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The exponentially growing library of known protein sequences
represents molecules connected by an intricate network of
evolutionary and functional relationships. To reveal these relation-
ships, virtually every molecular biology experiment incorporates
computational sequence analysis. The workhorse methods for
this task make alignments between two sequences to measure
their similarity. Informed use of these methods, such as NCBI
BLAST [1], WU-BLAST [2], FASTA [3] and SSEARCH, requires
understanding of their effectiveness. To permit informed sequence
analysis, we have assessed the effectiveness of modern versions of
these algorithms using the trusted relationships among ASTRAL
[4] sequences in the Structural Classification of Proteins [5]
database classification of protein structures [6]. We have reduced
database representation artifacts through the use of a normaliza-
tion method that addresses the uneven distribution of superfamily
sizes. To allow for more meaningful and interpretable comparisons
of results, we have implemented a bootstrapping procedure. We
find that the most difficult pairwise relations to detect are those
between members of larger superfamilies, and our test set is biased
toward these. However, even when results are normalized, most
distant evolutionary relationships elude detection.

Keywords—BLAST, bootstrap, FASTA, homology, normaliza-
tion, sequence, sequence analysis, Structural Classification of
Proteins (SCOP), substitution matrix.

I. INTRODUCTION

The explosive growth of biological sequence databases
provides great opportunity for molecular and computational
biologists. High-throughput sequencing projects have gener-
ated complete genome sequence for scores of microbes and
several eukaryotes [7], including humans [8]. Biologists use
these comprehensive data in their attempt to discover the bi-
ological functions of genes and the proteins they encode.
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For many proteins, it is possible to make inferences of func-
tion based simply on recognizable similarity with previously
characterized sequences. Current technology allows between
one-third to one-half of the genes within newly sequenced
genomes to be annotated on the basis of recognizable se-
quence similarity to genes of other organisms [9]. Further-
more, as more genomes are sequenced and more genes are
characterized, greater fractions of new genomes can be an-
notated in this way [10].

The ability to make useful inferences based on sequence
similarity is based on the relationships between protein
sequence, structure, and function—all of which revolve
around homology (see Fig. 1). Homologous proteins
are those that had a common evolutionary ancestor. The
most common means of inferring homology is sequence
comparison: experience has demonstrated that significant
sequence similarity is a reliable indicator of homology.
Because protein structure evolves very slowly, with cores
being exceptionally well conserved over billions of years
of evolution, homology between two proteins effectively
guarantees that they will share similar structures [11]. It
is generally believed that some similar protein structures
have evolved independently, so structural similarity does not
always signify evolutionary relatedness.

Two related proteins with a common ancestor may retain
the same ancestral function, and thus play the same role.
Similar functions have also evolved many times by conver-
gence [12]. However, homology can provide sufficient clues
about function to suggest experiments or inform hypotheses,
allowing further characterization of unknown proteins. Se-
quence similarity detection is crucial in other aspects of com-
putational molecular biology as well. For example, gene-
finding, phylogeny reconstruction and analysis, pathway re-
construction, and homology structure modeling all depend
heavily on the effectiveness and reliability of sequence com-
parison methods.

Many methods have been developed for detecting se-
quence similarity, reflecting the central role it plays in
computational biology. Proper use and interpretation of the
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Fig. 1. Inferences from sequence similarity. Detectable similarity
between two protein sequences implies a common origin,
homology. This, in turn, implies a common three-dimensional
structure. Other inferences are less reliable, indicated by lighter
arrows.

results of these methods requires an understanding of the
relative merits of each. Sequence-based similarity detection
methods fall into two broad categories: pairwise and profile.
Pairwise methods are those that take as input two single
sequences and attempt to generate the optimal alignment
between them. Searching a database of known sequences
using a pairwise alignment method is a straightforward
matter of generating alignments between the query sequence
and each of the database sequences. Alignments with the
best scores are then examined. Profile methods, on the
other hand, generate a statistical model, or profile, of a
sequence family and then compare the profile with a given
sequence. Using a profile method, therefore, involves both
constructing profiles and using them to detect similar se-
quences. Although profile methods have proven to be more
sensitive than pairwise methods, their use requires prior
knowledge of the sequence family in question—knowledge
that typically derives from pairwise methods.

Sequence similarity detection using pairwise methods
generally requires two steps, the first of which is generating
the alignment between the sequences. Current pairwise-
alignment algorithms for database searching are deriva-
tives of the Needleman–Wunsch dynamic programming
algorithm [13] as modified for local alignment by Smith
and Waterman [14]. The Smith–Waterman algorithms
guarantees the optimal alignment under a given scoring
scheme, and the SSEARCH program [15] provides a full
implementation. Heuristics that speed up pairwise align-
ment have been introduced in BLAST [1] and FASTA [3],
the two most popular algorithms. WU-BLAST and NCBI
BLAST are both implementations of the BLAST algorithm,
differing in the way score statistics are generated, as well
as some heuristics. For example, WU-BLAST implements
and reports Karlin and Altschul sum statistics [16], [17] by
default.

