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Abstract
The search for similarity between two biological sequences lies at the core of many

applications in bioinformatics. This paper aims to highlight a few of the principles that should be

kept in mind when evaluating the statistical signi®cance of alignments between sequences. The

extreme value distribution is ®rst introduced, which in most cases describes the distribution of

alignment scores between a query and a database. The effects of the similarity matrix and gap

penalty values on the score distribution are then examined, and it is shown that the alignment

statistics can undergo an abrupt phase transition. A few types of random sequence databases

used in the estimation of statistical signi®cance are presented, and the statistics employed by

the BLAST, FASTA and PRSS programs are compared. Finally the different strategies used to

assess the statistical signi®cance of the matches produced by pro®les and hidden Markov

models are presented.

INTRODUCTION

The assessment of the similarity between

two sequences (or character strings) is one

of the corner-stones of bioinformatics, as

it is often indicative of true homology,

and can thus be used to assign a structure

or a biological function. The topic has

received much attention, and many

algorithms and software recipes have been

and are still being developed. Its major

application is probably to search a

database using a sequence as the query.

The use of pro®les or hidden Markov

models as queries is also becoming

increasingly popular. All these similarity-

search tools produce lists of matched

sequences that are aligned with the query,

either locally or semi-globally. Every

match is assigned a numerical score, whose

value is determined by a similarity matrix

and by gap opening and extension penalties

or by a position-speci®c scoring matrix

(pro®le), and only matches that give a

score greater than some threshold are

reported. Note that the precise methods

(algorithms) used to compute an

alignment producing a maximal score are

outside the scope of this paper.

The matched sequences reported by

search programs can be classi®ed as true

positives and false positives (the sequences

missed by the program are the negatives).

A true positive is a sequence that shares

similarity with the query because both

have evolved (diverged) from a common

ancestral sequence, and is thus a true

homologue. (Similarity can also be

sometimes attributed to evolutive

convergence.) A sequence is regarded as a

false positive if the observed similarity is

attributable to chance. It must be stressed

that only biological arguments can let one

decide whether a sequence should be

regarded as a true or false positive.

Nevertheless, a statistical analysis based on

sound principles can help in the decision,

because some matches are more likely to

have been produced by chance than

others.

Today, the most frequently used

statistical estimator is the E-value. It is the

number of matches with a score equal to

or greater than a given score that are

expected to occur by chance. In other

words, the E-value provides an estimation

of the number of expected false positives
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above a given threshold. The E-value

depends on the size of the searched

database, as the number of false positives

above a ®xed threshold must increase

proportionally to the size of the database.

The total number of sequences and the

total number of residues are the most

frequently used ®gures to determine this

size.

Bench biologists performing searches

against sequence databases are usually

basing their decision to accept a

particular similarity as indicating

homology on the basis of the E-value

returned by the search algorithm. The

central problem we want to address here

is how E-values are computed, and more

importantly for biologists under which

conditions they can be trusted. There is

more than one way to calculate an E-

value, and different methods can produce

values that differ by several orders of

magnitude. Understanding the origins of

such discrepancies is crucial when dealing

with applications in which a computer

and not a biologist makes the decision. A

trivial example is the determination of

the lower score threshold used when

reporting matches after a similarity search

in a database. Other applications

requiring better accuracy are iterative

search methods such as pro®le building

or PSI-BLAST. In these methods a key

to success is that the threshold value is

determined (automatically) so that a

maximum number of true positives is

recorded but essentially all false positives

are rejected.

Finally, this paper also aims to give a

critical perspective on the conditions

under which E-values can be trusted.

Indeed, the procedures for the annotation

of the exponentially growing number of

DNA sequences are more and more

automated. The quality of these

annotations is a matter of concern and

relies heavily on the (automated) decision

to produce a particular annotation for a

particular sequence. Most often, such

decisions rely on some `test', which

ideally should be an E-value based on a

realistic random sequence model.

THE EXTREME VALUE
DISTRIBUTION

The scores produced by similarity-search

algorithms usually do not follow a normal

(Gaussian) distribution. The statistics of

extremes worked out by Gumbel1 provide

a more appropriate theoretical framework

to describe them. The extreme value

distribution (EVD), which is also known as

the Gumbel distribution, plays a key role

in the theory, and thus will be presented

here in some detail. Olsen et al.2

introduce the EVD as follows:

`Given a set of independent and

identically distributed random variables

x1, x2, . . ., with a distribution which

decays reasonably fast for large values

of the xi's, e.g., Pfxi . xg /
exp(ÿáxã) for x!1 and á, ã. 0,

the distribution of the random

variables

Xn � maxfx1, . . ., xng
for large n is known to obey the

Gumbel distribution

PfXn . xg � 1ÿ exp(ÿkeÿëx): (1)

The distribution is universal, in that its

shape does not depend on the speci®cs

of the distribution of the xi's: It is, ®rst

of all, completely independent of the

details of the distribution of the xi's at

small values. Moreover, the shape of

(1) does not depend on the values of

the parameters such as á, ã and n. The

latter only enter (1) through the values

of ë and k, the only parameters of the

Gumbel distribution.'

