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Public health newborn screening (NBS) programs provide 
population-scale ascertainment of rare, treatable conditions 
that require urgent intervention. Tandem mass spectrometry 
(MS/MS) is currently used to screen newborns for a panel of 
rare inborn errors of metabolism (IEMs)1–4. The NBSeq project 
evaluated whole-exome sequencing (WES) as an innovative 
methodology for NBS. We obtained archived residual dried 
blood spots and data for nearly all IEM cases from the 4.5 mil-
lion infants born in California between mid-2005 and 2013 
and from some infants who screened positive by MS/MS, but 
were unaffected upon follow-up testing. WES had an over-
all sensitivity of 88% and specificity of 98.4%, compared to 
99.0% and 99.8%, respectively for MS/MS, although effec-
tiveness varied among individual IEMs. Thus, WES alone was 
insufficiently sensitive or specific to be a primary screen for 
most NBS IEMs. However, as a secondary test for infants with 
abnormal MS/MS screens, WES could reduce false-positive 
results, facilitate timely case resolution and in some instances 
even suggest more appropriate or specific diagnosis than that 
initially obtained. This study represents the largest, to date, 
sequencing effort of an entire population of IEM-affected 
cases, allowing unbiased assessment of current capabilities 
of WES as a tool for population screening.

Effective population-level NBS must rapidly identify the few indi-
viduals at risk of disease with extraordinary sensitivity, high specific-
ity and limited manual review. In California, NBS for 48 different 
IEMs performed with MS/MS1–4 achieved 99.0% sensitivity and 
>99.8% specificity5. For some disorders, MS/MS nonetheless has a 
low positive predictive value and results may be nonspecific (Fig. 1).

Genomic sequencing, now commonly used for diagnosis of 
rare disorders6–10, has been recommended for nearly all seriously 
ill children in intensive care units8–10, proposed for all newborns  
to personalize their medical care11 and marketed for screening  

newborns12. Yet, population-scale studies to establish performance 
characteristics of sequencing for NBS have not been reported. NBS 
IEMs provide an ideal model for evaluating the role of sequenc-
ing in population screening because most are Mendelian disor-
ders affecting well-understood biochemical pathways and many 
have been studied extensively. Moreover, sensitivity and specificity 
of sequence-based detection of IEMs can be directly compared to 
those of current MS/MS screening. Studying WES to identify IEMs 
already included in NBS can also suggest its potential utility for fur-
ther treatable disorders not amenable to detection by MS/MS13.

We quantified the performance of WES, were it to have been 
the primary NBS for IEMs in California. Between July 2005, and 
December 2013, the Genetic Disease Screening Program (GDSP) of 
the California Department of Public Health (CDPH) screened dried 
blood spots (DBSs) from nearly 4.5 million neonates for 48 IEMs 
using a multiplex MS/MS platform. We obtained a comprehensive 
set of 1,728 residual, de-identified, archived DBSs representing all 
cases with IEMs, as well as a select set that were screened as posi-
tive but later were determined to be unaffected. We performed WES 
for 1,416 DBSs14 and determined that DBS exomes passing quality 
controls (Methods) were comparable to exomes from fresh blood 
(Extended Data Figs. 1–4). We analyzed 1,190 high-quality exomes 
from 805 IEM-affected individuals and 385 MS/MS false positives 
(Table 1); exomes were divided into validation and test sets, with 
178 and 1,012 individuals, respectively (Table 1).