Alignments are generated using a scoring scheme that in-
cludes a substitution matrix and gap parameters. Substitution
matrices for protein sequence alignments are 2020 ma-
trices that give scaled, log-odds scores for the pairing of any
two aligned amino acid residues in an alignment [18]. The
score of a given alignment is simply the sum of the matrix
values for each position in the alignment, minus the penalty
for gaps within the alignment. The optimal alignment is the

one that generates the highest score in this way. For local
alignments, this may not include all of either sequence.

The second step in pairwise similarity detection is gener-
ating a statistical score for the alignment. It has been shown
analytically for ungapped alignments [18], [19] and empiri-
cally for gapped [20]–[22] alignments that optimal alignment
scores follow an extreme value distribution (EVD). There-
fore, generating a statistical significance score for an align-
ment is really a problem of finding appropriate EVD parame-
ters for the raw score in question. The BLAST programs have
precomputed EVD data for several sets of scoring param-
eters based on large-scale computational experiments with
simulated data [23]. The FASTA package programs (FASTA
and SSEARCH), by default, generate empirical EVD param-
eters for a given alignment by curve-fitting the distribution
of alignment scores generated during the database search in
question [24]. By either method, once the EVD parameters
are derived, an value can be generated that represents the
significance of the alignment in the context in which it was
generated [25]. Statistical scores have proven to be far supe-
rior to other measures of alignment quality [6], [24].

II. M ETHODOLOGY

Because the primary aim of similarity search methods is
homologue detection, they are typically evaluated by their
ability to do this effectively. Homologue detection always
requires a balance between sensitivity and specificity. Sensi-
tivity is defined here as the ability to identify the homologues
of a given sequence within a database of homologous and
nonhomologous sequences (true positive detection). Speci-
ficity, by comparison, is the ability to exclude nonhomo-
logues from the list of real homologues (false positive ex-
clusion). The tradeoff between sensitivity and specificity is a
consideration for all similarity search methods, since any set
of inputs will generate a score. The most powerful methods
assign good scores only to real homologues and bad scores
only to nonhomologues. Because the number of nonhomo-
logues will typically be vastly greater than the number of ho-
mologues in a given database search, specificity is especially
important.

A. Constructing the Evaluation Databases

To evaluate the sensitivity and specificity of a sequence
comparison method, it is necessary to construct a test dataset
of sequences whose evolutionary relationships are known.
Classifications in existing databases, such as the Protein In-
formation Resource (PIR) database [26], have been used for
this purpose [27], [28]. Custom datasets, such as the Aravind
set, have also been expressly derived for evaluating similarity
detection methods [29], [30]. Evaluations of new substitution
matrices or other scoring parameters have made use of an
even wider array of test sets [31], [32]. The power of a given
similarity search method is then assessed by its ability to pre-
dict known relations while avoiding spurious matches. Nat-
urally, the knowledge of which sequences are related should
be derived independently of the method being evaluated. Be-
cause a large percentage of sequence database annotation de-
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rives from sequence similarity detection, it is not desirable
to use this annotation as the basis for constructing evalua-
tion databases. Such resources would not include the truly
homologous sequences that have yet to be correctly anno-
tated. Additionally, the evaluation will be polluted with the
false annotations that currently corrupt databases [33], [34].
Consequently, using sequence-based classifications for eval-
uation leads to a circularity, and their use tests consistency
with existing methods rather than absolute accuracy.

A solution to this problem is to use structure as a means
of inferring evolutionary relationships between pairs of pro-
teins. Because structure evolves more slowly than sequence,
structural similarity can be used as a “gold-standard” for de-
termining whether any two sequences are related. To this
end, analyses frequently use the classifications in the Struc-
tural Classification of Proteins (SCOP) [5], [6], [35]–[37]
and CATH [38]–[40] databases, as well as direct structural
similarity [41].

The SCOP database provides a hierarchical classification
of the structural domains of all solved protein structures. Do-
mains are classified at the level of class, fold, superfamily,
and family. ASTRAL [4] provides sequence sets of SCOP
domains, filtered at various levels of identity. These domain
sequences, along with their SCOP classification information,
can be used as test sequences for any similarity detection
method, since their relationships are known.

Protein domains are the unit of classification within
SCOP, and by extension, ASTRAL, because these are the
fundamental units of protein evolution and structure. Using
domain sequences, rather than whole proteins, allows us to
unequivocally identify which domains are involved in any
pairwise alignment. Such identification can be difficult when
using multidomain sequences, or sequences whose domain
organization is unknown. An unfortunate consequence of
using isolated domain sequences is that more global methods
and parameters may be favored. Each domain sequence is
a complete structural and evolutionary unit, so homologous
pairs will have similar lengths with meaningful alignments
over their entire lengths. By contrast, most typical database
queries require identification of regions of similarity within
sequence pairs that have both related and unrelated regions.