An alternative formulation of (1) is

often employed and makes use of the

parameter ì � ln k=ë

PfS . xg � 1ÿ exp(ÿeÿë(xÿì)) (2)

The associated probability density

function p(x), de®ned such as PfS . xg
� �1

x
p(u) du, is

p(x) � ë exp(ÿë(xÿ ì)ÿ eÿë(xÿì)) (3)

The major feature of this density

function is that it is skewed, ie it is not

Similarity and
homology

E-values

the extreme value
distribution
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symmetrical, and its left tail is `steeper'

than its right tail (Figure 1). The

parameters ì and ë are related to the

location of the maximum of p(x) and to

the `narrowness' of the peak, respectively.

They should not be confused with the

mean and the standard deviation of the

distribution.

As can be observed in Figure 1, the

right tail of the EVD is decreasing almost

linearly when plotted in a semi-

logarithmic coordinate system. Therefore

the right tail of the EVD is satisfactorily

approximated with a decreasing

exponential

p(x) ' PfS . xg ' eÿë(xÿì); ì � x

(4)

for suf®ciently large scores. This is a

particularly useful result because it can be

applied to the situation that is

encountered after a similarity search in a

database: one is only interested in the very

small fraction of top scoring matches that

are the least likely to have been produced

by chance. In practical applications,

approximation (4) is almost always used

for the computation of E-values, instead

of one of the preceding exact

relationships. (This also caused confusion

in the notation used by some authors.)

An older yet still commonly used

`statistical estimator' is the Z-score, which

is the number of standard deviations that

separates an observed score from the

average score of all true negatives

matches. Conversion of a Z-score into an

E-value is possible if and only if the shape

of the underlying distribution of the

scores is known, as for example in eqn

(12). Hence, a given Z-score can be

regarded as quite improbable if the

underlying distribution is Gaussian and

quite probable if the distribution is an

EVD, because the right tail of the latter is

more `extended' on the right than the one

of the former (see Figure 2). Scores from

the comparison of 10,000 pairs of random

sequences of length 1,000 were obtained

using the Smith±Waterman algorithm, a

BLOSUM62 similarity matrix and two

sets of gap penalties. The frequency

distribution of the scores presented in the

top graph was obtained with penalties

open � 12=extend � 1; the full line is an

EVD (3) and the dotted line is a normal

(Gaussian) distribution ®tted to the data.

The bottom graph presents the results

obtained by the same procedure when the

gap opening penalty was lowered to 4. Z-

scores have been replaced by E-values in

most recent applications.

RANDOM SEQUENCES

Databases of `random' sequences are

commonly used to derive the

distributions of alignment scores that can

be attributed to chance rather than to

homology. The statistician's favourite

model of a random sequence is the

concatenation of a ®xed number of

independently drawn letters from a given

alphabet. The occurrences of the letters

`A', `C', `G', `T' of the DNA alphabet are

often taken as equiprobable. In the case of

proteins, the frequencies of amino acids

are usually chosen to be different, in order

to mimic real biological sequences. For

example, in the SWISS-PROT database,

the most common amino acid is leucine

Figure 1: The extreme
value or Gumbel's
distribution. The integral
representation of the
distribution EVD(x) (2),
its associated probability
density function pdf(x) as
de®ned by (3) and the
exponential
approximation of the
right tail of the
distribution exp(x) (4),
computed with ì � 0
and ë � 1 are
represented on a linear
scale (top panel) or a
logarithmic one (bottom
panel)
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with a relative frequency of 9.3 per cent,

followed by alanine (7.6 per cent) and

serine (7.2 per cent). The rarest amino

acids are tryptophan (1.3 per cent) and

cysteine (1.7 per cent). Truly random

sequences generated in this way are

relatively tractable algebraically and allow

for the analytical investigation of (some)

aspects of the statistics of pairwise

sequence alignment (see Karlin and

Altschul3 or Bundschuh and Hwa4 for

examples).

With the help of a pseudo-random

number generator and a table of

frequencies, a collection of random

sequences is easily generated. Scores

obtained by searching such a collection,

provided it is suf®ciently large, can be

extrapolated to the properties of an ideal

random sequence. This computational

approach has the bene®t of simplicity, but

its experimental character should never be

forgotten when interpreting the results, ie

one should refrain from generalising

results obtained with such methodology.

An alternative numerical procedure

consists of searching a randomised

database (see below) derived from real

sequences to produce lists of matches that

can be attributed to chance only. The

relevant statistical parameters are then

derived from the score distribution of

these matches. There are several possible

ways to shuf¯e sequences; some preserve

the observed distribution of sequence

lengths in the database, others preserve

the composition of the individual

sequences in the database. Although

largely empirical, such strategies are quite

ef®cient in practice because they produce

data that are more realistic from a

biological point of view.

A collection of randomised databases5 is

maintained by the Swiss Institute of

Bioinformatics, all of which are derived

from release 34 of the SWISS-PROT

database (sprot34), containing 59,021

sequences and 21,299,624 residues. The

most useful ones are the following:

· scramble preserves the distribution of

the sequence lengths of sprot34, with

randomly generated sequences of

amino acids obeying the average amino

acid frequencies of sprot34.

· permutation is obtained by random

permutation of the amino acids in

every sequence of sprot34. The length

and composition of each individual

sequence are preserved.

