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Abstract 

We have  compared  commonly used sequence  comparison  algorithms,  scoring  matrices,  and  gap penalties  using 
a method  that  identifies  statistically  significant  differences  in  performance.  Search sensitivity with  either  the 
Smith-Waterman  algorithm or FASTA is significantly  improved by using modern  scoring  matrices,  such  as 
BLOSUM45-55, and  optimized  gap  penalties  instead  of  the  conventional  PAM250  matrix.  More  dramatic  im- 
provement  can be obtained by scaling  similarity  scores by the  logarithm of the length  of the  library sequence (In()- 
scaling). With  the best modern  scoring  matrix  (BLOSUM55  or  5093)  and  optimal  gap penalties (-12 for  the first 
residue in the  gap  and -2 for  additional residues), Smith-Waterman  and FASTA performed  significantly  better 
than  BLASTP.  With  In()-scaling  and  optimal  scoring  matrices  (BLOSUM45 or Gonnet92)  and  gap  penalties 
(- 12, -l),  the  rigorous  Smith-Waterman  algorithm  performs  better  than  either  BLASTP  and  FASTA,  although 
with the  Gonnet92  matrix  the  difference with  FASTA was not  significant.  Ln()-scaling  performed  better  than  nor- 
malization  based on  other simple functions of library  sequence  length.  Ln()-scaling  also  performed  better  than 
scores  based  on  normalized  variance,  but  the  differences were not statistically  significant for  the BLOSUMSO and 
Gonnet92  matrices.  Optimal  scoring  matrices  and  gap  penalties  are  reported  for  Smith-Waterman  and  FASTA, 
using conventional or In()-scaled  similarity  scores.  Searches  with  no  penalty  for  gap  extension, or no  penalty  for 
gap  opening, or an  infinite  penalty  for  gaps  performed  significantly  worse  than  the best methods.  Differences in 
performance between  FASTA and  Smith-Waterman were not significant  when partial  query sequences were used. 
However,  the best performance with complete  query sequences  was obtained  with  the  Smith-Waterman  algorithm 
and  In()-scaling. 
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The  concurrent  development  of  rapid  methods  for  molecular 
cloning,  DNA  sequencing,  high-performance  computer  work- 
stations,  and  rapid  protein  and  DNA  sequence  comparison  al- 
gorithms  has  revolutionized  the  practice of molecular biology. 
Newly determined  sequences  are  routinely  compared  against 
large  sequence  databases,  and  inferences  about  structure  and 
function  are  frequently  based  on sequence  similarity. Predicted 
growth of sequence databases  and  the  advent  of large-scale DNA 
sequencing  projects  have  prompted  increased  interest  in  better 
methods  for  comparing  protein  and  DNA sequences. As a  re- 
sult, several rapid biological sequence  comparison  algorithms 
(Pearson & Lipman, 1988; Altschul  et  al., 1990) have  become 
used  widely, and  there  has been considerable discussion of  the 
best scoring  parameters  for  sequence  comparison  algorithms 
(Collins  et  al., 1988; Karlin & Altschul, 1990; Altschul, 1991; 
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Gonnet et al., 1992; Henikoff & Henikoff, 1992, 1993; John- 
son & Overington, 1993). 

Until  recently, it was  rare  for  descriptions of new algorithms 
and scoring  matrices to  be  supported with a  comprehensive eval- 
uation of the  approach  on a wide range  of  protein sequences and 
superfamilies. Biological sequence comparison  algorithms must 
balance sensitivity- the ability to  calculate  high-ranking scores 
for  distantly  related  sequences - with selectivity - the  ability  to 
calculate low-ranking scores for  unrelated sequences. Sensitivity 
and selectivity may  vary  for  different  protein  families;  the best 
algorithm  or scoring parameters  for  finding  G-protein-coupled 
receptors  may  not  be  the best for  finding  members  of  the he- 
moglobin or serine  protease families (Collins et al., 1988; Alt- 
schul, 1993). 

Here we examine  the  ability  of several sequence  comparison 
algorithms  to  identify  distantly  related  (homologous)  proteins 
by searching  protein  sequence  databases.  The  goal  of  identify- 
ing distant relationships by database search is different from  that 
of  finding  the  most statistically  significant  sequence  similarities 

1145 



I I46 W. R.  Pearson 

(Collins et al., 1988; Altschul, 1991, 1993) or of  finding the most 
accurate  sequence  alignments  (Johnson & Overington, 1993; 
Vingron & Waterman, 1994). Statistical significance may  not 
reflect homology;  unrelated  sequences  may  have statistically 
significant  similarities  due  to  sequence  convergence,  e.g.,  in 
transmembrane  domains or DNA binding domains. Conversely, 
homologous sequences may  not have statistically significant sim- 
ilarity scores. Likewise, the  reference  standard  for  sequence 
alignments - the alignment  of domains of  secondary and tertiary 
structure-may  require a global alignment  strategy and low gap 
extension penalties that  are poorly  suited to searches of  sequence 
databases  that  contain large numbers of unrelated  sequences. 

In an  earlier  paper  (Pearson, 1991), a method  for  evaluating 
different  sequence  comparison  algorithms was introduced  and 
the  performance of FASTA,  BLASTP,  and  Smith-Waterman 
was  examined using query  sequences  from 34 families  of pro- 
tein  sequences. In  that  approach,  one  algorithm (or  scoring ma- 
trix)  was better  than  another i f  it could  identify  more  related 
sequences. “Identification” was operationally  defined as  the abil- 
ity to  calculate  a  similarity score  for a related  sequence that was 
higher  than  the  scores  of all but  0.5%  of  the  unrelated se- 
quences.  This  criterion  was used to  evaluate  the  BLOSUM se- 
ries amino  acid  replacement  scoring  matrices; these matrices 
perform significantly better than the PAM series when used with 
the  BLASTP  and FASTA programs  (Henikoff & Henikoff, 
1992, 1993). 

This  paper  extends  the  earlier  work in four ways:  (1)  A new 
criterion  for  identification,  the “equivalence number,” is intro- 
duced.  The  equivalence  number  summarizes  both  the sensitiv- 
ity and selectivity of a search. (2) Differences  in  performance 
are  evaluated using a nonparametric  statistical  test,  the “sign 
test.”  The sign  test allows us to  conclude  that if BLASTP  per- 
forms  better  than  Smith-Waterman  on 3 1 sequences  but  worse 
on 43, the  difference in performance is not statistically  signifi- 
cant. (3) Conclusions  are  based  on 134 query sequences from 
67 protein  superfamilies. (4) Scoring  matrices  based  on five 
different  data  sets  are  evaluated with  a broad  range  of  gap 
penalties. 

Results 

We have  examined the  performance of the most commonly used 
sequence  comparison  algorithms-  BLAST  (Altschul  et  al., 
1990), FASTA (Pearson & Lipman, 1988), and Smith-Waterman 
(Smith & Waterman, 1981)- by comparing  the ability  of an  al- 
gorithm  to  identify  distantly  related  sequences using a single 
query sequence. Algorithms  and scoring parameters were tested 
using two  query  sequences  from  each of 67  protein  superfami- 
lies. The  query  sequences  and  superfamilies used  in this  study 
are  shown in Table 1. 

A new criterion for search performance- 
The equivalence number 

In our earlier  comparisons, we considered a related  sequence 
“found” if it obtained a score  that  was  higher  than  the  score  of 
the  highest-scoring 0.5% of the  unrelated  sequences  (Pearson, 
1991). For example  (Table  2A),  when  human  rhodopsin 
(OOHU)  was  compared  to  the  augmented PIRl  database with 
the  Smith-Waterman  algorithm  and  the  PAM250  scoring  ma- 

trix,  the highest-scoring unrelated sequence had a local  similar- 
ity score  of 138, and 62 unrelated  sequences (0.5% of 12,219 
sequences in the library) obtained scores  of 67 or higher. Eleven 
members  of  the  G-protein-coupled  receptor  family in the se- 
quence  database  obtained scores  lower than 67; thus, by this  cri- 
terion,  the  Smith-Waterman  algorithm “missed” 11 sequences. 

A more  informative  measure  of  performance-the  “equiva- 
lence number”-is  introduced here. The equivalence number is 
the  number of related  sequences missed at a similarity  score that 
balances  the  number  of  related  sequences below the value and 
the  number  of  unrelated  sequences with scores a t  or above  the 
value, i.e.,  the  score where the  number  of false-positives equals 
the  number of  false-negatives. Thus,  for  the  human  rhodopsin 
sequence OOHU, there were 19 non-G-protein-coupled recep- 
tors with similarity  scores  equal  to  or  greater  than 119 and 19 
G-protein-coupled receptors with scores less than 119 (Table  2A). 
The equivalence number  summarizes both  the sensitivity and  the 
selectivity of a particular  search  and is more  informative  for 
query sequences that  produce a  small number of high scores for 
unrelated  sequences.  In  one  search  with  the  Smith-Waterman 
algorithm, using the  PAM250  matrix with gap penalties  of - 12 
for  the  first  residue  in  the  gap  and -2 (- 12, -2) for  each  addi- 
tional  residue,  the  number of sequences missed  with the equiv- 
alence number criterion was greater than or equal  to  the  number 
missed at  the 0.5% criterion (i.e., the  criterion was as  strict)  for 
all 67 superfamilies  examined  (Table 2B). For this search,  the 
equivalence  number  criterion was as  strict  as a 0.1070 criterion 
for all but five superfamilies. Thus,  the equivalence number pro- 
vides  a much  more  demanding test than  the 0.5% criterion of 
the  performance of different  search  algorithms  and  scoring 
parameters. 