Within the SCOP hierarchy (see Fig. 2), it is widely
acknowledged that domains of the samesuperfamilyare
descendants of a common ancestor. Domains of different
folds are believed to be evolutionarily unrelated. Domains
of the same fold but different superfamily currently lack
evidence of homology. If such evidence eventually becomes
available, superfamilies can be coalesced to reflect this new
understanding. We evaluated similarity detection methods
and scoring parameter sets by their ability to generate
good scores for all the truly homologous sequences (i.e.,
those within the same superfamily) while simultaneously
generating poor scores for all sequences of different folds.
Domains classified in the same fold but different superfam-
ilies are treated as undetermined and not considered in our
benchmarking.

Our test databases (see Fig. 3) were constructed from the
genetic domain sequences within the ASTRAL database (file

Fig. 2. SCOP hierarchy sample. The two top levels of SCOP,
class and fold, are purely based on structural similarity. Domains of
the same superfamily rely on common structure and other features
as evidence of homology. The superfamily level and all those below
reflect homology. The superfamily level is unique in being based
on structural information and indicating homology.

Fig. 3. Training and test databases. The ASTRAL 1.57 database,
filtered at 40% sequence identity, was partitioned into training and
test databases. Partitioning was done at the level of fold. Parameter
optimization on the training database was followed by evaluation
on the test database.

astral-scopdom-seqres-gd-sel-gs-bib-40-1.57.fa) based on
SCOP release 1.57. We used the set filtered at 40% sequence
identity to make the test specific for remote homologue
detection, as sequences with greater than 40% sequence
identity are easily identifiable as similar [42]. After masking
low-complexity regions with SEG [43] (using parameters -w
12, -t 1.8, and -e 2.0), we partitioned this database into two
similarly sized databases. Each contained all sequences of
every-other fold; there are no sequences in the intersection
of the two sets. One dataset, with 2183 sequences, was then
used as a training database to determine optimal search
parameters (substitution matrix, matrix scaling, and gap
penalties) for each of the pairwise search methods. Here-
after, it will be referred to as the training database. The other
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database, with 1829 sequences, was used as the test data-
base for each of the pairwise search methods with optimal
parameter sets, and will be referred to as the test database.
Separating the original ASTRAL set in this way ensures that
we do not simply evaluate a particular algorithm’s ability to
be optimized for the database in question. All datasets are
available at http://compbio.berkeley.edu.

An additional database, SNR, was generated for speed
evaluation. This 813 418-member database is the union
of the SWISS-PROT [44], TrEMBL and TrEMBL-NEW
databases of May 28, 2002. This database was masked of
trans-membrane helices using TMHMM [45], low com-
plexity regions using SEG [45], and coiled-coil regions
using CCP [46].

B. Summarizing Database Homologue Detection Search
Results: The CVE Plot

As mentioned previously, the ability of a similarity detec-
tion method to report truly homologous sequence matches
must be balanced against its ability to refrain from reporting
matches between unrelated sequences. This sensitivity
versus specificity tradeoff can be rendered graphically by
the coverage versus errors per query (CVE) plot (ROC) [6].
CVE plots are related to receiver operating characteristic
plots [6], [47], [48] and SPEC-SENS [49], [50] curves, but
present the data in a way that is directly interpretable and
germane to sequence analysis. A CVE plot is generated by
performing a database-versus-database search and ordering
the results by significance score (see Fig. 4). Then, we used
the SCOP classification information to determine whether
each reported match pair was homologous, nonhomologous,
or undetermined. At each significance threshold, from
highest to lowest, a point on the CVE plot is generated. The

-coordinate of the point is coverage; that is, the number
of detected homologue pairs divided by the total number
of pairs that exist in the database (true positives/number of
homologue pairs). The-coordinate of the point is errors per
query (EPQ), namely the number of nonhomologue pairs
reported divided by the size of the query database (false
positives/number of queries). The CVE results generated
from a perfect homologue detection method would be a
single point at the lower right-hand corner (see Fig. 4).

There are benefits of depicting the error rate in this way
that allow analyses not possible by other methods. First,
EPQ rates are comparable between experiments, even when
the databases are not the same. This is because the distribu-
tion of false positive scores from a database search is largely
independent of the particular database searched. Also, using
EPQ allows the direct evaluation of significance scoring
schemes (such as values) because EPQ and significance
scores share the same scale. EPQ reports the number of false
positives observed per database query whereas significance
scores report the number of false positives expected per
database query. The EPQ axis in a CVE plot is log-scaled
to show performance over a wide error range. This allows
consideration of performance at very low error rates.