· window20 is obtained by random

permutation of the amino acids in

adjacent windows with a width of 20

residues. The length and the

composition of each individual

sequence are preserved. Low-

complexity regions and other local

compositional biases are maintained.

· reversed is obtained by reversing the

order of the amino acids in each

sequence of sprot34. The length and

the composition of each individual

sequence are preserved. In addition to

low-complexity regions,

transmembrane segments and repetitive

Figure 2: The EVD is an adequate model
for the distribution of the maximal scores of
local alignment of random sequences, in
some cases (top graph) and not in others
(bottom graph)

randomised databases
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regions such as coiled-coil domains are

also maintained.

The following example will illustrate how

the use of randomised databases derived

from actual protein sequences can mimic

more accurately the properties of these

sequences than can `synthetic' random

databases. Figure 3 presents the frequency

distribution of cysteines in the proteins of

release 34 of the SWISS-PROT database

and of the scramble database (top graph).

The cysteine content of individual

proteins has an average value of 1.7 per

cent, but the distribution is more uneven

in real sequences than in the random

sequences where residues were

independently drawn (scramble).

Moreover, the cysteine residues often

appear clustered in real protein sequences:

the bottom graph of Figure 3 presents the

distribution of the maximal number of

cysteines found in 20 adjacent amino

acids. This distribution is bimodal for the

real database, a property that is not

preserved in scramble, but is preserved

in reversed and in window20. Many of

these cysteine-rich regions correspond to

extracellular domains. Figure 4 presents

an example of such a domain, the

calcium-binding EGF (epidermal growth

factor) domain. A database search using a

sequence or pro®le representing the EGF

domain as a query would thus generate

more accurate E-values if it had been

calibrated using the reverse or

window20 databases than if it assumed a

random distribution of residues.

LOCAL ALIGNMENTS
WITHOUT GAPS

Consider two sequences of length m and

n made of letters from an alphabet of size

Z, drawn with probabilities px; x � 1::Z;PZ
i�1 pi � 1. Consider a substitution

matrix fsi, jg that provides a score for

aligning a letter i with a letter j and which

is symmetric si, j � s j,i. Provided that the

expected score contributed by a pair of

random residues is lower than zero (also

assuming that some pairs of amino acids

have positive contributions), ieXZ

i, j�1

pi pj si, j , 0 (5)

it has been demonstrated3 that the

distribution of the scores of gap-less

pairwise alignments of two random

sequences tends towards an EVD for

suf®ciently large sequence lengths m and

n. It was also shown that the EVD

parameter ë is given as the implicit

solution ofXZ

i, j�1

pi pj e
si, jë � 1 (6)

and ì is given by

ì � ln Kmm

ë
(7)

where K is a constant, with a value

depending on fsi, jg and px.

If expression (5) does not hold, long

alignments will be favoured simply

because they are long, and will thus be

biologically meaningless.
Figure 3: Distribution of cysteines in
SWISS-PROT and in a random database
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The product n : m is known as the

size of the search space. Hence, the above

result can be restated: the EVD is

applicable to gap-free alignments

provided the search space is suf®ciently

large. This is the main reason why the

original implementation of BLAST

produced only gap-less alignments ±

there was a strong theoretical justi®cation

for the derivation of E-values.

Unfortunately, there is no comparable

analytical result available for the case

which is actually the most useful to the

biologist: alignments with gaps.

LOCAL ALIGNMENTS WITH
GAPS

When local alignments of random

sequences containing gaps are considered,

it is often assumed that the EVD is

applicable to the distribution of the

maximal scores. This is true under some

circumstances but not others.6,7 Figure 2

illustrates this point by providing two

examples, one in which the EVD is a

valid model and one in which the EVD is

clearly inappropriate, because the scores

are more likely to be normally distributed.

Is it possible to test the conditions

under which the EVD can be applied

`safely' or, in other words, is there an

expression analogous to (5) but for gapped

alignments? There is still no de®nite

answer to this question. However, the

situation is not totally desperate and the

theoretical understanding of the problem

is currently progressing (see Bundschuh

and Hwa4 and Mott and Tribe8 for recent

advances). The next sections will present

observations made from numerical

simulations, instead of theoretical

considerations.

Phase transitions
The expected score of a local alignment

depends on the length of the two

compared random sequences and,

intuitively, one can guess that the longer

the sequences, the greater the score

expectation. Figure 5 presents the results

of two numerical simulations performed

to demonstrate how the average score x

varies with the length of the random

sequences (see the ®gure legend for details

of the simulation). The curve obtained

with an expensive gap opening penalty

was ®tted quite successfully with a

logarithmic function

Figure 4: The calcium-
binding EGF domain is
made of cysteine-rich
subsequences. A few
subsequences matched
by the Prosite pro®le
EGF_CA_2 were aligned
and the conserved
residues are highlighted

size of the search space

gapped alignments
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x � cA ln cB l (8)

where cA, cB are ad hoc adjustable

parameters. The curve obtained with a

cheap gap opening penalty was ®tted, also

quite successfully, with a linear function

x � cC l (9)

with cC another adjustable parameter.

However, alignments that were produced

in the latter case are certainly without

value for a biologist: gaps are inserted so

frequently that the resulting alignments

lack any meaning. This is another

situation where long alignments are

favoured simply because they are long.