Table 3 shows  the  number of related  sequences missed at  the 
equivalence number  for  three  commonly used search programs: 
BLASTP  (Altschul et al., 1990), FASTA (Pearson & Lipman, 
1988), and  Smith-Waterman  (Smith & Waterman, 1981). Here 
BLASTP’  calculated  similarity  scores  for 35 members of the 
505-member globin  family  that were  lower than or equal  to  the 
scores of 35 unrelated sequences (equivalence number = 35). For 
the  same  query sequence and  protein  database,  the equivalence 
number was 43 for FASTA with ktup = 2. The equivalence num- 
ber was 17 when  FASTA  was performed  with ktup = 1 and  op- 
timized  similarity  scores were calculated (Pearson, 1990). With 
Smith-Waterman, the equivalence number was 16. Thus,  for this 
member  of  the  globin  superfamily,  the  Smith-Waterman  algo- 
rithm  performed  better  than  BLASTP or FASTA, missing only 
16 of 505 members of the  family;  FASTA, with ktup = 2,  per- 
formed  the  worst, missing 43  sequences.  Differences in the per- 
formance  of  FASTA  or  Smith-Waterman  with  respect to 
BLASTP in Table 3 are  indicated by a “+” if FASTA or Smith- 
Waterman performs better than  BLASTP (the equivalence num- 
ber is lower) and “-” if BLASTP  performs  better.  The  pattern 
of +’s and -’s in the  right-most  column  shows  that  Smith- 
Waterman  performs  better  than  BLASTP  on slightly less than 
50% of the  query  sequences (16 of 33 sequences  where  the  per- 
formance is different). 

’ BLASTP  can  rank  library-sequence  similarity  scores  based  on  one 
of three  criteria:  the  expectation  based on sum  statistics  (sum-P,  the  de- 
fault),  the  expectation  based  on  Poisson  statistics  (Poisson-P,  used  in 
earlier  versions),  and  the  score of the  best  high  scoring  segment  pair 
(HSP). Sum-statistics  rankings  were  used in Table 3.  
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Table 1. Sequences examined 

Query1 

HAHU 
K  1 HUAG 
OOHU 
CCHU 
N2KFlU 
XURT8C 
TPHUCS 
OKHU2C 
FEPE 
RKMDS 
K3HU 
HMIVV 
HLHUB2 
IPHU 
CY  BOA 
PSHU 
DEHUGL 
TVHURA 
TRRTl 
GCHU 
PWHUA 
HNNZS 
NRBO 
IVHUI6 
AJHUQ 
AZBR 
VGNZSV 
0 4 H U D l  
VPXRWA 
FOVWH3 
KRHUE 
VHIV34 
W6WL 18 
R6HUP2 
LZHU 
NMIV 
IJHUCN 
P2WL 
NTSRIA 
W7WLHS 
LWBOA 
DEPGLH 
W2WLE 
NKVLAH 
XHHU3 
KIBET 
CFKKA 
MFNZS 
TVHUM 
TYTUY2 
DEHUAA 
ACHUAI 
PWHU6 
QQBE I L 
HSHU I B 
LUHU 
MNIV2K 
CYBOB 
TISYO 
SMHU2 
PEHU 
DJHUAC 
LCHU 
LNHU 1 
VGIHE2 
QRECBD 
UART 

Query2  Description/superfamily 

HBRNW 
K3HU15 
HSSRCPTlF 
ccos 
H3NJIW 
A45567 
PVTFB3 
TVBEPN 
FEWT 
RKRZS6 
MGMSB2 
HMIVC2 
HLCHBL 
IPGP 
CYRTA 
PSSNK I 
DELOG3 
TVBYSR 
KYVH2C 
RHHUS 
PWKMA 
HNNZP3 
NRGPB 
IVH022 
AJECQ 
AZALCX 
VGNZCD 
04CKA3 
A44052 
FOLJFP 
DMHU 
VHIVMI 
W6WL43 
R6BY22 
LAPG 
146347 
IJBODD 
P2WLHS 
AMHB 
W7WLHS 
LWPMA 
DEBSLM 
W2WLE 
NKVLC3 
WMVZF3 
D43675 
AFKTB 
A60004 
TVMVFV 
CLHRY2 
DEPOA2 
ACCH2N 
PWWT6 
VGBE2H 
HSDUIA 
LUJFl2 
MNIV62 
CYMSG2 
TINPA2 
SMMR 
CMSHB 
DJVZ41 
STHU 
WMVZEL 
VGIHD6 
QRECBD 
VART 

Hemoglobin CY@ 
Ig K chain V-I region 
G-protein-coupled  receptors 
Cytochrome c 
Snake  neurotoxin 
Glutathione  transferase 
Calcium  binding  EF-hand 
Protein  kinase,  CAMP-dependent 
Ferredoxin 
Ribulose-bisphosphate  carboxylase 
Ig K chain  C  region 
Hemagglutinin 
Histocompatibility  antigen 
Insulin 
a-Crystallin  chain  A 
Phospholipase  A2 
Glyceraldehyde-3-phosphate  dehydrogenase 
Transforming  protein  (N-ras) 
Serine  protease 
Glucagon  precursor 
H+-transporting  ATP  synthase 
Hemagglutinin-neuraminidase 
Ribonuclease 
Interferon  a-1-6 
Glutamate-ammonia ligase 
Azurin 
Fusion  protein - Sendai  virus 
Cytochrome  P450 
Outer  capsid  protein  VP8 
Gag  polyprotein 
Keratin 
Nucleoprotein - influenza  A 
E6  protein  papillomavirus 
Acidic  ribosomal  protein P2 
Lysozyme 
Exo-a-sialidase 
N-cadherin 
L2  protein  papillomavirus 
Scorpion  neurotoxin 
E7  protein  papillomavirus 
H+-transporting  ATP  synthase 
L-Lactate  dehydrogenase 
E2  protein  papillomavirus 
Core  antigen-  hepatitis  B 
Antithrombin-I11 
Thymidine  kinase 
Phycocyanin 
Matrix  protein 
Transforming  protein  (myc) 
Protamine Y2 
Alcohol  dehydrogenase  a 
lonotropic  acetylcholine  receptor 
H+-transporting  ATP  synthase 
Glycoprotein  B 
Histone H 1 b 
Annexin 1 
Nonstructural  protein  NS2 
&crystallin  chain  Bp 
Proteinase  inhibitor 
Metallothionein 
Pepsin 
DNA-directed  DNA  polymerase 
Prolactin 
Hepatic  lectin  HI 
E2  glycoprotein  precursor 
Vitamin BI2  transporter  btuD - E. coli 
a-2u-Globulin  precursor-rat 

Query  length 

141/146 
108/115 
348/366 
105/104 
74/60 

222/2 1 I 
159/109 
35 1 /390 
54/97 

139/175 
106/119 
567/564 
338/231 
110/110 
173/173 
148/118 
335/333 
189/219 
246/2 18 
I80/ 108 
553/508 
576/572 
124/128 
I89/  I95 
373/469 
129/129 
565/662 
497/523 
280/772 
512/450 
47 1 /469 
4981498 
158/155 
I l5/110 
130/122 
454/466 
906/809 
507/473 
64/ 18 
98/98 
75/81 

3331318 
322/322 
183/188 
464/148 
3761364 
162/161 
348/375 
439/484 

34/30 
375/380 
457/528 
226/386 
857/980 
218/121 
346/316 
121/121 
204/  174 

71/70 
61/25 

388/381 
1,462/1,006 

227/217 
291/143 

1,4471550 
249/249 
181/201 

Family size 

505 
280 
165 
142 
109 
106 
106 
97 
93 
77 
74 
73 
71 
69 
67 
58 
46 
45 
45 
44 
43 
42 
40 
39 
39 
38 
36 
35 
34 
33 
32 
31 
29 
29 
28 
27 
27 
27 
26 
26 
26 
26 
26 
25 
25 
25 
25 
24 
24 
24 
23 
23 
23 
23 
22 
22 
22 
21 
21 
21 
20 
20 
20 
20 
20 
20 
20 
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Table 2. Criteria for  “finding”  a library sequencea 

A. Criteria for “finding” sequencesb 

Related Unrelated 
Criterion missed found Score 

0.0 24 0 138 
0.1 20 13 119 
0.2 17  25 I12 
0.5 I 1  62 67 
Equiv. 19 19 I19 

B. Criterion stringencyC 

Equivalence number More Less 
versus criterion strict Same strict 

0.0 0 42  25 
0.1 20 42 5 
0.2 29 36 2 
0.5 37 30 0 

a Five different criteria for  “finding”  a library sequence are shown. 
The 0.0%,0.1%, 0.2%, and 0.5% criteria define a  library sequence to 
be “missed” if its similarity score is  less than or equal to the score of the 
highest-scoring (0.0) unrelated sequence, the 13th  highest-scoring  related 
sequence (O.I%,  13 = (0.001 x 12,219) + I ) ,  etc. The number of se- 
quences missed at the equivalence number (Equiv.) is also  shown. 

The number of sequences and corresponding similarity scores for 
the five criteria using the human rhodopsin query sequence OOHU with 
the Smith-Waterman function with a PAM250 scoring matrix and gap 
penalties of -12, -2. One hundred sixty-five  of 12,219 library sequences 
are related to this query. 

Comparison of the equivalence number criterion to the fixed per- 
cent criteria for  one query sequence from each of the 67 superfamilies. 

Statistical significance of differences in performance 

The sign test  can  be used to  determine  whether  the  differences 
in performance  for  the  four  algorithms  in  Table 3 are signifi- 
cant.  This  test uses the  binomial  distribution  to  estimate  the 
probability  that  the  distribution  of  differences in the  perfor- 
mance  of  two  algorithms (+’s and -’s in Table 3) would  occur 
by chance.  For  example, when FASTA, ktup = 2 (PAM250  ma- 
trix), is compared  with  BLASTP  with 67 query  sequences, 
FASTA performs  better  (has a lower  equivalence number) with 
only 3 query  sequences  and  performs  worse  with  42  query se- 
quences.  Because  we  are  testing  whether  the  two  methods per- 
form  differently,  the  null  hypothesis is that  each  algorithm 
performs equivalently ( P  = OS), and  one  can calculate the  prob- 
ability  of  obtaining 3 heads  and 42 tails (or 3 tails and  42  heads) 
in 45 tosses  of a fair  coin.  In  this  case, = 45 X 0.5, u = [45 X 

0.5 x (1 - 0.5)]1’2 , so z = (42 - 22.5)/11.251/2 = 5.8. Using 
the  normal  approximation  to  the  binary  distribution,  the  prob- 
ability of  obtaining a z-value of 5.8 or greater with  a  two-tailed 
test is lo-’ and we say that  the  difference  in  performance is 
significant.2 

The statistical  tests  used  in this  report  are conservative. Both 
the use of a  two-tailed test  and  the 21’2 correction  for  duplicate 

For most of the  comparisons in this paper, two sequences from 
each superfamily are examined and u is divided by 2II2 because the 
two observations of the superfamily are not independent. 

samples  tend to underestimate  differences in performance. Thus, 
a scoring  matrix  or  gap  penalty  that  performs  worse with a 
z-value of 1.5 might consistently perform worse on  distantly re- 
lated  sequences.  Conversely,  although a method  that  performs 
significantly  worse  in  these  tests will not  perform worse with ev- 
ery  protein  family, it is likely to  be less effective when examin- 
ing very distant  evolutionary  relationships. 