Fig. 4. Generating CVE plots. Results of a
database-versus-database search are ordered by significance
(columns 1–3). Using SCOP, each match is classified as having
identified related sequences, unrelated sequences, or sequences
whose relationship is not known. If the matched sequences are
related, the coverage is increased. If the matched sequences are
not related, then an error was made and the EPQ increases. A
point on the CVE plot is generated for each significance level in
the list, from most significant to least significant. Note that the
significance scores themselves are not shown on the CVE plot. A
perfect similarity detection method would correctly identify all
relations within the database before making any errors. This would
be represented as a single point in the lower right-hand corner of
the CVE plot.

C. Superfamily Size Normalization

On CVE plots, the 100% coverage level is defined by the
number of homologous relations between members of all su-
perfamilies. The number of these relations within a given su-
perfamily grows quadratically with superfamily membership
size. Therefore, any representational biases present within
the database are exacerbated, and large families dominate the
overall results. There are well-known biases within the data-
base of solved structures and, by extension, within SCOP and
ASTRAL. Proteins that are more amenable to structure de-
termination or are deemed more interesting research subjects
are over-represented. Because of this bias, performance eval-
uation may be skewed to favor those methods that detect sim-
ilarity between members of the larger superfamilies.

We took two approaches to neutralizing this effect
(see Fig. 5). To each correctly identified relation, both
approaches assign a weight that is a function of the size
of the superfamily in which it occurs. Under quadratic
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Fig. 5. Normalization schemes. For each normalization scheme, the size of each matrix element
represents the weight given to each relationship. (a) The number of correct superfamily level
relations, shown in blue, is naturally dominated by large superfamilies. (b) Linear normalization
weights each superfamily in linear proportion to the number of sequences it contains. (c) Under
quadratic normalization, each superfamily is weighted equally.

normalization each correct pairwise relation identified is
weighted by , where is the number of the
sequences within that superfamily, because is the
number of relations within each superfamily. Therefore,
quadratic normalization weights all superfamilies equally,
regardless of size. Under quadratic normalization, the max-
imum achievable “coverage” is the number of superfamilies
in the test database, and the quadratically normalized CVE
plots presented reflect this fact.

Linear normalization is a compromise between no normal-
ization and quadratic normalization. Linear normalization is
motivated by the fact that sequence superfamilies are not, in
fact, represented equally in nature. Furthermore, the repre-
sentational bias within our test databases reflects, at least
to some degree, the unequal representation within the se-
quence superfamilies found in nature. Therefore, the results
generated by larger superfamilies should carry more weight,
but not necessarily quadratically more weight, than those
from smaller superfamilies. In this normalization scheme,
each superfamily is weighted in linear proportion to its size.
Each correctly identified pairwise relation is weighted by

. Therefore, the maximum achievable “coverage”
is the number of sequences within the test database, and the
linearly normalized CVE plots presented reflect this.

D. Bootstrapping Provides Significance of Coverage Versus
Error

The CVE line for any two search method/parameter set
pairs will likely differ. Therefore, to determine which method
is superior at a given error rate, it is a straightforward matter
to pick a suitable error rate and rank methods by the cov-
erage generated. However, the significance of any difference
between two coverage levels is not immediately apparent. To
address the question of performance difference significance,
we implemented the bootstrap strategy described in Fig. 6. In
brief, the database in question was sampled randomly with

replacement times, where is the number of sequences in
the database. This sampling produces a new bootstrap data-
base in which each sequence is represented zero, one, or more
than one times.

CVE data were generated for each bootstrap database
using significance scores from the original database search.
Repeating the bootstrap procedure many times gives a
distribution of the CVE statistic that can be used to reliably
estimate its standard error [51]. The results of any two
search methods can then be compared in a more meaningful
way by analyzing the score produced by a two-sample
parametric means test using this bootstrapped standard
error.

Two bootstrap distributions can also be compared by
sampling from them both and computing the fraction of
times in which one sample generates higher coverage than
the other. The bootstrap overlap fractions given in Figs. 8,
10, and 11 are generated by this method, sampling from
the relevant bootstrap distributions 1000 times. Equivalent
distributions would be expected to yield a score of 0.5 by
this method.

E. Similarity Search Methods Evaluated

We set out to evaluate several of the most commonly used
pairwise search tools (see Table 1). All were downloaded
from the source given in Table 1, compiled and installed per
documented instructions, and run on Linux systems using
default options, except where otherwise noted.