The two examples of score distributions

in Figure 2 actually correspond to two of

the points of Figure 5, ie those for

sequences of length 1,000. Accordingly,

the EVD appears associated with the

logarithmic curve, while the more

symmetrical distribution of the scores is

associated with the linear curve. Credit is

due to Waterman et al.9 to have ®rst

pointed out these features while studying

local alignments of DNA sequences with

a linear gap cost model. These authors

also observed that this system was unlikely

to be observed in an intermediate state.

Indeed, the linear and logarithmic curves

correspond to two distinct phases and the

change from one to the other occurred

abruptly as a function of the gap penalty.

This was compared to various physical

systems in which phase transitions have

been described.

Phase transitions can be revealed as

follows: consider the residual square sums

RSSlin obtained from the least square ®t

of the linear model to the data, and

RSSlog the corresponding value for the

logarithmic model. The phase è in which

the system is found can readily be

estimated as the ratio

è � RSSlin

RSSlog �RSSlin

, 0 < è < 1 (10)

which approaches zero in the linear phase

and one in the logarithmic phase. The

computational recipe used to produce the

curves of Figure 5 was repeated for

intermediate values of the gap opening

penalty. Both phase models (8, 9) were

®tted to each curve. The value of è was

determined using (10) and plotted against

the gap opening penalty (Figure 6). In this

way phase transitions can be clearly

visualised: the system is in an intermediate

phase for only a very restricted range of

gap penalties.

Many programs used for local similarity

searches take as parameters the similarity

matrix and the gap opening and extension

penalties. Among these programs,

BLASTP (NCBI version 2.0.9) offers

only a limited subset of allowed parameter

combinations. For example considering

the above example of a BLOSUM62

similarity matrix and a gap extension

penalty of 1, BLASTP allows only gap

existence penalties of 10, 11 and 12 which

Figure 5: The average score of local
alignments between random sequences
increases with sequence length: this
relationship can be modelled with a linear
function in some cases and with a logarithmic
function in others. Scores from the
comparison of six collections of 10,000 pairs
of random sequences of increasing lengths
were obtained using the Smith±Waterman
algorithm, a BLOSUM62 similarity matrix
and two sets of gap penalties. The average
score was determined for each set of scores
and plotted as a function of sequence length.
The data obtained with penalties
open � 12=extend � 1 were ®tted with a
logarithmic model (8); the data obtained by
the same procedure after lowering the gap
penalty to 4 were ®tted with a linear model
(9)
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correspond to gap opening penalties of

11, 12 and 13 respectively. By examining

Figure 6 one can expect that the local

alignments obtained with these

combinations of parameters are produced

in the logarithmic phase.

One might wonder why a gap opening

penalty lower than 11 is not allowed by

the BLASTP program. The answer is

probably that the random-sequence

composition used for BLAST calibration

might be signi®cantly different from the

composition faced by the biologist in a

real application. A second curve is

presented in Figure 6 to illustrate this

point. It was obtained by modifying the

amino acid frequencies of the random

sequences: the frequency of proline was

increased by 10 per cent while preserving

the relative frequencies of the other

amino acids. This apparently small

alteration of amino acid frequencies was

suf®cient to shift the phase transition by

more than one `unit' of gap opening

penalty. Hence BLASTP simply does not

allow the user to perform similarity

searches with parameters close to the

phase transition limits, thus tolerating

sequences whose compositions depart

from the calibration model. (The masking

of low-complexity regions is another

`trick' that is used to prevent the similarity

search algorithm from producing spurious

alignments.)

Mott and Tribe8 have recently shown

that the behaviour of gapped alignments is

essentially governed by a single parameter,

á, which depends on the scoring scheme

and on the sequence composition. The

value of á is a very useful predictor of the

position of the transition point between

logarithmic and linear behaviour.

The effective search space
The size of the search space, ie the product

of the two sequence lengths n and m, can

be interpreted as the number of pairs of

coordinates from which maximal scoring

local alignments can start. However,

because any alignment has a non-

negligible length, a high scoring match is

unlikely to start from the last positions of

a sequence. Hence, the size of the search

space de®ned by the product n : m is

overestimated. Altschul and Gish10

proposed to correct this size by

introducing an additional value L, the

typical length of an alignment, and to

express the corrected size of the search

space by

(nÿ L):(mÿ L) (11)

One can expect L to increase

logarithmically with the length of the

sequences, just as the average score

increases in the logarithmic phase (cf. eqn

(8)). Hence the correction will have a

greater effect on short sequences. This is

probably why suf®ciently long sequences

are required to obtain an EVD in the

analytical demonstration, while no such

correction of the size of the search space

was envisioned.

