sequence of “_” within an aligned sequence
ai 2 A is called a gap. A gap corresponds to an insertion or deletion event (indel).

De� nition 1.3. The tree T (S ) 5 (V , E , S ) is a binary, leaf-labeled tree with leafset S 5 fs1, .., sn g.

De� nition 1.4. A tree scoring function is a function F : T ! R.

In our context a tree T (S ) associated with a set of sequences S 5 fs1, .., sn g is the tree that corresponds
to the evolutionary history of the sequences of S . The internal nodes V represent (usually unknown)
ancestor sequences.

Constructing trees, MSAs, and ancestral sequences, one encounters three sorts of problems. First, all are
dependent on a model for evolutionary processes. At the level of the protein (which is our exclusive concern
here), modeling the evolutionary history of a family must begin with assumptions about the frequencies
of amino acid mutations, insertions, and deletions. These frequencies are now available from empirical
studies of protein sequences (Gonnet et al., 1992). In this work, a simple model, derived originally from
work of Dayhoff et al. (1978) and subsequently ampli� ed (Brenner et al., 1993) is used.

Second, constructing models for evolutionary histories encounters problems of mathematical complexity.
Most versions of the MSA problem (Carillo and Lipman, 1988; Gupta et al., 1995, 1996; Kececioglu, 1993;
Wang and Gus� eld, 1996; Roui and Kececioglu, 1998; Jiang et al., 1996; Sankoff and Cedergren, 1983)
and the exact construction of evolutionary trees (Sankoff, 1975; Dress and Steel, 1993; Estabrook et al.,
1975, 1976; Felsenstein, 1973, 1981; Thorne et al., 1993) is NP-complete (Foulds and Graham, 1982; Jiang
and Wang, 1994), and becomes computationally expensive for many real protein families encountered in
a contemporary database. This requires that virtually all MSAs and evolutionary trees that will be used in
the post-genomic era will be constructed using approximate heuristics.

De� nition 1.5. An MSA scoring function is a function F : A ! R.

De� nition 1.6. Let A be the set of all possible MSAs that can be generated for a given set of sequences
S 5 fs1, s2, .., sn g. The optimal MSA Ā 2 A is an MSA such that w.l.o.g. F (Ā) 5 maxA2A F (A). In
some scoring functions the minimum is the optimal.

Problem 1.1 (MSA problem). Given is a set of sequences S 5 fs1, .., sn g. Find the optimal MSA A
for S .

The use of heuristics in constructing MSAs creates a third problem, one centering on evaluation. Before
using an MSA or tree built by a heuristic, one would like to know approximately how closely the heuristic
has approximated an optimum MSA or tree. Even today, it is common for biochemists to evaluate by eye
(and adjust by hand) the output of MSA tools. This is a clearly inadequate approach for any systematic

A: RPCVCP___VLRQAAQ__QVLQRQIIQGPQQLRRLF_AA
B: RPCACP___VLRQVVQ__QALQRQIIQGPQQLRRLF_AA
C: KPCLCPKQAAVKQAAH__QQLYQGQLQGPKQVRRAFRLL
D: KPCVCPRQLVLRQAAHLAQQLYQGQ____RQVRRAF_VA
E: KPCVCPRQLVLRQAAH__QQLYQGQ____RQVRRLF_AA

FIG. 1. The sequences fA , B , C, D , E g of the MSA on the left are related by the evolutionary tree on the right.
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reconstruction of natural history using genomic sequence data. A formal method for judging the quality
of an MSA is needed.

Accordingly, a variety of groups have proposed or used scoring functions (Sankoff and Cedergren,
1983; Altschul, 1989; Thompson et al., 1994; Higgins and Sharp, 1989; Carillo and Lipman, 1988; Gupta
et al., 1996) that assess the quality of an MSA. In this paper, we are interested in MSAs when no tree
is available. In this case, the most commonly used function follows a simple approach that examines
every pair of proteins in the family, generates a score for each pairwise alignment using a Dayhoff matrix
(Dayhoff et al., 1978), and creates a score for the MSA by summing each of the scores of the pairwise
alignments. We shall call these “sum of pairs” (SP) methods.

1.1. Scoring pairwise sequence alignments

To determine if two sequences s1, s2 2 § are related and have a common ancestor, the sequences are
usually aligned, and the problem is to � nd the alignment that maximizes the probability that the two
sequences are related.

To actually calculate these probabilities, one applies a Markovian model for sequence evolution (Krogh
et al., 1994; Baldi et al., 1994). This begins with an alignment of the two sequences, e.g., as follows.