III. RESULTS

A. Parameter Optimization and Pairwise Method
Evaluation

To conduct as unbiased a test as possible, we partitioned
our test database into two nonoverlapping databases (see
Fig. 3). Each pairwise method was then evaluated on the
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Fig. 6. Bootstrap procedure. (a) The database is sampled
with replacement a number of times equal to the number of
sequences it originally contains. This generates a bootstrapped
database with some sequences left out and others repeated. CVE
statistics are generated for each round of bootstrapping. After
200 rounds, a coverage distribution can be obtained for any EPQ
rate. The distribution can be used to determine the significance
between coverage levels generated by any two pairwise methods
or parameter sets. (b) Significance testing is done two ways. A
two-sample parametric means test using the standard errors from
the two bootstrap distributions is used to generate aZ score.
Q is the coverage at 0.01 EPQ, ands is the sample standard
deviation at 0.01 EPQ. An alternative comparison method is to
draw 1000 random samples from each bootstrap distribution. The
fraction in which the coverage of the first sample is greater than
the second is reported. Under this procedure, equivalent methods
would score 0.5.

training database using a range of substitution matrices
and gap parameters (see Table 2). The training phase in-
volved the evaluation of the results of more than 8 billion
pairwise comparisons within 1846 database-versus-database
comparisons. The results of these searches were compiled
and used to generate CVE plots and statistics. For each
pairwise search method, we further evaluated the parameter
set that generated the highest coverage at 0.01 EPQ under
linear normalization. These optimal parameter sets are given
in Table 3. Note that for NCBI BLAST and WU-BLAST,
the number of matrices and gap-parameter combinations
evaluated was smaller than for SSEARCH and FASTA. A
consequence of the statistical scoring scheme employed by
NCBI BLAST and WU-BLAST is that only a limited set of
matrices have associated scaling parameters precomputed
[23]. For other matrix/gap-parameter combinations, the sta-

tistical scores are less reliable and therefore left unevalu-
ated in the present study. It is worth noting that the pa-
rameter set that yields the highest coverage at 0.01 EPQ
may not necessarily be best at other error rates. However,
in all cases, the top scoring parameter set at 0.01 EPQ was
among the best at EPQ rates in the range of 0.001 to 10.
Complete results from the training phase are available at
http://compbio.berkeley.edu.

To determine the significance of the performance differ-
ences between each of the four pairwise search methods, we
performed database-versus-database searches using the test
database and the optimal parameter sets listed in Table 2. We
present results as CVE plots in Fig. 7(a) in unnormalized,
linearly normalized, and quadratically normalized format. It
is interesting that when the results are normalized for super-
family size, the coverage invariably increases. This indicates
that for any of these methods it is more difficult to detect
the relations within larger superfamilies, and de-emphasizing
larger superfamilies increases coverage. The SSEARCH al-
gorithm, which fully explores the alignment space, finds the
most relationships at most error rates, as expected. The pop-
ular NCBI BLAST finds the fewest. The relative order of per-
formance between these four methods remains unchanged
under each normalization scheme, with one exception. In
the 1–10 EPQ range, WU-BLAST outperforms SSEARCH
when results are quadratically normalized.

Fig. 7(b)–(d) shows the bootstrap distribution of CVE re-
sults under each normalization scheme for SSEARCH with
optimal parameters. The inset of each CVE plot shows the
coverage distribution for these 200 bootstrap samples at 0.01
EPQ. As expected, the histogram for this distribution closely
resembles the parameterized Gaussian distribution generated
by maximum-likelihood (ML) estimation of the mean and
standard deviation computed directly from the bootstrap
data. The original CVE line—that is, the SSEARCH CVE
line in Fig. 7(a)—is also shown for comparison. This line
corresponds to sampling each sequence once and only once

An interesting consequence of bootstrapping the under-
lying data is that the original CVE line invariably falls to-
ward the higher coverage end of the bootstrap distribution in
normalized results. We determined that this occurs because
during bootstrap sampling, by chance, some of the smaller
superfamilies are not sampled or sampled only once. When
this happens, no relations remain for that superfamily. Since
the easier relations to detect are primarily within the smaller
superfamilies, the effect of eliminating them will be felt more
emphatically when results are normalized by superfamily
size. As a consequence of this artifact, the bootstrap average
of coverage at a given error rate is not in agreement with the
coverage at the same error rate in the underlying data [Orig-
inal CVE line in Fig. 7(b)–(d)]. However, since we are in-
terested in using bootstrapping to generate a measure of the
standard error (not the mean), we have disregarded this arti-
fact and used the bootstrap standard error in conjunction with
the original coverage at 0.01 EPQ for bootstrap significance
testing.

We bootstrap sampled the CVE data from the pairwise
alignment results 200 times. The bootstrap coverage distri-
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Table 1
Pairwise Methods Evaluated

The version number and download source for each program is also given.

Table 2
Substitution Matrix and Gap-Parameter Space Explored

We ran each method using the matrices and gap-parameter sets shown. A dash between two numbers indicates a range of gap parameters. For example,
9–19/1–3 indicates the 33 different combinations of gap opening penalties 9, 10, … 19 and gap extension penalties 1, 2, and 3.