Figure 6: A phase transition from the linear
phase to the logarithmic phase is observed
when the gap opening penalty is
progressively increased. Given a similarity
matrix (BLOSUM62), a gap extension penalty
(1) and different gap opening penalties and
random sequences of various length, we
produced curves similar to those presented
in Figure 5). The shape è of each curve was
characterised by using eqn (10), and this
factor was plotted as a function of the gap
penalty used. The circles represent data
points obtained using random sequences
produced with the amino acid frequencies of
SWISS-PROT; the squares represent data
obtained with a database in which the
frequency of proline was increased by 10 per
cent

0

0.2

0.4

0.6

0.8

1

4 6 8 10 12

lin
ea

r 
<

- 
  p

ha
se

   
->

 lo
g

gap open penalty

BLASTP parameters

effective search space

length of an alignment

5 8 & HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I O I N F O R M A T I C S . VOL 2. NO 1. 51±67. MARCH 2001

Pagni and Jongeneel



Of course, a major practical problem is

to determine the value of L. A recipe is

given in Altschul and Gish10 which makes

use of an additional parameter, the relative

entropy H (in nats) or the expected score, per

aligned residues, of an optimal random

subalignment. A value for H can be

obtained analytically for alignments

without gaps. For gapped alignments, L

can be derived numerically from a

collection of empirically determined

match lengths. (Note that the de®nition

of match length is ambiguous in the

Smith±Waterman algorithm because the

maximal score can correspond to several

alignments, which may well have

different lengths. Hence, statistics derived

from match lengths actually depend on

the details of the implementation of the

backtracking algorithm, which is an

undesirable property.)

BLAST statistics
The BLASTP and BLASTN programs are

designed to be faster, by several orders of

magnitude, than programs (such as

SSEARCH) that implement the original

Smith±Waterman algorithm. We will not

deal here with the BLAST heuristics (see

Altschul et al.11,12), but discuss topics that

are relevant for the computation and

statistical assessment of E-values. Because

computational speed is crucial for these

programs, the use of any CPU-intensive

procedures for computing statistics is

undesirable; only algebraic relationships

and pre-tabulated numerical values are

used. In practice BLASTP and BLASTN

(NCBI version 2.0.9) currently make use

of two different strategies to achieve a fast

estimation of the E-values.

BLASTN simply ignores gaps when

computing E-values, ie the analytical

solutions available to determine the values

ë, K and L for alignments without gaps

are applied to compute the E-value of

gapped alignments. (The actual base

compositions of the query and of the

database are ignored in the calculation.)

This is acceptable provided gaps are

suf®ciently rare. Indeed, the default

behaviour of BLASTN is optimised for

maximal speed, because many DNA

databases are large, and matches that

would involve many gaps are missed by

the default heuristic anyway. The bene®t

of this simpli®cation is that the values of

ë, K and L can be calculated exactly and

quickly (see eqns (6), (7)) for any

combination of match/mismatch scores

and gap penalties as long as relationship

(5) holds. This, however, is not suf®cient

to ensure that the alignments are

produced in the logarithmic phase (see

above). It is quite easy to produce a

BLASTN request that performs a

similarity search whose results will be in

the linear phase. For example, using any

DNA sequence as query against any DNA

database with match/mismatch scores of

10=ÿ30 and (relatively cheap) gap

penalties of ÿ2=ÿ1 produces a long list of

biologically and statistically meaningless

alignments.

The parameter values used for the

computation of the E-values are listed at

the end of every BLASTN output (Figure

7). The way these are calculated is as

follows: Given the raw score S obtained

for an alignment and given ë, K and L,

the raw score is ®rst transformed into a bit

score Sbit trough

Sbit � ëS ÿ lnK

ln 2

The E-value is derived using

approximation (4):

E � sss : 2ÿSbit

where sss is the size of the search space

(see 11) de®ned here for the whole

searched database

sss � (mÿ L)(nÿ N :L)

where m is the length of the query in

amino acids, n is the size of the database

in amino acids, N is the number of

sequences in the database and L the

typical length of the maximal scoring

alignment.

In contrast the BLASTP program takes

gaps into account when computing E-

values. Numerical values for ë and K

were obtained for various combinations

BLASTN statistics

BLASTP statistics
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of scoring matrices and gap penalties using

the Smith±Waterman algorithm. These

values are hard-coded in the BLAST

program. The recipe that BLASTP uses to

compute L is currently documented only

in the source code and relies on sequence

length and on the value of the gap-less K ,

ie L does not depend on the gap

penalties. Every BLASTP output reports

the parameter values used for the

computation of the E-value; an annotated

example is presented in Figure 8.

There are many other points that

together make the BLAST programs so

successful. To mention a few:

· The low-complexity ®lters DUST for

nucleic acids and SEG for proteins are

activated by default. It is usually not a

good idea to turn them off, as low-

complexity regions tend to produce

lengthy meaningless alignments and,

moreover, they interfere with the

BLAST heuristic.

· The computation of the E-value

outlined above only addresses the

problem of the maximal scoring

pairwise alignments. When multiple

matches occur between two sequences,

BLASTP and BLASTN report a single

combined E-value. For details of the

computation of this value see Altschul

and Gish10 and Anon.13

· One usually observes that the BLAST

and Smith±Waterman algorithms

produce identical scores and

alignments, provided E-values are

suf®ciently small, no low-complexity

region is involved, and the search

parameters are identical.

· BLASTP is optimised for a few

prede®ned combinations of parameters,

as proposed on the NCBI BLAST web

pages. It is generally good advice to

respect these.

FASTA statistics
The FASTA heuristics14 made it possible

to search biological databases for gapped

local alignments many years before this

was possible with the BLAST programs.