Table 4 summarizes  z-  and  P-values  for  comparisons of 
BLASTP (version  1.4.7  with the  BLOSUM62  scoring  matrix) 
and  Smith-Waterman  (PAM250, -12, -4) with  a  variety of 
commonly used comparison  methods  and  scoring  parameters. 
The  “sum” statistics used by BLASTP 1.4 perform significantly 
better  than  ranking by the best HSP score.  “Sum”  statistics 
also  perform  better, but not significantly, than  the  older  “Pois- 
son” statistics.  BLASTP/BLOSUM62  performs  significantly 
better than FASTA with ktup = 2 or ktup = 1 and either PAM250 
or BLOSUM62 if optimized  similarity  scores  are  not used to 
rank similarities. BLASTP  performs slightly better than FASTA 
with  optimized  PAM250  scores  and slightly better  than  Smith- 
Waterman with PAM250. FASTA with ktup = 1,  the BLOSUM62 
matrix,  and optimized  scores performs better (but  not  quite sig- 
nificantly)  than  BLASTP/BLOSUM62  and slightly better  than 
Smith-Waterman with PAM250  (Table 4B, bottom row).  A 
graphical  summary of Table 4 is given in Figure 1. In the right 
column, gray bars extending to  the left  beyond -2.0 indicate that 
BLASTP/BLOSUM62 (Fig.  1A) or  Smith-Waterman (Fig. 1B) 
performed significantly better  than  the  comparison  method in 
the left column;  gray  bars  extending  to  the right indicate  that 
the  method on the  left  performed  better  than  BLASTP  or 
Smith-Waterman. 

Improved searches with In()-scaled 
and regression-scaled scores 

When  rigorous  methods  like  the  Smith-Waterman  algorithm 
perform better than  BLASTP or FASTA, one assumes that they 
d o  so because  they  are  more sensitive; rigorous  methods  exam- 
ine every  possible alignment between two sequences.  Likewise, 
when BLASTP  or FASTA performs  as well as  Smith-Waterman, 
one assumes that  the increased selectivity of these  heuristic  meth- 
ods  must  offset  any losses due  to their  decreased  sensitivity. We 
examined  the  highest  scoring  unrelated  sequences in searches 
with several of the  query  sequences  and  found  that  often  the 
highest ranked unrelated sequences were more  than twice as long 
as  the  query sequence. Long  unrelated  library sequences should 
have  higher similarity scores on average simply because there  are 
more possible alignments to  a long  sequence  than  to a short se- 
quence.  Thus, we examined several methods for increasing the 
selectivity of  the  Smith-Waterman  and FASTA algorithms by 
normalizing  similarity  scores with  respect to  the  length of the 
library  sequence. 

We first  examined a very simple scaling factor,  ln(nq)/ln(n/), 
where n, is the length  of the query  sequence and nl is the length 
of  the  library  sequence.  With  this  correction, a raw  similarity 
score of 100 between a 200-residue query sequence and a  1 ,OOO- 
residue  library  sequence  would  be scaled to a score of  77 by 
the  factor ln(200)/ln(1,000) = 0.77. This  correction  has  the 
property  that it both  lowers  the  scores  of  long  unrelated se- 
quences  and raises the  scores  of  short  related (or unrelated) se- 
quences.  It  may  be  appropriate  to  increase  the  scores of partial 
amino acid  sequences that  are very similar to  the  query sequence 
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Table 3.  Library search sensitivitya 

- 

HAHU 
K 1 HUAG 
OOHU 
CCHU 
N2KFlU 
XURTIC 
TPHUCS 
OKHU2C 
FEPE 
RKMDS 
K3HU 
HMIVV 
HLHUB2 
IPHU 
CYBOA 
PSHU 
DEHUGL 
TVHURA 
TRRTl 
GCHU 
PWHUA 
AJHUQ 
AZBR 
04HUDl 
VPXRWA 
FOVWH3 
KRHUE 
VHIV34 
W6WL18 
R6HUP2 
NMlV 
NTSRIA 
WlWLHS 
LWBOA 
DEPGLH 
XHHU3 
KlBET 
CFKKA 
MFNZS 
TYTUY2 
DEHUAA 
ACHUAl 
PWHU6 
HSHUlB 
LUHU 
MNIV2K 
CYBOB 
TISYO 
SMHU2 
DJHUAC 
LNHU I 
VGIHE2 
QRECBD 
UART 

Superfamily 

Hemoglobin 
Ig K V region 
G-protein  CR 
Cytochrome c 
Snake  neurotoxin 
Glutathione  transferase 
Calcium binding 
Protein kinase 
Ferredoxin 
Ribulose-bisphosphate  carboxylase 
Ig K C region 
Hemagglutinin 
Histocompatibility Ag 
Insulin 
a-Crystallin 
Phospholipase A2 

Transforming  protein  (N-ras) 
Serine protease 
Glucagon  precursor 
H+-transporting  ATP  synthase 
Glutamate-ammonia ligase 
Azurin 
Cytochrome  P450 
Outer capsid VP8 
Gag  polyprotein 
Keratin 
Nucleoprotein 
E6 protein 
Acidic ribosomal  P2 
Exo-a-sialidase 
Scorpion  neurotoxin 
E7 protein 
H+-transporting ATP synthase 
L-lactate DH 
Antithrombin-I11 
Thymidine kinase 
Phycocyanin 
Matrix  protein 
Protamine Y2 
Alcohol  DH 
Acetylcholine receptor 
H+-transporting  ATP  synthase 
Histone HI b 
Annexin 1 
Nonstructural NS2 
0-Crystallin 
Proteinase  inhibitor 
Metallothionein 
DNA polymerase 
Hepatic lectin HI 
E2 glycoprotein 
Vitamin B12  btuD 
a-2u-globulin 

G3-PDH 

Family 
size 

505 
280 
165 
142 
109 
106 
106 
97 
93 
I1 
14 
73 
71 
69 
61 
58 
46 
45 
45 
44 
43 
39 
38 
35 
34 
33 
32 
31 
29 
29 
21 
26 
26 
26 
26 
25 
25 
25 
24 
24 
23 
23 
23 
22 
22 
22 
21 
21 
21 
20 
20 
20 
20 
20 

Related -missed/unrelated - found 
- 

BLAST ktup = 2 
ktup = 1 

opt 

35 
54 
27 
25 
3 
8 
8 

54 
53 
0 

22 
1 
2 
3 
7 
2 
0 
1 

16 
5 
2 
1 

21 
1 
0 
2 
4 
0 
0 
5 
0 
4 
1 
1 
3 
0 
0 
0 
0 
2 
0 
0 
2 
2 
4 
2 
0 
2 
5 
1 
4 
0 
4 
9 

z-value 
p-value 

43 - 
100 - 
42 - 
29 - 

20 - 
5 -  

17 - 
52 + 
54 - 

1 -  
26 - 
4 -  

15 - 
3 

2 
8 -  

1 -  
1 

14 + 
12 - 

I +  
10 - 
21 

8 -  
I -  
3 -  
5 -  
I -  
1 -  
6 -  
3 -  
8 -  
5 -  
3 -  

13 - 
4 -  
1 -  
2 -  
8 -  
2 
2 -  
2 -  

2 
9 -  

4 
2 
1 -  
2 
6 -  
3 -  

11 - 
1 -  

11 - 
13 - 

3  +/42 - 

5.81 
10-8 

17 + 
17 + 
26 + 
21 - 
4 -  
8 
7 +  

37 + 
53 
0 

18 + 
O +  
I +  
3 
4 +  
2 
1 -  
1 

12 + 
13 - 
O +  
1 

22 + 
4 -  
1 -  

4 
3 -  

0 
0 
2 +  
1 -  
5 -  
O +  
2 -  
3 
1 -  
1 -  
0 
0 
2 
0 
0 
4 -  
2 
4 
2 
0 
2 
5 
1 
1 -  

4 
1 -  

I +  

15 +/I5 - 

0 
1 

Smith-Waterman 

16 + 
21 + 
22 + 
27 - 
4 -  
8 

11 - 
31 + 
53 
0 

16 + 
O +  
O +  
3 
4 +  
2 
1 -  
1 

12 + 
14 - 

O +  
1 

22 + 
2 -  
1 -  
3 -  
4 
0 
0 
2 +  
1 -  

O +  
5 -  

2 -  
1 +  
1 -  

0 
1 -  

0 
2 
0 
0 
7 -  
2 
4 
2 
0 
I +  
5 
2 -  
8 -  

4 
1 -  

6 +  

16 + / I 7  - 

0.17 
0.86 

a The  number of related sequences missed (the equivalence number)  for 67 query sequences with four different  comparison 
algorithms is shown.  Where  shown, + or - indicates  the relative performance with respect to BLASTP (version 1.4.7 with 
BLOSUM62 scoring  matrix;  sum-statistics  P-values were used to rank scores). FASTA and  Smith-Waterman  algorithms used 
the  PAM250  matrix with gap penalties of -12, -4. Numbers  at  the  bottom  of  the  table  summarize  the relative performance 
of the  different  algorithms with respect to BLASTP. The z-values and  P-values were calculated as described in the  text. 
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Table 4. Comparison of commonly used search algorithms 