Table 3
Optimal Matrix and Gap-Parameter Combinations

The combination of substitution matrix and gap parame-
ters shown is that which generated the highest coverage under
linear normalization at 0.01 EPQ for each pairwise method.

bution at 0.01 EPQ from each method is compared in Fig. 8.
SSEARCH outperforms the heuristic methods under each
normalization scheme, and the difference is significant. In-
terestingly, the differences between each method do not vary
much under the various normalization schemes, indicating
that the large superfamily bias affects each method roughly
equally. Furthermore, the fraction overlap between bootstrap
distributions shows good agreement with thescore (see
Fig. 8).

We examined the size distribution of superfamilies within
our test and training dataset to further investigate the corre-
lation between superfamily size and ability to detect remote
homologues. Fig. 9(a) shows the distributions of superfam-
ilies, by size, within both training and test databases. Note
that overwhelmingly the most common superfamily size is
one. These superfamilies are important in that there are no
relations to detect within them. Therefore, they serve only as
decoys within these experiments, i.e., they can contribute to
the errors but not to the coverage. Note also the presence of

several very large superfamilies (Immunoglobulins, P-loop
NTP hydrolases, etc.). The largest superfamily within the test
database is the NAD(P)-binding Rossmann-fold, containing
76 members. Within this superfamily, there are 5700 rela-
tions, as compared with the 192 relations within all the 96
superfamilies of size 2 in the test database.

To further investigate the general effect of apparently poor
homologue detection within larger superfamilies, we broke
down the results of the pairwise-test database search using
SSEARCH with optimal parameters [see Fig. 9(b)]. As ex-
pected from the normalization trend, there is a general nega-
tive correlation between superfamily size and percentage of
relationships identified. However, there are several excep-
tions to this trend. Both the C-type lectin-like superfamily
and the N-terminal nucleophile aminohydrolases are super-
families whose relations are more detectable than others of
their size.

B. Statistical Significance of Gap-Parameter Optimization

To determine the significance of choosing optimal gap pa-
rameters, we ran SSEARCH using the BLOSUM50 substitu-
tion matrix on the test database under a range of gap param-
eters around the optimum (14 gap opening penalty and 1 gap
extension penalty) previously found for this matrix found on
the training dataset. We generated CVE plots for each run
[see Fig. 10(a)]. There appears to be a range around the op-
timum in which the coverage does not vary widely.

Next, 200 independent bootstrap samples were generated
from the results of each parameter set for significance testing.
Means-test scores and bootstrap distribution overlap statis-
tics were generated for each gap-parameter set tested against
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(a) (b)

(c) (d)

Fig. 7. Pairwise methods comparison and bootstrap sampling. (a) Each of the four pairwise
methods, under optimal search parameters, was used to search the test database, generating CVE
plots. (b)–(d) CVE lines of 200 bootstrap samples of the SSEARCH results are shown under
each normalization scheme. The original CVE line is that shown in (a). The inset histograms
show of the frequency of each coverage level at 0.01 EPQ. Superimposed on each histogram is
the Gaussian distribution obtained by calculating ML parameters (mean and standard deviation)
given the bootstrap data.

(a) (b)

(c)

Fig. 8. Significance test of pairwise methods performance differences. (a)–(c) Each pairwise
method result was bootstrapped 200 times. Means-testZ scores are given along the left axis and
fraction of distribution overlap is given along the right axis. Results are reported under each
normalization scheme.
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(a)

(b)

Fig. 9. Performance versus superfamily sizes within ASTRAL
1.57. (a) ASTRAL 1.57 at 40% identity was divided into training
and test databases. The frequency of superfamilies of each size is
shown for each database. (b) The test database was searched using
SSEARCH with optimal parameters. The fraction of correctly
identified relations at 0.01 EPQ is shown versus superfamily size.

the optimal set, 14/1 [see Fig. 10(b)–(d)]. Each normaliza-
tion scheme gives similar results: there is a range around the
optimum in which one can safely perform database searches
without significantly affecting the performance of the search.
Using a score cutoff of 2, this range is 13–15 for the
gap opening penalty (with 1 for gap extension penalty) and
1 to 2 for the gap extension penalty (with 14 for opening
penalty) for unnormalized results. When results are linearly
normalized, this range increases to 13–18 for the gap opening
penalty, and 1–3 for the gap extension penalty. Therefore, it
is not critical to perfectly optimize gap scores for a given
database search. Furthermore, the default substitution ma-
trix/gap-parameter combination for each of the four pairwise
methods is optimal or not significantly different than optimal
(data not shown).

C. Substitution Matrix Evaluation

Substitution matrices have been developed based on
amino acid chemico-physical characteristics [52], genetic
code distance [53], and observed evolutionary patterns

[54]–[56], and these have been evaluated extensively
[31], [57]. The most commonly used matrices are of the
BLOSUM [56] and PAM [55] families, both of which are
derived from observed patterns of amino acid substitution
within real protein sequences. The BLOSUM family is
derived from short, ungapped alignments between pairs
of sequences grouped by varying percent identities. Be-
cause these matrices are computed directly from observed
residue exchange data, they make no assumptions about
how biological sequence evolution actually happens. This
is a fundamental difference between the BLOSUM and
the PAM families. All matrices of the PAM family are
derived from the PAM1 matrix, which is computed from the
observed exchange rate within alignments of real sequences
chosen to model a 1% sequence identity difference (1%
point accepted mutation). Further distance matrices are then
computed by assuming a Markov chain evolutionary model
and extrapolating PAM1 to various distances.