FASTA is a little slower than BLAST, and

can produce only one local alignment per

pair of compared sequences. On the other

hand, FASTA accepts any combination of

scoring matrix and gap penalties, and

produces quite reliable E-values. The

performance of FASTA and BLAST were

compared in many papers, and several

recent contributions on this topic also

consider other algorithms such as PSI-

BLAST.15,16

E-value computation by FASTA is

based on the following principle (from

Pearson17):

`Current protein and DNA sequence

databases contain many tens of

thousands of sequences, almost all of

which are unrelated to an individual

query sequence (. . .). Thus, every

database search provides tens of

thousands of scores from unrelated,

effectively random, protein and DNA

Figure 7: The last lines of a BLASTN output provide a listing of the
parameters used to compute the E-values. The symbols used correspond
to those de®ned in the text

FASTA statistics
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sequences. For local similarity scores,

these `random' sequence scores are

expected to follow the extreme-value

distribution (. . .) with location and

scale parameters that re¯ect the lengths

and compositions of the query and

library sequences and the scoring

matrix and gap penalties used.'

The actual computation of E-values by

FASTA is quite intricate; the following

steps can be recognised in the process:

1. For any given query sequence, a large

collection of scores is gathered during

the search of the database. This is

possible because of the details of the

FASTA heuristic, which quickly

produce an alignment score for any

pair of compared sequences (this so-

called optimal score can actually differ

from the Smith±Waterman score).

Note that the searched database must

be suf®ciently large and of a

suf®ciently heterogeneous

composition to effectively produce a

useful collection of scores.

2. All potentially signi®cant scores must

be removed from the whole collection.

Several procedures were compared by

Pearson17 to prune outliers. In the

current implementation (FASTA 2.0

and above), scores are assigned into bins

of a histogram based on the length of

the database sequence, and the

trimming is performed within each bin.

An average score and standard error is

then computed for each bin.

3. The expected random score x as a

function of the logarithm of the length

of the sequences in the database ln l is

described with a linear model

x( l) � a� b ln l

where the values of the parameters a

and b are obtained through a weighted

linear regression with the histogram

data. This empirical model is highly

reminiscent of (8). Steps 2 and 3 are

repeated iteratively to produce a more

reliable estimation for the parameters.

4. Each potentially signi®cant score is

converted into a length-corrected Z-score

Z(x, l) � xÿ x( l)

sdev

where sdev is the average of the

standard deviation of the random

scores.

5. The Z-score is eventually converted

into an E-value under the assumption

that the distribution of the random

scores is an EVD, ie

Figure 8: The last lines of a BLASTP output provide a listing of the
parameters used to compute the E-values. The symbols correspond to
those de®ned in the main text. Note that two different values for K are
used

& HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I O I N F O R M A T I C S . VOL 2. NO 1. 51±67. MARCH 2001 6 1

Score statistics for sequence alignments



E � N :[1ÿ exp(ÿeÿ1:282 : Zÿ0:5772)]

(12)

where N is the number of sequences

in the database.

PRSS statistics
Given two protein sequences, a similarity

matrix, and a combination of gap-

opening and gap-extension penalties, the

program PRSS18 computes the score of

the maximal scoring alignment and an E-

value using the Smith±Waterman

algorithm. The E-value is derived from a

collection of maximal scores obtained

from alignments between one of the

sequences and random permutations of

the other. The parameters of an extreme

value distribution are derived from these

scores and used to estimate the probability

of the observed real score. The main

bene®t of this approach is obvious: the

statistics are based on amino acid

frequencies that are taken from the

sequences being actually compared,

which might signi®cantly depart from the

composition of a `standard' database.

PRSS can also use more sophisticated

shuf¯ing methods for the generation of

random sequences: for example, residues

can be randomly permuted with in a local

window of 20 amino acids' width. This

preserves the regional variation of the

amino acid composition along the

sequences. The following example, which

features the use of this option,

demonstrates that PRSS may be better at

detecting signi®cant matches than

BLASTP.

The protein P75020 of TrEMBL is

annotated as being similar to a chitinase of

Bacillus circulans. This is almost certainly

wrong, as the chitinase active site is absent

from this sequence. On the other hand,

two well-known protein domains are

present, a discoidin domain19 (which

resembles the coagulation factor 5/8 type

C domain), and a ®bronectin type III

domain.20 The latter is also present in the

B. circulans chitinase, and this caused the

erroneous annotation. The SWISS-

PROT database was searched with

P75020 as the query, using BLASTP with

a BLOSUM45 substitution matrix and

gap penalties of ÿ14=ÿ2. These settings

are suitable for the detection of remote

homologies, but they are not recommended

according to the NCBI web pages. One

can suspect that the alignment algorithm

operates pretty close to the phase

transition with these settings. The output

of the BLASTP search was analysed in

detail. The default score threshold was

used and only the maximal score for each

pair of sequences was kept (multiple

matches were ignored!). The 120

matched protein sequences were classi®ed

in one of the following three categories:

· Low complexity: the protein is

present in the BLASTP list of matches

when the SEG ®lter is turned off, and is

absent when the ®lter is turned on; ie

the database sequence matches a low-

complexity region of the query.

· True positive: is arbitrarily de®ned on

the basis of the presence of a discoidin

or ®bronectin type III domain, as

predicted by the Prosite pro®le

DS_DOMAIN or by the Pfam HMM

FN3, respectively.21±23

· False positive: the protein does not

fall into one of the above categories.