Algorithm + -  f Z  P Missed 

A. BLASTP,  BLOSUM62, sum-P versusa 

BLASTP  HSP 18 43 108 2.3 
Poisson-P 12 26 119 1.6 
FASTA, kfup = 2 5 84 68 5.9 

(opt) 31  35 96 0.35 

(opt) 29 24 103 0.49 
FASTA, kfup = 1 10 59 89 4.2 

(opt) 29 31 104 0.18 
BLOSUM62 10 50 102 3.7 

(opt) 37  17 108 1.9 

BLOSUM62 5 75 78 5 . 5  

B. Smith-Waterman  PAM250,  -12,  -4  versusb 
BLASTP, sum-P 33 29 102 0.36 
HSP 29 44  94  1.2 
Poisson-P 25 40 105 1 .3  
FASTA, kfup = 2  4 82 68 5.9 

BLOSUM62 10 75 75 5.0 
(opt) 22 23 106 0.11 

(opt) 33 34 95 0.09 

(opt) 15 12 122 0.41 

(opt) 37  27 105 0.88 

FASTA, ktup = 1 8  60 82 4.5 

BLOSUM62 21 48 90  2.3 

0.024 
0.11 

10-8 

10-7 

10-5 

10-4 

0.73 

0.63 

0.86 

0.054 

0.72 
0.21 
0.19 

10-9 
0.92 

0.93 
10-5 
0.68 
0.022 
0.38 

933 
943 

1,415 
832 

1,305 
86 1 

1,120 
804 

1,006 
807 

885 
933 
943 

1,415 
832 

1,305 
86 1 

1,120 
804 

1,006 
807 

a Comparison of BLASTP  1.4.7  with  probabilities  based on “sum” 
statistics  (sum-P)  to  BLASTP  HSP  scores,  BLASTP  “Poisson”  prob- 
abilities  (Poisson-P),  FASTA,  and  Smith-Waterman.  The  numbers of 
query  sequences  where  the  alternative  matrices or algorithms  perform 
better or worse  than BLASTP with BLOSUM62 are  shown.  In  addition, 
the  numbers of query  sequences (of 134 total)  where  the  equivalence 
number  differs  by 1 or less (k), the z-values, and  the  P-values  are  shown. 
The z-values  shown  here are  also  plotted  in  Figure 1. The “Missed”  col- 
umn  reports  the  total  number of related  sequences missed at  the  equiv- 
alence  number  with  all 134 query  sequences; if every  related  sequence 
were missed, this value would be 7,094 (3,547 related sequences x 2  query 
sequences  from  each  family). 

Comparison of Smith-Waterman with the PAM250 matrix  and  gap 
penalties of -12,  -4. 

(>8O% identical  over 10-15 residues) but  too  short  to  produce 
a highly ranked  score.  Ln()-scaling  considerably  improves  the 
effectiveness of both FASTA and Smith-Waterman.  Ln()-scaled 
optimized FASTA scores  with  either ktup = 2 or ktup = 1 per- 
form significantly better  than unscaled Smith-Waterman scores 
(Fig.  2A). However, In()-scaling  significantly improves  the  per- 
formance  of  Smith-Waterman scores as well; with  In()-scaling, 
none of the  other algorithms,  including BLASTP  and In()-scaled 
FASTA,  perform  as well as In()-scaled Smith-Waterman. 

The excellent performance  of In()-scaled scores is not  pre- 
dicted by current statistical  theory for local alignment scores (Ar- 
ratia et al., 1986; Karlin & Altschul, 1990; Mott, 1992). For local 
similarity  scores, the  mean scores for  two  random sequences  of 
length m and n is predicted to  increase  as  In(mn),  whereas  the 
variance  of the local similarity scores is independent  of the length 
of  the  two  sequences.  Thus,  scores  should  be  corrected by sub- 
tracting a factor  related  to  In(n,),  rather  than by dividing by 
that  factor.  This was confirmed indirectly by experiment; when 
the performances  of  PAM250,  BLOSUM45, 50, 5 5 ,  and 62 were 
examined with infinite  gap penalties, which ensures  local  behav- 

ior,  there was no significant  difference between the unscaled and 
In()-scaled scores  (data  not  shown  and Fig. 5 ) .  However,  Mott 
(1992) has  observed  that  for  PAM250  matrix  and  gap extension 
penalties less than 4 (e.g.,  the -2 used extensively in this study), 
the alignments produced between random sequences  extend far- 
ther  than would be expected for a purely local  alignment. Thus, 
he suggested that  commonly used search  parameters  may  pro- 
duce  alignments  that  have a more  global  than  local  character. 
As  the  alignment ceases to  be  local,  the  variance of the  similar- 
ity score becomes a function of the length  of the two  sequences. 
P. Green  (pers.  comm.)  has suggested that In()-scaling  partially 
corrects  for  sequence length variance  of similarity  scores  of un- 
related sequences. 

To  test  whether  In()-scaling  was  simply  correcting  for 
sequence-length-dependent  variance, searches with a “regression- 
scaled”  score  that  removes  this  dependence were examined. 
Regression-scaled scores  perform  significantly  better  than  un- 
scaled Smith-Waterman  scores (Figs. 3A, 4B), but  they do  not 
perform  as well as In()-scaled scores  (Fig. 3B) for  most  matri- 
ces and  gap  penalties (Fig. 4). This was unexpected,  therefore 
we examined  the possibility that  partial  sequences in the  PIRl 
library that  are related to  some of the  query sequences  might fa- 
vor In()-scaling. Regression scaling would not increase the scores 
of  such  short  partial  sequences,  whereas  the In()-scaled score 
would.  The search programs were modified  to  ignore all library 
sequences shorter  than  25,50, or 75 residues (excluding 105,426, 
and  1,016  sequences, respectively) and tests with BLOSUM45 
-10,  -2 and -12, -1 were run.  Ln()-scaled  scores  performed 
significantly  better  than regression-scaled scores in each test 
when short  library  sequences were  excluded (data  not  shown). 

Alternatively,  because the superfamily data set used for these 
studies  contains  many  sequences  that  should  share  global se- 
quence  similarity,  the In()-scaling may simply be providing  a  cor- 
rection  for  differences  in  sequence  length. If so, global  scoring 
algorithms  might  perform even better  than  Smith-Waterman. 
The Smith-Waterman  algorithm with In()-scaling was compared 
with a global comparison  algorithm (Myers & Miller, 1988) that 
either penalized end-gaps or did  not (Fig. 3). Global  alignment 
scores that  did  not penalize end-gaps  and used the PAM250 ma- 
trix  with  gap penalties  of - 12,  -2 performed  better  (although 
not significantly) than unscaled  Smith-Waterman  scores. Other 
gap penalties,  ranging from -8, - 1 to -12, -4 did  not  perform 
as well as  Smith-Waterman scores with PAM250 -12, -2 (data 
not  shown). We also examined the relative performance of  In()- 
scaling and regression-scaling with  partial  sequences (Fig. 6). 
Lacking  theoretical  justification  for In()-scaling,  several alter- 
native  correction factors were examined. Ln()-scaling performs 
significantly  better  than scaling based  on  the  ratio of the se- 
quence  lengths, or the  square  root of that  ratio (Fig.  3). Ln()- 
scaling  performs  significantly  better  than  either  the  global 
alignments or any of the simple alternative scaling functions  and 
better  than regression-scaling  with many  scoring  matrices. 

Comparison of scoring matrices and gap penalties 

The  PAM250  scoring  matrix  (Dayhoff  et al., 1978), which is 
used widely for  protein  sequence  comparisons, is more  than 15 
years  old  and is based on 1,572 amino  acid  substitutions  from 
a database of about 120,000 residues in 1,100  sequences. Today, 
the  protein  databases  include  >30,000 sequences and > I O 7  res- 
idues.  In  the  past 4 years, several groups  have  described  matri- 
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z-value 

ces  based on  modern  protein  sequence  databases, a number  of 
which appear to differ  substantially  from  PAM250. We exam- 
ined the PAM250 (Dayhoff et  al., 1978) matrix and several mod- 
ern  matrices,  including 5093  (Johnson & Overington, 1993), 
which  was  derived  from  comparing  structural  alignments, 
Gonnet92  (Gonnet et al., 1992), which was derived from  an “all- 
versus-all” comparison  of a protein sequence database,  and  two 
families of matrices,  the  BLOSUM  family  (Henikoff & 
Henikoff, 1992) and a modern  version  of  the  PAM  matrices 
(Jones et al., 1992). Because current  statistical  theory  does  not 
provide any guidance for  the selection of  gap penalties  (Altschul, 
1991),  a range  of  gap  penalties  from -6, -1 to -16, -4 was 
tested for  each  matrix (Fig. 4). 

With  conventional  (unscaled)  Smith-Waterman  scores,  the 
best performance is obtained with the  BLOSUM55,  matrix  and 
gap penalties of -12, -2. BLOSUM55 (-12, -2) performs sig- 
nificantly  better  than  the widely used PAM250  matrix  at every 
gap  penalty except  -16, -2, where  the z-value was 1.9. The 
5093 matrix and  the  JTT160  and  JTT200 matrices with gap pen- 
alties  from -10, -4 to -16, -2 (5093) or -14, -2  (JTTZOO) 
also  perform  as well as  BLOSUM55 (-12, -2). JTT250  and 
JTT320  perform  significantly  worse  than  BLOSUM55 (-12, 
-2) at every gap  penalty  examined.  The BLOSUM45-50 and 
BLOSUM62.3  matrices  (Fig. 4B) performed  almost  as well as 
BLOSUM55, with gap penalties ranging  from -12, -2 to -16, 
-2. Two  versions of the  BLOSUM62  matrix were examined: 
BLOSUM62.5, which is the  default matrix for  the  BLASTP  pro- 
gram  and  has  substitution values  scaled  in  1/2-bit units  (Alt- 