For comparison, we also evaluated two newer substitution
matrix families. The Blake–Cohen (BC) matrix set [39] is de-
rived from structural alignments of remote homologues, and
the VTML family [58] is based on an empirically determined
substitution rate-matrix that extends from the Dayhoff evo-
lutionary model.

We employed our family normalization and bootstrapping
proceduresto measure the performance differences between
families of subsititution matrices. Each substitution matrix
family contains several matrices, each scaled to model pro-
tein sequence evolution over a given amount of evolutionary
change. The first step in this experiment was determining
the optimum matrix scale and gap-parameter set for each
of the four matrix families tested. This was done using
SSEARCH and the training database. The results are shown
in Table 4. We performed this analysis with SSEARCH for
two reasons. First, it guarantees the optimal alignment under
a given scoring scheme. For this reason, matrices that per-
form best using SSEARCH can be said to best embody the
host of factors that affect real biological sequence evolution
without artifacts of heuristic methods. Second, the default
statistical scoring implemented in SSEARCH estimates
scaling parameters by fitting an EVD curve to the observed
alignment scores. Therefore, statistical significance scores
are automatically calculated for any combination of substi-
tution matrices and gap parameters. In this way, the FASTA
package tools, including SSEARCH, are more amenable to
such analyzes. However, the results shown in Table 4 are
not universally applicable. The heuristics implemented in
BLAST, for example, may affect matrix performance.

Fig. 11(a) shows CVE plots for the best performing param-
eter set for matrices using SSEARCH. Under all three nor-
malization schemes, there is very little difference between
VTML and BLOSUM. Both of these matrices appear to be
superior to PAM and BC for remote homologue detection.

To determine the significance of the coverage differences
generated by each substitution matrix, we did bootstrap anal-
ysis on each. As before, 200 bootstrap samples of each set
of results were used to generate a coverage distribution at
0.01 EPQ. Fig. 11(b)–(d) shows the scores and fraction
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(a) (b)

(c) (d)

Fig. 10. Gap-parameter performance. SSEARCH was used, with the VTML160 matrix and gap
parameters around the optimum (14/1). (a) CVE plots were generated under each normalization
scheme. The test used gap open parameters 8, 9, … 20 with extension parameter 1, and also used gap
open parameter 14 with extension parameters 2 and 3. (b)–(d) Bootstrapping was done (200 samples)
for each andZ score and fraction overlap values were generated for each parameter set versus the
optimum set under each normalization scheme.

Table 4
Optimum Matrix Scales and Gap Parameters

A range of matrix and gap parameters was evaluated using
SSEARCH and the training database. Those reported here
generated the highest coverage under linear normalization at
0.01 EPQ

of bootstrap distribution overlap for each pairwise combina-
tion of matrix results. Confirming the results suggested in
Fig. 11(a), BLOSUM and VTML perform nearly indistin-
guishably under all normalization schemes. Both are signif-
icantly superior to PAM and BC for remote homologue de-
tection. This is perhaps not surprising, since the superiority
of BLOSUM over PAM for remote homologue detection has
been established [31]. Furthermore, the BC matrices were
developed primarily for generating accurate alignments, not
for remote homologue detection.

D. Statistical Score Evaluation

In addition to being able to differentiate between related
and nonrelated sequences, similarity detection methods

should also give the user a reliable estimate of the signifi-
cance of any similarity detected. This is especially important
when a newly discovered sequence is used as a query and
the user cannot be sure that it has any homologues within the
search database. Each of the pairwise methods evaluated is
capable of generating value statistical significance scores.

value may be interpreted as the number of matched pairs
one would expect by random chance that are as good as
or better than the one reported, given the database search
performed to find it.

To determine the reliability of the value significance
scores generated by each sequence analysis method, we fur-
ther analyzed the results of the database searches performed
by each method using optimized search parameters. For each
incorrectly identified relationship (false positive) we plotted
the value at which it was reported. One should expect to
find, for example, one false positive per database query by
value 1. The results of this experiment are shown in Fig. 12.
The values generated by SSEARCH are remarkably close
to the ideal line. This suggests that estimating EVD parame-
ters by fitting to the actual database query score distribution
is an ideal method. Furthermore, as SSEARCH and FASTA
use the same method of calculating significance scores, it ap-
pears that the FASTA heuristics remove false positives. This
shifts the database score distribution and the EVD parame-
ters, leading to conservative scores.