Figure 9, top panel, presents the E-values

of the 120 best matches computed by

BLASTP, with the SEG ®lter turned off.

The bottom panel shows the E-values

produced by PRSS (500 shuf¯ings with a

window width of 20 amino acids) for the

same matches and in the same ranking.

Considering the repetition of the E-value

into the three categories de®ned above,

which are represented by distinct symbols

in Figure 9, it is clear that PRSS performs

much better than BLASTP in separating

the true positives from the false positives.

Moreover, while sequences with low-

complexity regions appear to pollute the

BLASTP output list, most of them are

(correctly) placed with the false positives

by PRSS. Only two proteins with a low

PRSS vs BLASTP
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complexity received a relatively low E-

value; on closer examination, both of

these proteins proved to be true positives.

Note, however, that the generation of

shuf¯ed sequences followed by Smith±

Waterman alignments (the strategy used

by PRSS) is extremely expensive in terms

of CPU usage. Therefore, a standard

strategy for database searching involves

the collection of potentially signi®cant

matches with BLAST, followed by an

examination of individual pairs using

PRSS.

SEMI-GLOBAL
ALIGNMENTS

Pfam hidden Markov models (HMMs)

and Prosite pro®les are two examples of

descriptors that are used to predict domains

in protein sequences. To search for the

occurrence of a domain one can use, for

example, the programs HMMSEARCH

of Sean Eddy's HMMER 2.0 package for

Pfam HMMs or the program

PFSEARCH of Philipp Bucher's

PFTOOLS package for Prosite pro®les.

Similarity searches with these tools differ

in many respects from the previously

considered local similarity searches. A ®rst

difference is that the scoring system is

position-dependent, ie the score rewards

or penalties for a given amino acids vary

along the descriptor. Another difference is

that one usually searches for matches that

are local on the sequences but global on

the descriptor. Protein domains are often

viewed as protein building blocks, or

structural units, and as such should be

matched globally. This alignment method

is sometimes called semi-global and there is

no theoretical framework to account for

the statistics of the score distributions

under these conditions. It is assumed that

the distribution of the scores is skewed

and resembles an EVD, but when more

detailed analyses are performed, it appears

that the EVD model may not always be

appropriate.

The good news with semi-global

alignment methods is that it is possible to

estimate in advance the composition of a

subsequence that should produce a high

scoring match: it must resemble the

consensus sequence of the predictor.

Therefore, even if this consensus

sequence contains low-complexity

regions, or if its amino acid composition is

highly biased, statistics can be adapted for

Figure 9: The E-values of the matches
produced by a BLASTP search can be re-
evaluated using PRSS. This signi®cantly
improves the classi®cation of the matches
into true or false positives. The SWISS-
PROT database was searched with TrEMBL
entry P75020 as a query using a BLOSUM45
similarity matrix and gap penalties of
ÿ14=ÿ2. The 120 best matches were
classi®ed into three categories: low
complexity, where the sequence is only
reported when the SEG ®lter is turned off
(cross); true positive, where the sequence is
matched by either the Prosite pro®le
DS_DOMAIN or the Pfam HMM FN3 (open
circle); false positive, where the sequence
does not ®t in either of the previous
categories (small closed circle). The top
graph presents the E-values as computed by
the BLASTP program and plotted against the
rank at which the corresponding match
appear in the BLASTP listing; the bottom
graph presents the E-values computed by
PRSS using 500 shuf¯ings and a window
width of 20 amino acids, in the same order
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each particular case. In other words,

HMMs and pro®les can be calibrated and

the relevant parameters can be

incorporated as part of the descriptor (see

details below and Figures 10 and 11).

The HTOP program, part of

PFTOOLS, converts a Pfam HMM into a

Prosite-formatted generalised pro®le. The

conversion is fully conservative in the

sense that the raw score produced by the

HMM (provided the HMMSEARCH

ÿnull2 option is set) for a given

alignment is identical to the score

produced by the converted pro®le on the

same alignment.24 Hence, Pfam HMMs

and generalised pro®les are

interconvertible objects as far as the raw

score generation procedure is concerned.

Nevertheless, the E-values computed by

HMMSEARCH and PFSEARCH may

sometimes be quite different.

HMMER 2.0 statistics and the
Pfam database
The program HMMCALIBRATE

(HMMER 2.0 package) generates a

random database similar to scramble, in

which amino acids have the frequencies

found in SWISS-PROT and the

sequence lengths are distributed with the

same mean and standard deviation as

observed in SWISS-PROT. Then, each

of these random sequences is aligned with

the HMM to calibrate and the highest

score per sequence is collected. An EVD

is ®tted to the score frequencies, and the

values of the two parameters ë and ì are

obtained using a maximum likelihood ®tting

procedure (details are available in Eddy25).

It should be noted that

HMMCALIBRATE censors the data set

by retaining only those that exceed some

threshold. In other words, only the right

tail of the EVD is ®tted.

The statistical estimator used is the E-

value E(x, N ) which is de®ned by

E(x, N ) � N :PrfS . xg (13)

where N is the number of sequences in

the searched database.