0 2  

Fig. 1. Performance of commonly used sequence  compar- 
ison  algorithms. A: Comparison of BLASTP  (version 
I .4.7; see Table I )  with  the FASTA (Pearson & Lipman, 
1988) and  Smith-Waterman  (Smith & Waterman, 1981) al- 
gorithms. FASTA and  Smith-Waterman searches were per- 
formed with the  PAM250  scoring  matrix  and  gap penalties 
of - 12 for  the first residue in the  gap  and -4 for  each  ad- 
ditional  residue in the  gap. FASTA comparisons were run 
with krup = 2 ( k  = 2) and krup = 1 ( k  = I ) ,  with  (opt)  or 
without  ranking by optimized  scores (see Materials  and 
methods) using either  the  PAM250  (P250)  or  BLOSUM62 
matrix.  BLASTP  provides  three  different  scores  for  rank- 
ing library  sequences,  probabilities  based  on  “sum  statis- 
tics” (Karlin & Altschul, 1993; sum-P),  probabilities based 
on  Poisson  statistics  (Poisson-P), or  the single best high 
scoring  segment  pair  score (HSP).  Open  bars  indicate  the 
number of query  sequences  (two  queries  per  superfamily) 
where  performance  with  BLASTP was better  than  perfor- 
mance with thealgorithm  indicated.  Dark  bars  indicate  the 
number of queries  where  the  other  algorithm  performed 
better.  Gray  bars  indicate  the  difference in the  performance 
of the  two  algorithms. The right column  shows  the  z-value 
for  the  relative  performance  of  the  algorithms.  z-Values 
greater  than I .96 are statistically  significant  at  the 0.05 
level. The P-values associated with these z-values are shown 
in Table 4. The  P-values  associated  with  z-values of I ,  2, 
3,  4,  and 5 are 0.32,  0.046, 0.0027, 6 x IO-’, and 6 x 
IO”,  respectively. B: Performance  compared  with  the 
Smith-Waterman  algorithm,  PAM250  matrix,  gap  penal- 
ties of -12, -4. 

schul, 1991), and BLOSUM62.3, which has entries scaled in the 
1/3-bit units used by BLOSUM45-55.  The  BLOSUM62.5  ma- 
trix performed as well as BLOSUM62.3 and  the  other BLOSUM 
matrices when  low gap penalties  (-6, -4  and -8, -2) were 
used;  when  BLOSUM62.3 was examined,  optimal  gap penalties 
were in the  same  range  as  the  other 1/3-bit  scaled BLOSUM 
matrices. 

When  In()-scaled  Smith-Waterman  scores  are  used,  the best 
performance is obtained with the BLOSUM45 or the  Gonnet92 
matrices  and  gap  penalties of -10, -2,  -12, -1, or -12, -2 
(Fig. 4A,B).  The  5093  and  JTT250  (data  not  shown)  matrices 
performed  poorly  at every gap  penalty;  PAM250  performed 
poorly except at - 10, -2, -12, -2, and -14, - 1, where  the 
differences were not statistically significant. Equivalent perfor- 
mance is obtained with BLOSUM45-62.3 and with BLOSUM62.5 
i f  low gap  penalties  are  used. 

Figure 4 also  compares  performance with  regression-scaled 
scores to performance  with  unscaled  or  In()-scaled  scores. 
Regression-scaling significantly improves the  performance of al- 
most every  unscaled scoring  matrix  and  gap  penalty  combina- 
tion. In general, regression-scaled scores performed significantly 
worse than In()-scaled scores; however, with the  Gonnet92  ma- 
trix and several gap  penalties  and  the BLOSUMSO matrix  at 
-12, - I ,  the  differences were not statistically significant. We 
show below that when partial  sequences  are  used, regression- 
scaling is as  effective as In()-scaling (Fig.  6). 

We also  examined  the  effect  of  adding a constant value  of 
+ 1, +2, - 1, or -2 to  each  entry in the  PAM250  and  Gonnet92 
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matrices  (data  not  shown).  Vingron  and  Waterman (1994) have 
suggested that  adding a  small  positive  value to the  PAM250  ma- 
trix  improves the robustness of some alignments. This is not  true 
for  similarity  searches.  For  the  PAM250  matrix, -12, -2, and 
unscaled  scores,  each  offset  produced  significantly  worse  per- 
formance  (data  not  shown).  This  was  also  true with  In()-scaled 
scores with the exception  of an  offset  of -1, where performance 
was  worse  but  the  difference  was  not  significant  at  the 0.05 
level ( z  = 1.2). When + I  and  +2 were added, z-values of -7 
were obtained with PAM250.  This  dramatically lower perfor- 
mance  for  “biased”  scoring  matrices is consistent  with  the in- 
terpretation  of a scoring  matrix  as  resulting  from  target values 
for  substitution  frequencies  (Altschul, 1991, 1993). From  this 
perspective,  an  offset in the  scoring  matrix  implies a dramati- 
cally different  expectation  for  the  number  of  substitutions.  The 
same  results were found  with  the  Gonnet92  matrix;  offsets  of 
-2. . . +2  significantly  decreased  performance. 

Penalties  of  the  form q + rk where r = 0 (- 12,O;. . . ; -28, 
0) performed  dramatically  worse  than  any  of  the  affine  costs, 
presumably  because  they allow  very long  gaps  to  improve  the 
scores  of  unrelated  sequences (Fig. 5 ) .  Likewise, penalties  that 
charged a constant  value  for  each  residue in a gap (q  = 0, e.g., 

Fig. 2. Improved  performance  with  In()-scaling.  The  rela- 
tive  performance of the indicated  algorithms is plotted  as in 
Figure I .  A: Searches  are  compared to the  standard  Smith- 
Waterman  algorithm,  using PAM250, -12, -4. R: Compar- 
ison  with  Smith-Waterman, PAM250,  -12,  -2, In()-scaled 
scores.  The  S-W P250 and  S-W P250 (In)  rows  indicate 
searches with gap penalties  of -12, -4. FASTA searches used 
the PAM250 scoring  matrix  and  gap  penalties of -12, -4. 
BLASTP searches  used  the BLOSUM62 matrix.  With  the ex- 
ception  of  S-W P250 -12, -4, In(), all  the  methods  perform 
significantly  worse  than  Smith-Waterman, PAM250,  -12. 
-2 ,  In()-scaling. 

-7,  -7; -6, -6) perform  significantly  worse  than  the best af- 
fine penalties (-12, -2) with unscaled Smith-Waterman scores 
when the BLOSUMSO or BLOSUM62.5 matrices were used 
(similar results were obtained with Gonnet92  and PAM250, data 
not  shown).  With In()-scaled scores, constant  gap penalties per- 
form  almost  as well as  affine  penalties with the BLOSUMSO 
and  BLOSUM62.3  matrices.  However,  constant  gap penalties 
do  not  perform  as well as  the best matrix  and  gap penalties 
(BLOSUM45, -12, -1) for In()-scaled Smith-Waterman scores 
(Fig. 5B). The  recommended  scoring  matrix  and  gap penalties 
(with q = 0) for  BLITZ  (mpsearch,  Sturrock & Collins, 1993) 
were also examined (data  not shown). BLITZ uses the  PAM se- 
ries of  scoring  matrices  and  gap  penalties  from -6,  -6 for 
PAM300 to -13, -13 for PAM120. In every case,  the  constant 
penalty per residue  performed  worse  than  affine penalties, al- 
though  for  some matrices and  gap penalties, the differences were 
not  significant. 

Figure 5 also  presents  comparisons  of  searches with r = 
10,000 = 03 and  the  three  scoring  methods used by BLASTP. 
Searches with r = 03 with Smith-Waterman perform significantly 
worse  than  affine  penalties  (Fig.  5A,B)  and  about  the  same  as 
BLASTP  HSP  scores (Fig. 5C).  Thus,  the  heuristic  approach 
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used by BLASTP  does not miss significant HSPs.  The new sum- 
statistics-based BLASTP scores perform significantly better than 
HSP scores  but not significantly better  than  the earlier Poisson 
statistics-based scores;  thus, several HSPs must be combined  to 
identify  the  most  distant  relationships.  However,  none of the 
BLASTP  scores  performed  as well as  either unscaled or In()- 
scaled Smith-Waterman  scores when optimal  matrices  and  gap 
penalties are used (Fig. 5 ,  filled symbols).  Thus,  the  coarse seg- 
ment  combination  approach used by BLASTP is not  as  effec- 
tive as  allowing  gaps in alignments. 

Performance with partial length queries 

To test whether  the unexpectedly good  performance In()-scaled 
scores reflect the  “global”  nature  of  the  superfamily  query se- 
quences in the test data  set,  searches were performed with ran- 
dom  portions of the  query  sequences.  Two  libraries  of  partial 
query  sequences were constructed:  one  that simply  selected  a 
random  subsequence of each  query  sequence,  such  as  might  be 
found in an  EST  sequencing  project,  and a second  that  embed- 
ded  that  partial  sequence in a random  sequence with the  same 
local amino acid composition  as  one  of  the  other  query sequences 
(see Materials  and  methods).  The  embedded  partial  query se- 
quences  have  only local sequence  similarity  to  the  entries in the 
P lRl  library  and  should  provide a  facsimile of sequences  pro- 

Fig. 3. Alternative  normalization  functions. The In()-scaling nor- 
malization was compared  with  BLASTP  scores,  global  alignment 
scores  (global, global-O), regression scaled scores (regress.), the  ra- 
tios of the  lengths (n4/n,), and  the  square  root of that  ratio 
(sqrt()).  Global  alignment  scores  were  calculated  with  (global)  or 
without (global-0) penalties for  terminal  gaps  (the  terminal  gap pen- 
alty  was  the  same  as  the  internal  penalty).  Smith-Waterman 
searches  were  done  with  PAM250  and  gap  penalties of -12, -2 
unless noted.  BLASTP  searches used the  BLOSUM62  scoring  ma- 
trix.  Searches  with  different  normalization  factors  are  compared 
with: (A) comparison  with  Smith-Waterman,  PAM250, -12, -2; 
(B) In()-scaled  scores  from  Smith-Waterman,  PAM250, -12, -2; 
(C) regression-scaled  scores  (Smith-Waterman,  PAM250, -12, 
-2). Numbers of families for  the n,/n,  normalization  rows  are 
truncated: in A, n4  /n, performed  worse  for 128 families  (z-value = 
-7.8); in B, 133 (z = -8.2); and in C, 131, (z = -7.9). 

duced by exon-shuffling events. Because the flanking  sequences 
have  strong  compositional  similarity  to  other  large families in 
the  database,  searches with this  second  library  are  much  more 
challenging. The difference is quite  dramatic; with the complete 
query  sequence  data set of 134 sequences,  only 528 library se- 
quences fall  below the  equivalence  point with the best search 
parameters  (BLOSUM45, -12, -1 ,  In()-scaled  scores). In con- 
trast, when embedded-partial  sequences are used with In()-scaled 
scores  and  the best search  parameters (BLOSUMSO, -12, -2) 
misses almost  three times as  many  library sequences (1,452, z = 
6.2). With  partial  but  not  embedded  sequences,  the best per- 
forming matrix and  gap penalties miss 1, I 17 sequences ( z  = 5.4). 