At higher error ranges, each method nears the idealized
score. This beautiful statistical result may be, in part, due to
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(c) (d)

Fig. 11. Substitution matrix evaluation. SSEARCH was used with the optimum matrix from each
matrix family with the optimum gap parameters for each. (a) CVE plots, under each normalization
scheme were generated. (b)–(d) Bootstrapping was done (200 samples) for each matrix.Z scores and
fraction overlap are given under each normalization scheme.

Fig. 12. Reported statistical score evaluation. The statistical
scores at which errors occurred were plotted against the number of
EPQ. An ideal scoring method would follow the dotted black line
and, for example, would report one false positive at the level of one
error per query. Methods above the dotted line are conservative,
while those below the line exaggerate significance.

the composition of the database sequences used for this eval-
uation. ASTRAL sequences are all single domain sequences
of known structure—typically soluble and globular, and thus
generally well-behaved.

IV. DATABASE GROWTH

It is not obvious how database growth will affect the
performance of similarity detection methods. As databases
grow, it becomes more likely that there will be present at

least a single related sequence for any given query. How-
ever, the most useful statistical score, thevalue, can be
adversely affected by database growth [59]. Even though
the raw alignment score for any pair of sequences will not
change as databases grow, thevalue significance does.
This is because values are calculated as a function of the
size of the database that was searched.

Fig. 13(a) shows the growth of the number of solved struc-
tures within the Protein Data Bank (PDB) compared with the
number of superfamilies within recent SCOP releases. The
number of solved structures is growing at a faster rate than
the number of superfamilies. This means that newly solved
domain structures are more often being classified into ex-
isting superfamilies than they are defining new superfami-
lies. For this reason, many superfamilies are growing and, as
shown in Fig. 13(b), this seems to have a negative impact on
the ability to detect all true homologues at a given error rate.
We ran NCBI BLAST searches, using default parameters, to
generate CVE plots from the ASTRAL databases, filtered at
40% sequence identity, corresponding to each SCOP release.
The relationships within each subsequent ASTRAL database
release are more difficult to detect than those of the previous
database.

V. SPEEDEVALUATION OF METHODS

A final consideration in evaluating sequence comparison
methods is speed. Each of the four pairwise methods
was evaluated by the speed at which it could perform
a set of database searches. The computing environment

1844 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 12, DECEMBER 2002



Fig. 13. Effect of database growth. (a) The number of
superfamilies and PDB entries (solved structures) are plotted
against time for several version of SCOP. (b) NCBI BLAST,
with default parameters, was used to generate CVE plots for the
ASTRAL database derived from each SCOP release.

Fig. 14. Time evaluation of pairwise methods. Each pairwise
method was used to perform an ASTRAL-1.57 40% sequence
identity database-versus-database search and a search of 100
randomly selected sequences against the SNR database. The time
required to complete these searches is reported along they axes.
Percent coverage generated at 0.01 EPQ is shown on thex axis.

was controlled in this experiment. A single-processor
1–Ghz Intel Pentium III machine was used to perform
database-versus-database searches of the ASTRAL 1.57
sequences, filtered at 40% sequence identity (the training
and test database sequences together) and also a search
of 100 randomly chosen ASTRAL sequences against the

800 000–member SNR database. The results of these time
trials are shown in Fig. 14. The time required to complete

these database searches is plotted against the coverage
generated at 0.01 EPQ. The heuristics employed by both
BLAST versions, as well as FASTA, offer a significant
performance increase in terms of database search time over
the complete Smith–Waterman search used by SSEARCH.

Also of note is the speed difference between WU-BLAST
and NCBI BLAST. As the algorithms share a common origin,
the performance differences in terms of speed and CVE per-
formance may largely be attributable to differences in the
default parameter settings of each. WU-BLAST is set, by
default, to perform a more careful search, whereas NCBI
BLAST is optimized for speed.

VI. DISCUSSION

The power, speed, and accessibility of pairwise sequence
comparison programs have made them some of the most
important methods—experimental or computational—for
biological discovery. We have evaluated the merits of several
of these programs using new tools that address the effect
of database compositional bias and allow the significance
of performance differences to be measured. Using these
tools, we also evaluated the impact of parameter choice.
The VTML and BLOSUM family of substitution matrices
are most suitable for detecting remote homologues, recog-
nizing a significantly larger fraction of relations than other
matrices. Using these matrices, there is a range around
the optimum gap-parameter set in which results are not
significantly different.

The rigorous SSEARCH program detects a significantly
greater fraction of the relations between remote homologues
than any of the heuristic methods. Further, the significance
scores reported by SSEARCH are remarkably reliable. The
price for these benefits is a greater than tenfold time penalty.

The analyses chosen for presentation here were those
deemed to be of interest to the community at large. Addi-
tional results, datasets, and documented tools implementing
the bootstrap and normalization procedures are available
from http://compbio.berkeley.edu.
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