VNRLQQNIVSL____________EVDHKVANYKPQVEPFGHGPIFMATALV PGLYLLPL
VNRLQQSIVSLRDAFNDGTKLLEELDHRVLNYKPQANPFGNGPIFMVTAIV PGLHLLPI

The gaps arise from insertions (or their counterpart deletions) during divergent evolution. The align-
ment is normally done by a dynamic programming (DP) algorithm using Dayhoff matrices (Gotoh, 1982;
Smith and Waterman, 1981; Needleman and Wunsch, 1970; Altschul and Erickson, 1986), which � nds the
alignment that maximizes the probability that the two sequences evolved from an ancestral sequence as
opposed to being random sequences. An af� ne gap cost is used according to the formula a 1 l b, where
a is a � xed gap cost, l is the length of the gap and b is the incremental cost (Altschul and Erickson, 1986;
Brenner et al., 1993). More precisely, we are comparing two possibilities:

a) that the two sequences arose independently of each other (implying that the alignment is entirely
arbitrary, with the alignment of amino acid i in one protein to amino acid j in the other occurring no
more frequently than expected by chance, which is equal to the product of the individual frequencies
with which amino acids i and j occur in the database)

Prfi and j are independentg 5 f i f j , (1)

b) that the two sequences have evolved from some common ancestral sequence after t units of evolution
where t is measured in PAM units (Gonnet, 1994b).

x

present day

ancestor sequence

sequences

(unknown)

i j

Prfi and j descended from some x g 5
X

x

f x Prfx ! igPrfx ! j g (2)

De� nition 1.7. A 1-PAM unit is the amount of evolution which will change, on average, 1% of the
amino acids. In mathematical terms, this is expressed as a matrix M such that

20X

i 5 1

f i (1 ¡ M ii) 5 0.01

where f i is the frequency of the i th amino acid.
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De� nition 1.8. The score of an optimal pairwise alignment OPA(s1, s2) of two sequences s1, s2 is the
score of an alignment with the maximum score where a probabilistic scoring method (Dayhoff et al., 1978;
Gonnet et al., 1992) is used. We refer to a pairwise alignment of two sequences s1, s2 with hs1, s2i.

D ij 5 10 log10

³
Prfi and j descended from some x g

Prfi and j are independentg

´
(3)

The entries of the Dayhoff matrix are the logarithm of the quotient of these two probabilities. Note that
scores represent the probabilities that the two sequences have a common ancestor. The larger the score is,
the more likely it is that the two sequences are homologous and therefore have a common ancestor.

1.2. Sum-of-pairs measure

De� nition 1.9. The score of the induced MSA-derived pairwise alignment MPA(ai, aj) of two sequences
ai , a j 2 A is the score of the alignment of the two strings ai and a j . Opposing gaps are removed.

To calculate the score with the SP measure (Carillo and Lipman, 1988), all
¡n

2

¢
scores of the pairwise

alignments within the MSA (see De� nition 1.9) are added up. SP methods are obviously de� cient from an
evolutionary perspective (Altschul and Lipman, 1989). Consider a tree (Figure 2) constructed for a family
containing � ve proteins. The score of a pairwise alignment hA , B i evaluates the probability of evolutionary
events on edges (u, A ) and (u, B ) of the tree; that is, the edges that represent the evolutionary distance
between sequence A and sequence B. Likewise, the score of a pairwise alignment hC, D i evaluates the
likelihood of evolutionary events on edges (C, w ), (w , v) and (v , D ) of the tree.

By adding to the evolutionary tree “ticks” that are drawn each time an edge is evaluated when calculating
the SP score (Figure 2), it is readily seen that, with the SP method, different edges of the evolutionary tree
of the protein family are counted a different numbers of times. In the example tree on the left side that
corresponds to the MSA of Figure 1, edges (r, u), (r, w ) and (w , v) are each counted six times by the SP
method, while edges (u, A ), (u, B ), (v , D ), (v , E ), and (w , C) are each counted four times. The numbers
on the edges are the numbers of “ticks.” It gets worse as the tree grows (see tree on the right). There is
no theoretical justi� cation to suggest that some evolutionary events are more important than other ones.

Thus, SP methods are intrinsically problematic from an evolutionary perspective for scoring MSAs. This
was the motivation to develop a scoring method that evaluates each edge equally. In addition, we wanted
a scoring function that does not depend on the actual tree structure.

We report here a “circular sum” (or CS) method for evaluating the quality of an MSA. The method uses
a solution to the Traveling Salesman Problem, which identi� es a circular tour through an evolutionary tree
connecting the sequences in a protein family. The algorithm gives an upper bound, the best score that can
possibly be achieved by any MSA for a given set of protein sequences. Both the bound and the circular
tour can be derived without explicit knowledge of the correct evolutionary tree; thus, the method can be
applied without need to address the mathematical issues involved in tree construction. Last, it gives us an
absolute score of MSAs, which is important in designing and verifying MSA heuristics.

Both the tree construction problem and the Traveling Salesman Problem are NP complete. But the
Traveling Salesman Problem (see next section) has been studied very extensively (Johnson, 1987, 1990),
and optimal solutions can be calculated within a few hours for up to 1000 cities and in a few seconds for
up to 100 cities, whereas the construction of evolutionary trees is still a big problem. There are heuristics
for large scale problems that calculate near optimal solutions that are within 1% to 2% of the optimum
(Padberg and Rinaldi, 1991; Groetschel and Holland, 1991).