When  embedded-partial  query  sequences  are  used,  the best 
Smith-Waterman performance is obtained with higher gap pen- 
alties  than seen with  full-length query  sequences;  for unscaled 
scores,  gap  penalties  of -14, -4 to  -16,  -2 are  optimal with 
the BLOSUMSO scoring  matrix (Fig. 6A).  When  either regres- 
sion  scaling or In()-scaling is used,  changes  in gap penalties  have 
a less dramatic  effect  on  performance  (Fig. 6B,C). This is con- 
sistent  with the  hypothesis  that In()-scaling and regression- 
scaling reduce  the  scores  of  unrelated sequences;  several partial 
embedded  query  sequences  have very high scores with “un- 
related”  library  sequences  because  of  compositional similarity 
in the  flanking  sequence.  BLASTP  searches, even  using “sum” 
statistics, do not perform  as well as In()-scaled Smith-Waterman 
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Fig. 4. Scoring  matrices  and  gap  penal- 
ties. Performance of (A) PAM250, 5093 
(Johnson  &Overington, 1993), Gonnet92 
(Gonnet  et  al., 1992), and JTT160-200 
(Jonesetal.,  1992),and(B)BLOSUM45- 
62  (Henikoff & Henikoff,  1992)  are 
compared  using  gap  penalties  from  -6, 
-1 to -16, -4. In each  set  (A, B) of 
four  graphs,  those on the  left  compare 
the  indicated  matrix  and  gap  penalty 
combination with BLOSUM55, -12, -2 
using  unscaled  Smith-Waterman  scores 
and  those on the  right  compare  the  indi- 
cated  matrix  and  gap  penalty  with 
BLOSUM45,  -12, -1 using  In()-scaled 
Smith-Waterman  scores.  For  each set 
(A, B) of four  graphs,  the  bottom  two 
compare  the  performance  of  regression- 
scaled similarity scores to either unscaled 
(left)  or In()-scaled (right) scores.  Perfor- 
mance  with  two  different  BLOSUM62 
matrices is shown;  BLOSUM62.5 is the 
standard  BLOSUM62  matrix  used  with 
BLASTP  with  entries  scaled  in 112 bits 
of  information  per  residue  (Altschul, 
1991).  The  BLOSUM62.3  matrix is 
scaled in 1/3-bit  units,  as  are  the  other 
three  BLOSUM  matrices. 
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A Smith-Waterman,  unscaled, -12, -2 vs 

-U BLOSUM50 

-C- BLOSUMBP 

t BLOSUMBO 

B Smith-Waterman, In()-scaled, -12, -1 vs c BLASTP 

scores. For unscaled and regression-scaled scores, the  difference 
in performance is not  significant when “HSP”  scores  and  the 
BLOSUM62  matrix is used. There is no significant  difference 
in the  performance  of In()-scaled or regression-scaled Smith- 
Waterman scores when partial query sequences are used (Fig. 4D), 
but  both regression-scaled and In()-scaled Smith-Waterman 
scores perform significantly better than unscaled scores (data  not 
shown). 

Searching with FAST’ 

We compared  the  performance of FASTA with ktup = 1 and  op- 
timized  scores to  Smith-Waterman  with  optimal scoring matri- 
ces and  gap  penalties using either  full-length or partial  query 
sequences  (Fig. 7). When  unscaled  scores  are used to  rank  the 
sequences,  FASTA  performs  as well as  the  best  Smith- 
Waterman  searches when the  5093,  JTT160, or several BLO- 
SUM  matrices  are  used.  When In()-scaled scores  are used for 
the  searches, FASTA performs significantly worse  than  Smith- 
Waterman  for  most  matrices.  However,  searches  with  the 
Gonnet92  matrix  and In()-scaled scores  performed  as well with 
FASTA  at  several  gap  penalties  as  with  Smith-Waterman 
(BLOSUM45  and -12, -1). 

FASTA with optimized  scores  and  optimal  matrices  and  gap 
penalties  performed  significantly  better  than  BLASTP.  With 
ktup = 1, unscaled  optimized  scores, and  the  5093  matrix (- 12, 

Fig. 5. Other  gap  penalties.  Performance of BLOSUMSO 
and BLOSUM62.5  matrices  with  gap penalties of (A) -12, 
-2  (unscaled  Smith-Waterman) or (B) -12, -1 (In()- 
scaled  Smith-Waterman) is compared  with  gap  penalties 
of - w ,  -a (inf); -12, 0; -16, 0; -20, 0; -24, 0; -28, 
0; -7,  -7; and  -6,  -6. For the  open  symbols,  the  same 
matrix is used for  each series of  comparisons;  thus,  the per- 
formance  of BLOSUMSO with gap penalties  of -7,  -7 is 
compared  to BLOSUMSO with  -12, -2 (A) or -12, - 1  
(B),  and  BLOSUM62  gap  penalties  are  compared  with 
BLOSUM62.3,  -12, -2 (A) or -12, -1 (B). (BLASTP 
searches used the  default  BLOSUM62.5  scoring  matrix.) 
Filled symbols  report  performance  with  respect  to  Smith- 
Waterman BLOSUM55 unscaled (A) or BLOSUM45, In()- 
scaled (B). Also  included is a  comparison  of  unscaled  and 
In()-scaled  (inf/inf(ln))  searches  (A)  and  a  comparison  of 
In()-scaled Smith-Waterman to  BLASTP  sum-P,  Poisson- 
P, and  HSP scores (A, B). C: Searches  using  BLASTP 
sum-P,  Poisson-P,  and  HSP  scores  are  compared  with 
Smith-Waterman, -a, -w, and  searches  using  the  other 
two  BLASTP scores. When  two  search  algorithms  are 
shown  on  the  column  labels, e.g., inf/inf(ln)  (A) or sum- 
P/inf (C), a  negative  z-value  indicates  that the  second 
method  performed  worse  than  the  first.  Thus,  BLASTP 
with HSP  scores  performed  significantly  worse  than 
BLASTP  sum  statistics  (sum-P/HSP)  when  BLOSUM62 
was  used. 

-2 or -14, -2), z = 2.2  was  found  for  BLASTP  “sum-P” 
scores  and  BLOSUM62;  “Poisson-P”  and HSP scores  per- 
formed  worse.  With  FASTA  using BLOSUMSO, -12, -2, 
ktup = 1,  and  optimized  scores,  BLASTP  “sum-P”  scores  had 
z = 2.6;  with In()-scaled optimized FASTA scores, z = 3.7. 

Surprisingly, FASTA  searches  with ktup = 2,5093,  -12, -2 
or -14,  -2, and  unscaled  optimized scores performed  as well 
as  Smith-Waterman  with  BLOSUM55 ( z  = 1.3, P < 0.2) while 
running 12 times  faster.  The best performance with  FASTA 
required  the  calculation  of  optimized scores (a limited Smith- 
Waterman  optimization  through a  32-residue-wide band cen- 
tered on  the best initial  region  without  gaps); performance using 
the initn or initl scores  was  significantly  worse.  For  the  data 
shown  here,  optimized  scores were calculated for  about one-half 
of  the  sequences in the  database; when optimized  scores were 
calculated  for every sequence,  performance  did  not  improve 
significantly. 

When  embedded  partial  query  sequences  are  used, FASTA 
performs  as well as  Smith-Waterman with both  unscaled  and 
In()-scaled  scores  are used (Fig. 7C,D). When  unscaled  opti- 
mized  FASTA scores  are  used, BLOSUM62.5 is one  of  the best 
matrices  over a wide range  of  gap  penalties.  Henikoff  and 
Henikoff (1993) reported  the  same result for a different set of 
test sequences. When In()-scaled  scores are used with partial se- 
quences,  many  BLOSUM  matrices  perform well; BLOSUMSO, 
-12,  -2, is the best performer. 
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Fig. 6. Searches  with  partial  sequences. A random  portion (-70 residues)  of  each  query  sequence was embedded  in  the  middle 
of - 100 residues of randomly  shuffled  sequence  and  used  to  search  the  database.  Comparisons  with BLOSUMSO and  the 
indicated  gap  penalties  are  shown. A: Results  with  unscaled  scores;  comparisons  to  Smith-Waterman, BLOSUMSO, - 14, -4. 
B: Ln()-scaled  scores;  comparisons  to  Smith-Waterman, BLOSUMSO, -12,  -2. C: Regression-scaled  scores;  comparison to  
BLOSUMSO, -14, -2. D: Comparison  of  performance  with  regression  scaled  scores  to  the  performance of BLOSUMSO, - 12, 
-2  with  In()-scaled  scores.  Comparisons  to  Smith-Waterman  with  infinite  gap  penalties  (inf)  and  BLASTP  using sum-P, 
Poisson-P, or HSP  scores  are  included in A, B, and C. 

Discussion 

A  quantitative test for statistically significant differences in the 
performance of sequence comparison  algorithms and scoring 
matrices has been developed. Using a new criterion for search 
performance, the equivalence number, we have shown that the 
performance of the sequence  similarity  searches can be improved 
dramatically if modern scoring matrices, optimized gap penal- 
ties, and normalized similarity scores are used. Using optimal 
algorithms and gap penalties can push back the evolutionary ho- 
rizon by hundreds of millions of years. When the Gonnet92 ma- 
trix (- 12, - l) is used with the Smith-Waterman algorithm and 
In()-scaling to search the  PIRl database for sequences related 
to human a-globin, only  two sequences (extracellular globins 
from a polychaete worm) are missed.  In contrast, when the con- 
ventional PAM250 matrix with gap penalties of - 12,  -4 and 
unscaled scores are used, 16 sequences, including several leg- 
hemoglobins, bacterial  globin, and several insect globins, are 
missed. For all 134 query sequences, the best methods typically 
could identify almost 300 distantly related sequences that were 
missed  with conventional PAM250 searches (e.g., BLOSUM45, 
- 12, - 1, In()-scaled scores missed  528; PAM250, - 12, -4, un- 
scaled missed 814). 