The composition of the random

sequences used for calibration can be

quite different from the composition of

the subsequences matched by a particular

HMM. For this reason HMMSEARCH

rescores each alignment during a post-

processing step that takes into account

possible biased composition in either the

HMM or the target sequence (the null2

option). The score that is eventually

reported may thus be signi®cantly

different from the score that would have

been produced without this post-

processing step, as for example during the

calibration of the HMM.

The Pfam database21,22 is an annotated

collection of HMMs. The Pfam collection

is currently designed for the automated

annotation of genome data. In that

perspective, it is essential that all false

positives are rejected, even at the cost of

rejecting a few true positives. Several

cutoffs are declared in the header of Pfam

HMMs as can be seen in Figure 10. The

numerical values of these cutoffs were

`manually' set by an expert, based on the

inspection of the list of the matched

proteins. This ensures that false positives

Figure 10: Header of the Pfam hidden Markov model EGF with the
EVD parameters on the last visible line. Note also the three lines that
provide the cutoffs on a per protein (®rst number) or on a per match
(second number) basis

equivalence of HMM
and pro®les
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are ef®ciently rejected, but at the expense

of the signi®cance of the E-value.

Therefore, the E-value produced by Pfam

HMMs should not be trusted too much

when remote homologies are searched

for, as for example when searching for

new genes containing a particular domain.

The empirical calibration procedure

described below is probably better suited

for this task.

Generalised pro®le statistics
The calibration of Prosite pro®les is

empirical: a collection of scores is ®rst

obtained by searching a database of

shuf¯ed real sequences, most often

window20 or reversed (see example in

Figure 12). The best scoring matches,

encompassing about 10 per cent of the

total number of searched proteins, are

®tted with a decreasing exponential,

which is equivalent to the right tail

approximation of the EVD (4). The size

of the search space is de®ned by the

number A of residues in the searched

database. The E-value associated with a

score, ie the number of matches with

scores exceeding x in a database of size A

residues, is given by

E(x, A) � A : 10ÿR1ÿR2x (14)

where R1, R2 are the two parameters that

characterise the right tail of the

distribution.

This de®nition of an E-value is distinct

from the one used by Pfam (13) essentially

because of the different de®nition of the

size of the search space. In practical

applications, these two E-values can be

considered equivalent

E(x, N ) � E(x, A)

and to be valid, their parameters for any x

must satisfy

R1 �
ln

A

N
ÿ ëì

ln 10

and

R2 � ë

ln 10

which reveals the relationships between

the EVD characteristic parameters ë and ì
and the Prosite pro®les empirical

parameters R1 and R2. Note that the ratio

A=N is the average protein length in the

Figure 11: Header of the Prosite pro®le EGF_CA_2. The EVD
parameters are `hidden' in the parameters R1 and R2 (A=n is the average
length of a sequence in the searched database)

Figure 12: Calibration of a generalised
pro®le. The SWISS-PROT database was
searched with the Prosite pro®le EGF_CA_2
and the maximal scoring match was kept for
each protein. The search was also performed
on two randomised databases: scramble with
the same distribution of protein lengths as
SWISS-PROT, but with sequences made of
independently drawn amino acids, and
window20 obtained by random permutation
in windows of 20 amino acids of all the
SWISS-PROT proteins. This particular
pro®le is actually calibrated using window20:
a match with a score of 965 will receive an E-
value of 1 if the searched database is made of
108:5 residues (about ten times SWISS-
PROT)
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searched database. The Prosite pro®le

de®nition of the size of the search space

has one advantage, as it can be applied to

DNA sequence pro®les, where sequence

length is a biologically meaningless

parameter.

E-values do not appear explicitly in the

output of PFSEARCH, but are replaced

by so-called normalised scores. These result

from an af®ne transformation of the raw

score, namely R1 � R2x, and are

comparable in spirit to the `bit score'

produced by the BLAST programs. The

normalised score is independent of the

size of the searched database and is related

to the E-value by (14). For example, a

normalised score of 9.0 correspond to an

E-value of 1 if the searched database

contains 109 residues or it corresponds to

an E-value of 0.01 if the searched

database contains 107 residues.

CONCLUSIONS

Database search algorithms are always

walking a ®ne line between the desire to

maximise sensitivity (ie the probability of

detecting distant homologues) and the

danger of generating meaningless

alignments. It is clear that E-values

produced under conditions where scores

increase linearly with alignment size have

no statistical value whatsoever. It is also

clear that it is not too dif®cult to produce

conditions where this occurs.

The programs currently used to search

the (large) biological databases are under

severe constraints of CPU cost. Because

of these constraints, E-values are not

calculated as ef®ciently as it may be

possible using alternative, but CPU-

expensive techniques. Accurate estimates

of E-values for pairwise alignments may

nevertheless be made possible by recent

improvements in hardware (specialised

processors) and software. The situation is

better with the pro®les and the hidden

Markov models found in databases such as

Prosite or Pfam. These have been

carefully calibrated in advance (or

endowed with an ef®cient system of

cutoffs), before being added to the public

database. This obviously contributes to

the success encountered by these types of

specialised predictors.

The principles presented here are far

from constituting an exhaustive list of all

the techniques used to produce E-values.

We simply hope that this short review

will have pointed out the underpinnings

of the statistical evaluation of database

search results, and can serve as both a

friendly guide and a warning post to those

inclined to explore further the boundaries

of the search parameter space.
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