FIG. 2. Traversal of a tree using the SP measure. Some edges are traversed more often than others. The numbers
on the edges represent the number of “ticks.”
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FIG. 3. Traversal of a tree in circular order.

2. METHODS

The task of generating an evolutionary unbiased score for an MSA can be rephrased as a simple problem:
How can a tree be traversed, going from leaf to leaf, such that all edges (each representing its own episode
of evolutionary divergence) are counted the same number of times? Assume that a tree contains 5 leaves,
labeled from A to E.

2.1. Circular tours

De� nition 2.1. A Circular order C(T ) of the set of sequences S 5 fs1, .., sn g is any tour through a
tree T (S) where each edge is traversed exactly twice and each leaf is visited once.

The problem can be solved by walking through the tree in a circular order, that is, from leaf A to B,
from B to C, from C to D, from D to E and then back from E to leaf A (Figure 3); all edges are counted
exactly twice, independent of the tree structure.

Lemma 2.1 (Shortest Tour). The circular tour is the shortest possible tour through a tree that visits
each leaf once (see Figure 3). It traverses all edges exactly twice and thus weights all edges of the
evolutionary tree equally.

Proof 2.1. Starting with 2 leaves, the proof is obvious: there is only one tour and all edges are counted
exactly twice (see Figure 4).

De� nition 2.2. A subtree Tu (V 0, E 0) of T (V , E ) is a tree Tu with V 0 » V , E 0 » E , where u is the
root of Tu and u 2 V 0, and all the directed paths from u to the leaves in T are also present in Tu .

For a tree with n leaves do the following: choose any edge x in the tree and label the four subtrees (see
De� nition 2.2) attached to x as A , B , C and D (see Figure 5). We now look at all possible circular tours
for the tree, starting with subtree A and ignoring the tours within the subtrees themselves. There are four
circular tours ([A , B , C, D ], [A , B , D , C] and the reverse tour of both). All circular tours traverse edge x
exactly twice.

Since the division into subtrees can be done anywhere in the tree, all edges are counted twice. There is
no shorter tour, because we have to come back to the � rst subtree A .

Lemma 2.2 (Noncircular Tours). Any other noncircular tour traverses at least one edge more than
twice.

1 2

FIG. 4. Circular tour for 2 leaves.
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FIG. 5. Circular tours with respect to edge x .

Proof 2.2. Choose any edge x in the tree, and label the four subtrees attached to x with A , B , C
and D (see Figure 6). We now look at all possible noncircular tours for the tree, starting with subtree A ,
and ignoring the tours within the subtrees themselves. There are two noncircular tours ([A , D , B , C] and
[A , C, B , D ]). In this case, edge x in the middle is traversed four times in both cases. Since this can be
done for any edge x in the tree, the conclusion is that any noncircular tour traverses at least one edge more
than twice.

De� nition 2.3. Given is a tree T . An isomorphic tree T 0 of T is a tree with the same tree topology as
T , but it may have a different graphical representation, where one or many subtrees may be rotated.

Trees can be drawn in many different ways, as each subtree can be rotated. If we count how many
different orderings of the leaves there are such that we still end up with the same tree topology, then if we
always start with the same leaf (if we ignore the breaking of the circularity), there are 2(n ¡ 2) such possible
ways to draw a tree.

Lemma 2.3 (Isomorphic Trees). A circular tour C(T ) of a tree T is also a circular tour for all
isomorphic trees of T.

Proof 2.3. Take the same tree as in Figure 5, but this time rotate the subtrees A , B (swap labels A and
B ). When the tree is traversed again in the order [A , B , C, D ] and back to A , the middle edge is again only
traversed twice, the same accounts for the other circular orders. Again, since the division into subtrees can
be done anywhere in the tree, all edges are counted twice, therefore this is true for all isomorphic trees.

An immediate conclusion from this is that any tree has 2(n ¡ 2) different circular tours, ignoring the circularity
(we always start with the same leaf).

De� nition 2.4. A tour Ci is shorter than a tour C j (Ci , C j ) if the sum of edge lengths that are
traversed by Ci is smaller than the sum of edge lengths that are traversed by C j .

De� nition 2.5. Let L be a set of n leaves of a tree T . The distance between two leaves x , y 2 L is
dxy . It is the unique path length (the sum of all edges in PAM distances) from leaf x to leaf y . We assume
that distances are symmetric, hence dxy 5 dy x .

De� nition 2.6. Given is a circular tour C of length n of a tree T . The path length P (T ) of a tree T
is then P (T ) 5 1

2

Pn
i 5 1 PAM(sCi , sCi 1 1), where Cn1 1 5 C1.

FIG. 6. Noncircular tours with respect to edge x .
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Example 2.1. The order hA , B , C, D , E i is a circular order in Figure 7, but not hA , C, B , D , E i. In
the second example, edges hx , ui and hx , wi are counted four times, while all other edges are counted
only twice.