The performance test used  in this report - the ability to iden- 
tify distantly related members from many diverse protein se- 
quence families - is different from those used in several recent 
comparisons of amino acid replacement matrices. Johnson and 
Overington (1993) examined the ability of  12 scoring matrices 
to calculate statistically significant similarity scores and  to re- 
construct correct pairwise alignments for sequences  whose struc- 
tures are known; their results indicate that their matrix (J093), 
which is derived from transition frequencies between amino 
acids in aligned structures,  performs about as well as the BLO- 
SUM and Gonnet92 matrices in most tests and better than  the 
PAM250 matrix.  A similar conclusion can be drawn from Fig- 
ure 4A. Vingron and Waterman (1994) also used an alignment- 
based criterion to suggest that the PAM250 matrix with a modest 
positive offset  performed  better; our results show that unmod- 
ified matrices perform best for identifying distantly related 
sequences. 

Our results are similar to those  obtained by Henikoff and 
Henikoff (1993) for the BLOSUM matrices and FASTA and 
BLASTP. They used a similar test but a  different database of 
related sequences - those derived from  the PROSITE/Swiss- 
Prot databases  (Bairoch, 1991; Bairoch & Boechmann, 1991). 
Thus, it is unlikely that  our results reflect any special biases of 
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the  PIRl superfamily classification. Several families from the 
our  data set (globins, glutathione transferases, a-crystallins) are 
missing from the  PROSITE/Swiss-Prot  library, whereas PRO- 
SITE  data set has  many  more families (the  Henikoffs used 257 
"challenging" groups). 

This  study suggests that, in contrast  to  the observations of 
Henikoff and Henikoff (1993), modern  extrapolated scoring 
matrices can  perform as well as those based on direct sequence 
alignment when gap penalties are optimized. Thus, although 
BLOSUM55 is the best matrix for unscaled Smith-Waterman 
comparisons and performs significantly better than any  matrix 
based on  the original PAM data, JTT160 and 200,  which are ex- 
trapolated  from modern  PAM replacement data, perform as 
well as BLOSUMSS. For In()-scaled comparisons,  Gonnet92 is 
the equal of the best BLOSUM matrices, and JTT200 and 250 
perform almost as well with optimal gap penalties. Gonnet92 
is effectively a  PAM1 16.5 matrix  extrapolated from alignments 
ranging over distances from PAM6.4 to PAM1OO.O (Gonnet 

Fig. 7. Searches with FASTA. The same families of  ma- 
trices shown in Figures 4 and 6 were used to search the 
protein database using the FASTA program with ktup = 
1 and optimized scores. A: Comparison of FASTA scores 
calculated with the indicated matrix and gap penalty com- 
bination  with  unscaled  Smith-Waterman  scores, 
BLOSUMSS, -12,  -2. B: Comparison of FASTA scores 
calculated with the indicated matrix and gap penalty with 
In()-scaled Smith-Waterman scores, BLOSUM45,  -12, 
- 1. C: Comparison of unscaled FASTA scores (ktup = 1 ,  
optimized) with  unscaled  Smith-Waterman (BLOSUMSO, 
-14,  -4) scores using partial query sequences and the 
BLOSUM45-62 scoring matrices. D: Comparison of In()- 
scaled  FASTA with In()-scaled  Smith-Waterman 
(BLOSUMSO, -12,  -2) using partial query sequences. 

et al., 1992). Figures 4 and 6 show that an  appropriate  gap pen- 
alty is essential for the best performance of a scoring matrix. The 
widely  used  -12, -4 gap penalty is often not the best  when full- 
length query sequences are used; penalties of - 12,  -2 work sig- 
nificantly better for several of the BLOSUM matrices with 
unscaled  scores. For In()-scaled scores, lower gap penalties  (-12, 
- 1 or - 10, -2) frequently work better than  the best penalties 
for  the corresponding unscaled search. 

More importantly, the most distant sequence relationships are 
revealed when the underlying alignments contain gaps and In()- 
scaled scores are used. Thus, even though it  is more  difficult to 
estimate accurately the probability of a match if  it contains gaps 
(particularly if the  combination of scoring matrix and  gap pen- 
alties does  guarantee local alignments on unrelated sequences), 
alignments with gaps and In()-scaled scores are significantly 
more effective in identifying distantly related sequences. The ex- 
ceptional  performance of the Gonnet  matrix and In()-scaled 
scores with the globin family (two sequences missed) compares 
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very favorably  with  the best results  found  with  profile  searches 
(Gribskov et al., 1987) and  searches  based  on flexible patterns 
(Barton & Sternberg, 1990). 

It is unclear why  In()-scaling provides  such a dramatic  im- 
provement over unscaled  Smith-Waterman  scores.  The  statis- 
tical properties of  similarity scores  that  include  gaps  are  poorly 
understood.  Waterman  (Waterman  et  al., 1987; Vingron & 
Waterman, 1994) has  shown  that  the  expected  score  for  un- 
related  sequences can  shift  from  an  ln(n,)  to  an n, relationship 
as  the  scoring  and  gap  parameters  change.  Mott (1992) has 
shown that  for  common choices of scoring  matrices and  gap  pa- 
rameters,  the  alignments  can  shift  from  local  to  global  for  un- 
related  sequences,  with  the  result  that  the  variance  of  the 
similarity  score  becomes  dependent on n,. P. Green  has  shown 
that In()-scaling  partially corrects  for this  dependence;  however, 
the regression-scaled scores, which more  accurately  correct  the 
variance, do not  perform  as well in  general as In()-scaled  scores 
for full-length query sequences  (Fig. 4) and  do  not  perform sig- 
nificantly  better  for  purely local searches with partial  query se- 
quences (Fig.  6). Further  investigation  into  the  statistics  of 
similarity  scores  calculated  with  the best scoring  matrices  and 
gap  penalties-whether  the  scores  are  local,  partially  local, or 
global-is clearly required. 

These studies also provide  a tool  to investigate  empirically the 
relationship between scoring  matrices  and  optimal  gap  penal- 
ties. The relationship between the  “information  content”  of  dif- 
ferent  scoring  matrices  and  their abilities to  identify all the 
members of a protein  family (Collins et al., 1988; Altschul, 1991, 
1993) seems less important when gap  penalties  and scaled  simi- 
larity  scores  are  used.  For  example,  the  BLOSUM45  -62.3 se- 
ries of  matrices  can  all  perform very well (Figs. 4B, 6), yet they 
differ in relative entropy  (Altschul, 1991) almost  twofold,  from 
0.70  (BLOSUM62)  to  0.38  (BLOSUM45)  bits per residue  pair. 
By decreasing the  number of  high-scoring unrelated sequences, 
In()- and regression  scaling may  reduce  problems  encountered 
with a “too  deep” scoring matrix.  (The average  length of the  ho- 
mologous region in  our  partial  query  sequences, 71 -t 23, was 
short  enough  that  the BLOSUM45 matrix  should have had  dif- 
ficulty detecting  homologues, yet it  was among  the  most effec- 
tive  when  In()-scaling  was  used.) Conversely,  matrices  that  are 
optimal  at very short  evolutionary distances  (e.g., PAM40,  Alt- 
schul, 1993) are best  suited to  detecting  homologous  short  (<30 
residue) partial  sequences in database  searches;  average-length 
protein  sequences  at  short  distances  have high similarity  scores 
that  are easily distinguished  from  unrelated sequences. By in- 
creasing the scores of  partial  library sequences,  In()-scaling can 
improve  the scores  of homologous  partial sequences  in the  data- 
bases. (Unfortunately, In()-scaling can be very distracting when 
very short [2-4-residue] sequences are  found in raw translations 
of DNA sequence databases;  the  correction is inappropriate  for 
such sequences.) 

Clearly there is a trade-off between search  computation  time 
and  search  performance.  On  the  DEC  Alpha  workstations used 
in this  study,  the  FASTA  program with optimized  scores  and 
ktup = I was about six times  faster  than  the  Smith-Waterman 
program  for  all 134 sequences. In searches with a 217-residue 
query sequence,  searching the 12,219-entry PIRl  database  took 
about 220 s with Smith-Waterman; 51 s with FASTA, ktup = 1, 
and  optimized  scores, 26 s with ktup = 2,  and  optimized scores; 
and 14 s with BLASTP. For full-length query sequences,  searches 
should  be  performed  with  the slower Smith-Waterman  algo- 

rithm,  but when partial sequences are examined, the much  faster 
but  equally  effective FASTA program (with ktup = 1 and  opti- 
mized scores)  can  be  used.  Our results  suggest that, even with 
its  recent improvements,  BLASTP is not  as effective as FASTA 
or Smith-Waterman if the  latter  algorithms  are used  with opti- 
mal  scoring  matrices, gap penalties, and In()-scaled scores. How- 
ever,  for FASTA to  be  effective,  optimized  scores  must be 
calculated  for  most  of  the  sequences  in  the  database.  This cal- 
culation slows  FASTA twofold or less for  most  searches, while 
dramatically  improving  performance. 

We are  currently  exploring  rapid  methods  for  performing 
searches with gaps  that  are  as sensitive as In()-scaled Smith- 
Waterman.  The  BLASTP  algorithm is an excellent starting 
place, because BLASTP with BLOSUM62  performs  as well as 
Smith-Waterman with PAM250  (although  not  as well as  Smith- 
Waterman with BLOSUM55, -12, -2). Our  comparison of 
Smith-Waterman  with  infinite  gap  penalties suggests that  the 
heuristic portion of BLASTP does not miss any significant align- 
ments. In addition,  BLASTP  (with  an  effective ktup = 3) per- 
forms  better  than  unscaled FASTA with ktup = 1 and  no  gaps; 
thus,  the ability to examine conservative replacements at  the ear- 
liest stage,  as is done  with  BLASTP  and  Smith-Waterman, 
clearly provides  a  significant advantage.  However,  the segment- 
based gapping  strategy  of  BLASTP  does  not  perform  as well as 
the  gapped  alignments  computed by Smith-Waterman, even 
with unscaled scores. A  gapped version of the  BLASTP  program 
is the best candidate  for a program  that is faster  than,  but  as 
effective as, In()-scaled Smith-Waterman  for identifying distant 
relationships. 