2.2. Traveling salesman problem application

The PAM distances derived from pairwise alignments are now the key to identifying a circular tour. For
a set of protein sequences, it is computationally simple to obtain a set of

¡n
2

¢
pairwise PAM distances by

aligning each sequence with every other sequence using a dynamic programming algorithm to obtain the
Optimal Pairwise Alignment. Our goal is to be able to � nd a circular tour without the need of constructing
an evolutionary tree.

It is easy to � nd a circular order of a given tree T . But in reality we do not have a tree. The only
information available to us is just the sequences and the PAM distances. The question then is: how can we
� nd a circular order of the tree?

To answer this question, we need to think of the following:

° We are only interested in the tree that corresponds to the measured distances of the pairwise alignments.
° This tree has circular orders.
° A circular order is the shortest tour through a tree.
° A shortest tour can be calculated using a TSP algorithm.

Problem 2.1 (Sequence TSP problem). Given is a set of sequences S 5 fs1, .., sn g and the correspond-
ing

¡n
2

¢
PAM distances of the optimal pairwise alignments. The problem is to � nd the shortest tour where

each sequence is visited once.

De� nition 2.7. The TSP order CS (S ) of a set of sequences S 5 fs1, .., sn g is the order of the sequences
that is derived from the optimal solution of a TSP.

Hence, to � nd such a circular tour, we need to � nd the shortest tour from leaf to leaf of the given set
of sequences S. To solve this problem we reduce it to the symmetric Traveling Salesman Problem (TSP):
given is a matrix M that contains the

¡n
2

¢
distances of n cities (Johnson, 1987, 1990). The problem is to

� nd a tour (each city is visited once), where the overall path must be minimal. We use a modi� ed version
of the problem: in our case, the cities correspond to the sequences and the distances are the PAM distances
of the pairwise alignments. The TSP problem is known to be NP complete (Papadimitriou, 1977), but it is
very well studied and optimal solutions can be calculated within a few hours for up to 1000 cities and in a
few seconds for up to 100 cities. There are heuristics for large scale problems that calculate near optimal
solutions that are within 1% to 2% of the optimum (Padberg and Rinaldi, 1991; Groetschel and Holland,
1991). For real applications we seldom have more than 100 sequences to compare simultaneously, and the
calculation of the optimal TSP solution usually takes only a small fraction of the time it takes to compute
all pairwise alignments to derive the PAM distances. With P (S ) we will denote the path length of a tree
that corresponds to the sequences S .

De� nition 2.8. Let C be the output permutation of a TSP algorithm for a set of sequences S 5
fs1, s2, .., sn g, then the path length P (S ) for S is: P (S ) 5 1

2

Pn
i 5 1 PAM(sCi , sCi 1 1 ), where Cn1 1 5 C1.

FIG. 7. Traversal of a phylogenetic tree in a circular hA , B , C , D , E i and noncircular order hA , C, B , D , E i.
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The path length P (T ) for a given tree T is de� ned in a similar way, except that the circular order does
not need to be determined but can be derived directly from the evolutionary tree.

2.3. Scoring of MSAs without evolutionary trees

The CS algorithm provides us with a circular tour of the unknown evolutionary tree. This tour can now
be used to evaluate a speci� c MSA or to compare different algorithms for constructing MSAs.

For pairwise alignments, usually the score of the optimal pairwise alignment (see De� nition 1.8) is
used.1 For scoring an MSA though, we will obviously not use OPA scores, but scores derived from the
alignments within the MSA itself (OPA scores are used to determine the upper bound, see below). The
pairwise alignments within the MSA are scored using a Dayhoff matrix without dynamic programming, as
the sequences in an MSA are already aligned. We will call these scores MPA scores, a shortcut for scores
of MSA-derived pairwise alignments (see De� nition 1.9).

De� nition 2.9. We can now extend the de�nition of the function s(x , y ), which scores two symbols
x , y 2 § 0:

s(x , y ) 5

8
><

>:

Dxy , if x 65 “_” and y 65 “_”

0 if x 5 “_” and y 5 “_”

otherwise an af�ne gap cost that depends on the gap length2

(Altschul and Erickson, 1986; Brenner et al., 1993). D xy is an entry in a Dayhoff matrix (Schwarz and
Dayoff, 1979; Gonnet et al., 1992).

The function s(x , y ) scores two symbols x , y that are either amino acids or gap characters. If there is
a deletion in both sequences, there is no penalty (score is zero) because that deletion happened in some
ancestor, and its penalty has been counted already .

The MPA scores are not larger than the scores obtained from the optimal pairwise alignments (OPA).
The CS score of an MSA is the sum of MPA scores in the circular order C divided by two.

De� nition 2.10. The score CS (A) of an MSA A is de�ned as: CS(A) 5 1
2

Pn
i 5 1 M P A (aCi , aCi 1 1 )

where Cn 1 1 5 C1 and where C is a circular order.

De� nition 2.11. The upper bound CSmax (S ) for a set of sequences S is de� ned as: CSmax (S ) 5
1
2

Pn
i 5 1 OPA(aCi , aCi 1 1 ) where Cn1 1 5 C1 and where C is a circular order.

De� nition 2.12. The optimal score CSopt (S) for a set of sequences S is de� ned as follows. Let A
be the set of all possible MSAs that can be generated for a given set of sequences S 5 fs1, s2, .., sn g:
CSopt (S ) 5 max

A2A
CS (A).

Lemma 2.4 (Upper Bound). Let A be the set of all possible MSAs that can be generated for a given
set of sequences S 5 fs1, s2, .., sn g. The maximal score CSmax (S) serves as an upper bound for the score
of any MSA A that can be built from S: CSmax (S ) ¶ max

A2A
CS (A).

Proof 2.4. Let us build two matrices A and B , one matrix A with the
¡n

2

¢
OPA scores of the sequences

S and a matrix B with the
¡n

2

¢
MPA scores. Since OPA scores are never smaller than MPA scores, each

entry in matrix A is as least as large as the corresponding entry in matrix B . Hence whatever tour C we
choose, the sum of the scores of matrix A will always be at least as large as the sum of the scores in
matrix B .

1A larger score corresponds to a smaller PAM distance, as we will show in Appendix A.
2The gaps are scored according to the formula a 1 l b, where a is a � xed gap cost that depends on the PAM

distance, l is the length of the gap and b is the incremental cost which also depends on the PAM distance (Benner
et al., 1993).
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A: RPCVCP___VLRQAAQ__QVLQRQIIQGPQQLRRLF_AA
B: RPCACP___VLRQVVQ__QALQRQIIQGPQQLRRLF_AA
C: KPCLCPKQAAVKQAAH__QQLYQGQLQGPKQVRRAFRLL
D: KPCVCPRQLVLRQAAHLAQQLYQGQ____RQVRRAF_VA
E: KPCVCPRQLVLRQAAH__QQLYQGQ____RQVRRLF_AA

A B C D E
A 0 336 27 44 110
B 336 0 79 56 99
C 27 79 0 171 176
D 44 56 171 0 327
E 110 99 176 327 0

FIG. 8. An MSA and a table containing the pairwise scores.

Whenever we score an MSA, regardless of the algorithm used to generate it, the score of this alignment
must be less than or equal to the upper bound CSmax (S). Hence the upper bound can be used to evaluate
a given MSA. The closer the score of a calculated MSA is to the upper bound, the better the MSA is.

2.4. Optimal Score and Upper Bound

The optimal score of an MSA, which is the MSA with the maximum possible score, and the upper
bound are not necessarily the same. There are two cases:

° CSopt (S ) 5 CSmax (S ). The upper bound is equal to the optimal score. Whenever the MPA scores of
the optimal MSA and the OPA scores are equal, then the upper bound is equal to the optimal score.
For instance, if an MSA does not have any gaps, then obviously the optimal score is equal to the upper
bound, as the MPA and OPA scores are equal. See also Example 2.2.

° CSopt (S ) , CSmax (S ). The upper bound is larger than the optimal score. This is the case when the
MPA scores of the optimal MSA are smaller than the OPA scores.

In general, whenever CS (A) 5 CSmax , when the score of the MSA is equal to the upper bound, we know
that the MSA is optimal.

Example 2.2. The table in Figure 8 shows the pairwise MPA scores of the sequences from the MSA
on the left. It is easy to verify that the tour that yields the highest score is (A, B, C, D, E, A) and that it
is a circular tour in the corresponding tree. The score of the MSA is the sum of pairwise alignments in
circular order divided by two, so F (A) 5 (336 1 79 1 171 1 327 1 110)=2 5 512. Here the MSA has the
optimal score, CS(A) 5 CSmax 5 CSopt .

We have a way to determine a circular order and an upper bound on the score of an MSA for a set of
sequences. This score has been obtained without requiring the calculation of an evolutionary tree. Only
the sequences at the leaves and their PAM distances/scores with each other are needed.

3. SIMULATION OF EVOLUTION

To illustrate how the scoring function can be used, a variety of tools for generating MSAs were chal-
lenged with a set of protein families simulated following a Markovian model of evolution, and the outputs
of each were evaluated using the CS measure. This provides, of course, only an approximate assess-
ment of the MSA tools themselves. A better assessment must come with actual experimental sequence
data.

Random trees with a given structure and edge lengths and a random sequence at the root were generated.
From this, sequence mutations, insertions and deletions of different sizes were introduced according to the
length of the edges of the tree. At each internal node, a new sequence was thus generated. At the end
of the simulation, only the sequences at the leaves are retained. Since both the places of insertions and
deletions, as well as the real tree are known, the correct MSA is known as well.

The retained sequences at the leaves can be given to different algorithms: MSA (Gupta et al., 1996;
Lipman et al., 1989), MAP (Huang, 1994), ClustalW (Higgins and Sharp, 1989; Thompson et al., 1994)
and the Probabilistic model (PAS) (Gonnet and Brenner, 1996; Gonnet, 1994a). Also, the score of the
calculated MSAs can be compared to the score of the “real” (generated) MSA using the CS measure.
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The results for 3 combinations of trees and sizes are shown. These are representative of all other results
(Figures 10–12). The circular order was always derived using a TSP algorithm, not with the generated
tree. But since we have the correct tree, it was easy to verify that the TSP order is in fact a circular order
(which was always the case).