Materials and methods 

Sequence libraries 

All searches were performed on the  annotated  portion  (PIRI) 
of the  National  Biomedical  Research  Foundation  protein se- 
quence  database  (Barker  et  al., 1990;  release  39, December  31, 
1993,4,306,189  amino  acid residues in 11,982  sequences). The 
PIRl library is annotated with a superfamily  assignment for ev- 
ery sequence in the  library.  The  superfamily  assignment is usu- 
ally based  on  sequence  similarity  but  can  also reflect structural 
similarity or other  common  features if  a clear  case for  common 
evolutionary  ancestry  (Barker et al., 1990) can be made.  Some- 
times a superfamily will contain several members  whose  com- 
mon  ancestry  cannot be demonstrated by pairwise sequence 
similarity (Pearson, 1991). The  PIRl library contains only about 
1/3 of the sequences  in the  entire  NBRF-PIR  protein  sequence 
database;  the  other  two  databases  (PIR2  and  PIR3) do  not con- 
tain  complete  superfamily  annotations  and  thus  cannot be used 
to  demonstrate relatedness (common ancestry). The  PIRl library 
was augmented with 139 members of the  G-protein-coupled re- 
ceptor family and 98 glutathione  transferase sequences, to  make 
a larger  library of  4,386,084 residues in  12,219  sequences. 

There  are 94 protein  sequence  superfamilies with 20 or more 
members in  release 39 of the  PIRl  sequence  database. Viral 
polyproteins, which may  contain  members  of several protein 
families, were removed  from  the set of  query sequences. With 
inclusion of  additional  G-protein-coupled  receptors  and  gluta- 
thione  transferases, 90  families  were found with more  than  20 
members.  However,  the  members  of 23 of  these  families are so 
closely related  that  none  of  the  programs tested  misses any of 
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the  members  of  the  family;  these  families were removed  from 
the set of  query  sequences used because  they  cannot  be  used  to 
discriminate between different  search  algorithms or scoring  pa- 
rameters.  For  the  remaining 67 families,  two  sets of query se- 
quences were  used  in these  studies.  The  first set was  built by 
taking  the  first  member of each  superfamily  in  the  augmented 
PIRl  database. A second set was built by shuffling  the  protein 
sequence  database  and selecting the  first  member  of  each  fam- 
ily found in the  shuffled list. The  query sequences used for these 
studies  are listed  in Table 1. 

Tests were also run with partial  query sequences that were em- 
bedded in longer  random sequences. For  each  sequence,  two 
random  numbers, k and s, were generated: k was used to set the 
length  of the  partial sequence and was drawn  from a normal dis- 
tribution with p = 100 and u = 25; s was then selected from  uni- 
formly  distributed  numbers between 0 and n - I ,  where n was 
the length of  the  sequence  being  sampled.  The  partial  sequence 
was then  taken  from residues s + 1 to s + k of  the  original se- 
quence.  The  original  query  sequences  ranged in length  from 16 
to  1,107 (mean 230 -t 186); the  partial  sequences  ranged  from 
16 to 127 (mean 71 * 23). Each  partial  query  sequence was em- 
bedded  in two  equal length random sequences. The  random se- 
quences were generated by concatenating all the residues from 
the 67 query  sequences,  shuffling  this  20,000-residue  sequence 
using a local window of 10 residues, and then  generating a length 
for  the  flanking sequences from a normal  distribution with p = 
200, u = 100. A  sequence  of  this  length was drawn  from  the  shuf- 
fled  query  sequences;  half  of  this  random  sequence was placed 
in front  of  the  partial  query  sequence  and half  was  placed after 
it.  These  embedded  partial  query  sequences  ranged  from  89 to  
462 residues  (mean 284 k 69). 

Similarity searching 

Searches with the  FASTA  (Pearson & Lipman, 1988; Pearson, 
1990) and  Smith-Waterman  (Smith & Waterman, 1981; Pear- 
son & Miller, 1992) algorithms were performed in parallel  on 
a network  of five DEC  Alpha  AXP3000 model 300 workstations 
using a general  platform  for  sequence  comparison  on  parallel 
computers  (Despande et al., 1991) that was converted to  the 
PVM  parallel  programming  environment.  The  platform was 
modified to calculate the  performance of the  algorithm  for each 
query  sequence  from  within  the  parallel  program. A derivative 
of version 1.6 of  the FASTA program  (Chao  et  al., 1992) was 
used; the implementation of the Smith-Waterman  algorithm was 
described in Pearson  and Miller (1992). The  platform was ex- 
tended  to include a global similarity score  calculated by a mod- 
ification of the Needleman-Wunsch algorithm (Myers & Miller, 
1988). Version 1.4.7 of the  BLASTP  program  (October 1994; 
Altschul et al., 1990), which incorporates  the new “sum”  statis- 
tics  (Karlin & Altschul, 1993), was used for  BLASTP  searches. 
BLASTP was run with the  default  options, except for E (2,000), 
hspmax ( 5 0 0 ) ,  and V  (2,000). The  “E”  parameter was  increased 
to  display  as  many  HSP  scores  as possible. BLASTP  P-values 
were converted  to  integer values similar to  traditional  similar- 
ity scores by the  formula:  P-score = -10.0 In(P-value).  Equiv- 
alence numbers were calculated  using  either the best single HSP 
score,  the  sum-statistics  (“sum-P”)  P-score, or the  older  Pois- 
son statistics (“Poisson-P”)  P-score. Because the similarity score 
at  the equivalence point is sometimes  zero for  BLASTP searches, 
the  equivalence  number  calculation  was  modified slightly for 

BLASTP. If the  equivalence  point  score was greater  than  zero, 
then  the equivalence number was  calculated  in the  standard way 
(the  number  of  related  sequences  obtaining  scores less than  the 
equivalence  point score). If the equivalence point score was zero, 
then  the  equivalence is the  number  of  related  sequences  with a 
score of zero. 

Different  methods  for  normalizing  local  similarity  scores  to 
correct  for differences between the length of  the  query sequence 
and  the library sequences were examined.  Raw  Smith-Waterman 
and  FASTA  similarity  scores  were  scaled  by  ln(nq)/ln(n/), 
where n4 and nl are  the  lengths  of  the  query  and  library se- 
quences,  respectively.  In  addition,  scaling by (n,/nl)’” or 
n4 /n, was tested. 

Similarity  scores were also scaled to  remove  the  dependence 
of similarity  scores on sequence length  using a routine  provided 
by  Dr. P. Green (University  of Washington).  Raw  similarity 
scores s were converted  to  z-scores: z = (s - p ln(nl) - p)/ 
(var)”2. p and p were determined  from a fit of the line s(nl)  = 
p + p In nl and var is estimated  from regressing the  squared re- 
siduals [s(nl)  - p - p 1n(nl)l2 on  ln(n,).  The  estimation process 
was repeated  after excluding similarity  scores with z < -5  or 
z > 5 .  The  z-scores  calculated in this way had a mean = 0 and 
standard  deviation = 1 for n/ from 20 to  the  maximum  library 
sequence  length.  The  z-scores were then  converted  back  into 
conventional  (positive)  similarity  scores with the  relationship 
s, = 50 + 1Oz. s, are  referred  to  as regression-scaled scores. 

Scoring matrices 

The  PCOMPLIB  programs were modified to  accept the  substi- 
tution matrices distributed with BLASTP (1.3.1 1). The  PAM se- 
ries (Dayhoff  et  al., 1978) of  matrices  was  calculated  using  the 
PAM  program  distributed with this release of  BLASTP, and  the 
BLOSUM and  Gonnet92 matrices were obtained  from  the  same 
source.  The  code  to  generate  the JTT (Jones et al., 1992) series 
of  matrices was obtained  from  the  authors.  The  5093  (John- 
son & Overington, 1993) matrix was entered by hand. 

Statistical analysis 

The sign-test  was  used to  compare  the  performance  of  differ- 
ent algorithms and search  parameters  (Table 3). The equivalence 
number was calculated for  each of the 134 query sequences with 
one  algorithm of interest,  and  then  this list of  equivalence num- 
bers  was  compared  to  the list generated by a second  search  al- 
gorithm.  Differences  in  performance  for  each  query  sequence 
were scored  with a “+” if the  second  algorithm  had a lower 
equivalence  number  than  the  first  algorithm, a ‘ I - ”  if the  first 
algorithm  performed  better,  and 0 if the  two  equivalence  num- 
bers were equal.  The  magnitude  of  the difference in equivalence 
numbers was ignored, because the  observations  of  similarity 
scores are  not  independent within a superfamily.  Thus, if an  al- 
gorithm  cannot detect the similarity  between  a human  a-globin 
sequence and a soybean leghemoglobin  sequence,  it is likely that 
it will not  detect  the  similarity  with  other  leghemoglobin se- 
quences  that  are closely related to  the  soybean  sequence. If the 
magnitudes of the  difference were considered,  then  superfami- 
lies with  several  clusters of very closely related sequences  might 
outweigh the results from families with more uniformly diverged 
sequences. By using the sign-test, errors caused by selective sam- 
pling of  members of protein  sequence families are  reduced. A 
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similar  approach was taken  by  Henikoff  and  Henikoff (1993), 
where  the  number  of  families  where  performance was better  or 
worse was plotted. 

Probabilities  for  the sign-test  were calculated  from a normal 
approximation  to  the  binomial  distribution  for cases  where the 
sum  of  the positive (Np) and  negative (Nm)  differences was 10 
or greater.  The  z-value is calculated  from  the  formula: z = 
[max(Np, Nm) - p ] / u ,  where p = (Np + Nm)P, u = [(Np + 
Nm)P(l  - P)]”’,  and P = 0.5. Where  two  query  sequences 
from  each  superfamily were examined  (Table 4 and all  figures), 
z-values were divided by 2’’* because  the  two  observations of 
the  superfamily  are  not  independent.  P-values  are  reported  for 
the  more  conservative  two-tailed  test,  i.e., we test whether  two 
strategies  perform  differently,  not  whether  one  performs  bet- 
ter  than  the  other.  Both  the 2”’ correction  and  the  use of a 
two-tailed  test  tend  to  underestimate  the  statistical significance 
of differences in performance. 
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