3.1. Example

From a random evolutionary tree with 8 leaves, a random MSA was produced. That is, the original
sequence was mutated and in this case there were two indel events.

The score of the alignment is the MPA score introduced in De� nition 2.10. It is the score derived from
the pairwise alignments within the MSA, in TSP order. In this example the order is 1, 2, 6, 5, 7, 8, 3, 4.
You can easily verify that this tour is a circular tour of the tree in Figure 9. The numbers on the edges of
the tree are PAM distances.

The maximum possible score, the CSmax (S) score (see De� nition 2.8), is slightly better than the score
derived from the alignment (using MPA scores). This means that the real alignment is not optimal, and the
gaps could probably be shifted a bit to either side to increase the score. The indel events are one deletion
event that happened in the ancestor of sequence 3 and 4 and one insertion event that happened in the
ancestor of sequences 1 and 2.

Note that when the gaps are scored, each indel event is scored only once. When sequence 8 is aligned
against sequence 3, the gap is scored. But when the alignment of sequences 3 and 4 is scored in the MSA,
the gap scores 0, because it has already been accounted for, and you could actually simply remove the gap
in the MPA (see De� nition 1.9), since they have exactly the same length. Another observation is that the
gaps form “blocks,” that is, the gaps that belong to the same evolutionary event are not interrupted with
sequences without gaps.

The sequences at the leaves are then fed to different algorithms. None of the algorithms knows the
correct tree or the correct MSA.

Generated random MSA:
---------------------------------------------
Score of the alignment (MPA): 1311.907
Maximum possible score (OPA): 1328.206

1 LETIDICKGCAALEYYRGPMIMRAMTSFRLDIKQQVGTTKACADATSNELTGA KLLHISDGQDTTIGQTVAIT
2 LELIDIEKGCAALEYNKGSMIMRAMTTFRLDLKDQVGSTAACADATKNKLTGA KLLHLSDGQESAMGQVVAIT
6 LHVIDERKRLEAARFNKGSVYLR___HVEIDLRTQVGSSPYAATVIKNVIKNT RPLKLCMGQELSLGMIVMLF
5 LHVIDERKRLPAARFNKGSVILK___HLEIDFQSSVGSNPRAATYVKNVIKGR KPLKLCDGQEISLGLIVCIW
7 LAVIEVRRGQVALEFNKGSVLLR___TLELDFQGQVGTPPRAAVYVKNVTKGA KPLHLVEGQEFNLGYVTCII
8 VHVADVTRGLTRLEFDKGSVVLR___HFELDFEGQAETNPRSSVYVKNVSQGV EPIHLTEWQEFNYGNVSCKI
3 LDVLDVTT___________IIIQ___TFRIDLQEQLGSNPASATYVKNILTGA KLLHLSEGEEYTMGHAVLIM
4 LDVLDVVT___________IIVV___TFRIDLQEQVGENPASASYVQDILTGA KLLHLSDGKEYTMGHVVAII
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4

49

15

43

4

FIG. 9. Tree associated with example MSA.
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Sequences:
----------
1 LETIDICKGCAALEYYRGPMIMRAMTSFRLDIKQQVGTTKACADATSNE LTGAKLLHISDGQDTTIGQTVAIT
2 LELIDIEKGCAALEYNKGSMIMRAMTTFRLDLKDQVGSTAACADATKNK LTGAKLLHLSDGQESAMGQVVAIT
3 LDVLDVTTIIIQTFRIDLQEQLGSNPASATYVKNILTGAKLLHLSEGEE YTMGHAVLIM
4 LDVLDVVTIIVVTFRIDLQEQVGENPASASYVQDILTGAKLLHLSDGKE YTMGHVVAII
5 LHVIDERKRLPAARFNKGSVILKHLEIDFQSSVGSNPRAATYVKNVIKG RKPLKLCDGQEISLGLIVCIW
6 LHVIDERKRLEAARFNKGSVYLRHVEIDLRTQVGSSPYAATVIKNVIKN TRPLKLCMGQELSLGMIVMLF
7 LAVIEVRRGQVALEFNKGSVLLRTLELDFQGQVGTPPRAAVYVKNVTKG AKPLHLVEGQEFNLGYVTCII
8 VHVADVTRGLTRLEFDKGSVVLRHFELDFEGQAETNPRSSVYVKNVSQG VEPIHLTEWQEFNYGNVSCKI

TSP ordering of sequences:
--------------------------
[1, 2, 6, 5, 7, 8, 3, 4, 1]

First, the sequences were fed to the MSA algorithm, which produces the following output:

MSA:
---
Score of the alignment (MPA): 1305.050
Maximum possible score (OPA): 1328.206

1 LETIDICKGCAALEYYRGPMIMRAMTSFRLDIKQQVGTTKACADATSNELTGA KLLHISDGQDTTIGQTVAIT
2 LELIDIEKGCAALEYNKGSMIMRAMTTFRLDLKDQVGSTAACADATKNKLTGA KLLHLSDGQESAMGQVVAIT
6 LHVIDERKRLEAARFNKGSVYLR___HVEIDLRTQVGSSPYAATVIKNVIKNT RPLKLCMGQELSLGMIVMLF
5 LHVIDERKRLPAARFNKGSVILK___HLEIDFQSSVGSNPRAATYVKNVIKGR KPLKLCDGQEISLGLIVCIW
7 LAVIEVRRGQVALEFNKGSVLLR___TLELDFQGQVGTPPRAAVYVKNVTKGA KPLHLVEGQEFNLGYVTCII
8 VHVADVTRGLTRLEFDKGSVVLR___HFELDFEGQAETNPRSSVYVKNVSQGV EPIHLTEWQEFNYGNVSCKI
3 LDVLDV___________TTIIIQ___TFRIDLQEQLGSNPASATYVKNILTGA KLLHLSEGEEYTMGHAVLIM
4 LDVLDV___________VTIIVV___TFRIDLQEQVGENPASASYVQDILTGA KLLHLSDGKEYTMGHVVAII

The alignment looks very similar to the constructed MSA. The only difference is that the gaps appear in
different places, and the score is slightly lower than the score of the constructed MSA. In the simulation,
the difference of the upper bound and the CS score was noted (see tables). In this case, the difference
would be 23.156.

The next algorithm is the probabilistic model. In this case the algorithm merges the two gaps:

Probabilistic model:
-------------------
Score of the alignment (MPA): 1305.080
Maximum possible score (OPA): 1328.206

1 LETIDICKGCAALEYYRGPMIMRAMTSFRLDIKQQVGTTKACADATSNELTGA KLLHISDGQDTTIGQTVAIT
2 LELIDIEKGCAALEYNKGSMIMRAMTTFRLDLKDQVGSTAACADATKNKLTGA KLLHLSDGQESAMGQVVAIT
6 LHVIDERKRLEAARFNKGS___VYLRHVEIDLRTQVGSSPYAATVIKNVIKNT RPLKLCMGQELSLGMIVMLF
5 LHVIDERKRLPAARFNKGS___VILKHLEIDFQSSVGSNPRAATYVKNVIKGR KPLKLCDGQEISLGLIVCIW
7 LAVIEVRRGQVALEFNKGS___VLLRTLELDFQGQVGTPPRAAVYVKNVTKGA KPLHLVEGQEFNLGYVTCII
8 VHVADVTRGLTRLEFDKGS___VVLRHFELDFEGQAETNPRSSVYVKNVSQGV EPIHLTEWQEFNYGNVSCKI
3 LDVLDVTT______________IIIQTFRIDLQEQLGSNPASATYVKNILTGA KLLHLSEGEEYTMGHAVLIM
4 LDVLDVVT______________IIVVTFRIDLQEQVGENPASASYVQDILTGA KLLHLSDGKEYTMGHVVAII

The last algorithm tested in this example is ClustalW. It looks like the algorithm also found two in-
del events, but when you look closer you can see that the gaps are shifted against each other. This
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means that the second block of gaps are two indel events and not just one, which is the reason for the
lower score.

ClustalW:
---------
Score of the alignment (MPA): 1291.417
Maximum possible score (OPA): 1328.206

1 LETIDICKGCAALEYYRGPMIMRAMTSFRLDIKQQVGTTKACADATSNELTGA KLLHISDGQDTTIGQTVAIT
2 LELIDIEKGCAALEYNKGSMIMRAMTTFRLDLKDQVGSTAACADATKNKLTGA KLLHLSDGQESAMGQVVAIT
6 LHVIDERKRLEAARFNKGSVYLR___HVEIDLRTQVGSSPYAATVIKNVIKNT RPLKLCMGQELSLGMIVMLF
5 LHVIDERKRLPAARFNKGSVILK___HLEIDFQSSVGSNPRAATYVKNVIKGR KPLKLCDGQEISLGLIVCIW
7 LAVIEVRRGQVALEFNKGSVLLR___TLELDFQGQVGTPPRAAVYVKNVTKGA KPLHLVEGQEFNLGYVTCII
8 VHVADVTRGLTRLEFDKGSVVLR___HFELDFEGQAETNPRSSVYVKNVSQGV EPIHLTEWQEFNYGNVSCKI
3 LDVLDVTT___________III___QTFRIDLQEQLGSNPASATYVKNILTGA KLLHLSEGEEYTMGHAVLIM
4 LDVLDVVT___________IIV___VTFRIDLQEQVGENPASASYVQDILTGA KLLHLSDGKEYTMGHVVAII

Following is the result of a large simulation. For each tree type, hundreds of alignments were produced.
This is the reason why the scores have variances, because the upper bound is not the same for each
set of sequences, but lies in the same order, because similar PAM distances were used and the same

Method CS score Upper bound ¡ CS score

Upper bound: 22451 § 516 0
MSA: 21767 § 513 684 § 76
PAS 21414 § 481 740 § 74
Real: 21367 § 439 781 § 74
ClustalW: 21330 § 473 822 § 76
MAP: 18633 § 608 3521 § 583
Dummy: 5948 § 911 16200 § 826
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FIG. 10. Comparison of different MSA methods: the CS score (second column) is calculated using a TSP ordering.
The upper bound is the CS score based on the optimal pairwise alignment.
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underlying tree structure. Higher scores or smaller differences mean better alignments. The rows are sorted
into ascending order.

Figure 10 shows the result for balanced binary trees with 16 leaves. The length of the sequences is
300 amino acids and the average edge distance is 30 PAM (so the maximum PAM distance between two
sequences is about 240 PAM).

For this tree, MSA scored the best followed by PAS, ClustalW and MAP. The alignments of MSA
and PAS are slightly better than the “real” alignment. The reason for this is that the simulated MSAs
are not necessarily optimal. As a comparison, the score of a bad alignment (all the sequences aligned
without deletions) was calculated in the last row (Dummy). The tree below is an example of a generated
phylogenetic tree.

The next trees (Figure 11) are unbalanced with 30 sequences of length 300 and the average edge distance
is 30 PAM (so the maximum PAM distance is about 300). Only PAS, MAP and ClustalW were able to
compute the alignments (in a reasonable time). In this case, PAS did slightly better than ClustalW.

The trees of the last table shown here (Figure 12) had 50 sequences with length 300 and an average
edge length of 15 PAM. In the simulation, the PAS method was the best, followed by ClustalW. No other
methods were able to calculate an MSA in a reasonable time.

These experiments show how the CS measure can be used. It also shows that the upper bound CSmax (S )
is very close to the actual score CS (A) of the simulated MSA. Obviously the ultimate evaluation of tools
must be done with real rather than simulated data.

Method CS score Upper bound ¡ CS score

Upper bound: 40282 § 581 0
Real: 38796 § 573 1486 § 138
PAS 38638 § 594 1643 § 151
ClustalW: 38465 § 597 1818 § 153
MAP 21238 § 1565 18957 § 1507
Dummy: 10609 § 1321 28641 § 1308
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FIG. 11. Comparison of different MSA methods: the CS score (second column) is calculated using a TSP ordering.
The upper bound is the CS score based on the optimal pairwise alignment.
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Method CS score Upper bound ¡ CS score

Upper bound: 91232 § 924 0
Real: 88960 § 913 2272 § 167
PAS: 88494 § 941 2704 § 175
ClustalW: 87313 § 1654 3884 § 1363
Dummy: 34062 § 4558 57456 § 3954
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FIG. 12. Comparison of different MSA methods: the CS score (second column) is calculated using a TSP ordering.
The upper bound is the CS score based on the optimal pairwise alignment.

4. DISCUSSION

We have de� ned a new scoring function for the evaluation of MSAs, called CS measure, that is based on
a Markovian model of evolution. The frequently used SP measure, which calculates the sum of the scores
of all pairwise alignments, ignores the structure of any associated phylogenetic tree and thus weights some
evolutionary events more than others. This can be avoided by traversing the tree in a circular order, where
all edges are traversed exactly twice. Any other noncircular tour results in a longer path, because some
edges are traversed more than twice, and hence some evolutionary events are counted more often, which
corresponds to a lower probability. Therefore, the shortest cycle through the tree, which is a circular tour,
yields the highest CS score. Such a tour can be calculated with any TSP algorithm.

The TSP application allows us to avoid the calculation of an evolutionary tree altogether, and only the
sequences at the leaves are needed with their OPA or MPA scores. In addition, the CS measure yields
a direct connection between an MSA and the associated evolutionary tree, because the formula for the
calculation of the score is exactly the same. The CS measure based on the OPA scores gives an upper
bound on the score of the optimal MSA and evolutionary tree.

To illustrate the new scoring tool, we simulated evolution by generating random trees according to
a Markovian model with the corresponding MSA. The CS score of the generated alignment was then
compared to the score of alignments calculated by different methods (MSA, ClustalW, PAS, and MAP).
For less than twenty sequences, MSA and PAS gave the best score, whereas for larger samples, PAS and
ClustalW calculated the best alignments. A better assessment must come with actual experimental sequence
data though.
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With the new CS measure, we now have the possibility of improving current algorithms and � nding
new algorithms by maximizing the scoring function. The most simple (and expensive) approach would
be a standard dynamic programming algorithm. An approximation algorithm is presented in Korostensky
and Gonnet (1999a) that calculates an MSA which is within n ¡ 1

n CSmax (S ) for a set of sequences S
(where CSmax (S ) is the upper bound). The CS scoring function can also be used for evolutionary trees,
and a tree construction algorithm that is presented in Korostensky and Gonnet (1999b). The algorithms
have been implemented into the Darwin system (Gonnet, 1994b) an are available via our cbrg server at:
http://cbrg.inf.ethz.ch
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