We analyzed variants within an ‘exome slice’15 of 78 genes associ-
ated with the 48 IEMs ascertained by NBS in California (Methods; 
Supplementary Table 1). We systematically explored pipeline 
parameters on the validation set to derive a customized, robust, 
sensitive pipeline for reporting potential disease-causing variants in 
IEM genes in a screening context (Fig. 2a; Methods). The automated 
pipeline had three arms. The curation arm reported all variants 
curated as pathogenic in existing disease databases (Human Gene 
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Mutation Database (HGMD)16 or ClinVar17) with population minor 
allele frequency (MAF) < 0.1% and additional potentially patho-
genic less-rare variants that we curated (see Methods; Supplementary 
Table 2). The second arm reported all rare (MAF < 0.5%) mis-
sense and nonsense variants and other rare variants predicted to 
be protein-altering or damaging. The third arm reported inferred 
copy-number variants (CNVs). Usually, phase could not be deter-
mined, so individuals with two reportable variants were designated 
‘exome positive’ for their associated IEMs. Exome results were com-
pared to the clinical data collected by GDSP18.

As a primary screen, the pipeline correctly identified 571 of 
674 IEM-affected infants in our test set as having a potentially 
pathogenic IEM genotype (Fig. 2b and Supplementary Table 3). 
Overall sensitivity, calculated as the ratio of exome-positives 
whose gene matched the reviewed diagnosis to IEM-affected indi-
viduals, weighted by the prevalence of each IEM in California19, 
was 88%. For the clinically confident subset of individuals in the 
test set (Methods), the pipeline achieved 93.7% overall sensitivity. 
Our near-complete ascertainment of IEM-positive infants estab-
lished this as a population-scale benchmark for WES sensitivity. 
Of the 571 infants, 360 (63%) had only pathogenic rare variants 
from databases20,21 and 17 (3%) had at least one less-rare, curated 
variant. The remaining 194 (34%) carried at least one previously 
unannotated, rare, potentially pathogenic variant: 128 nonsyn-
onymous missense; 51 nonsense, indel or canonical splice site; 12 
splice-altering; and 3 CNVs. While 50 of the 103 affected infants 
not identified by the pipeline had a single reportable heterozygous 
variant, half had no reportable variants found in any gene associ-
ated with the clinical diagnosis.

Eleven infants were exome-positive for genes unrelated to their 
IEMs (Methods), thus, producing an overall specificity for WES of 

98.4%. This would extrapolate to ~8,000 false positives among the 
half million annual births in California, far more than the actual 
1,362 MS/MS false-positive cases in 2015. An alternative pipeline 
that reported only rare curated variants as pathogenic (Extended 
Data Fig. 5h) had high specificity, 99.4%, but unacceptably low sen-
sitivity, 55%.

Sensitivity of our screening pipeline varied by disorder, generally 
performing better for less-rare disorders. Although sensitivity was 
100% for nearly one-third of the NBS IEMs, statistical confidence, 
particularly for very rare IEMs, would require more data. (Fig. 2c 
and Supplementary Table 4).

Across all IEMs currently screened for by MS/MS, WES had 
insufficient sensitivity and specificity for sole, primary use as a 
replacement for MS/MS. Sensitivity could not be improved by trad-
eoffs against specificity, as the missed cases lacked any pair of rare 
missense or predicted damaging variants in the relevant genes.

Our study also illuminated the genetic landscape of IEMs in 
California. From the 571 exome true positive individuals in the 
test set, the pipeline reported a total of 1,157 variants, comprising 
507 distinct variants: 343 missense (68%), 47 frameshifting indels 
(9%), 41 nonsense (8%), 32 splice site (6%), 19 predicted damag-
ing intronic nucleotide substitutions near a splice site (4%) and 17 
nonframeshifting indels (3%). The remaining eight (2%) were large 
deletions and curated variants (Extended Data Fig. 6a). Of these 507 
variants, 195 (38%) were absent from ExAC21 and 162 (32%) were 
absent from both HGMD16 and ClinVar17 (Supplementary Table 5); 
384 of the 507 (76%) occurred in only one case.

We further investigated selected exome false negatives by per-
forming whole-genome sequencing (WGS) for eight individuals 
lacking two reportable WES variants (Methods). Large CNVs 
cannot be identified reliably from WES; indeed, WGS revealed 
one individual with isovaleric acidemia (IVA) having a deletion of 
the first three exons of the IVD gene and another with a complex 
pattern of reduced IVD gene coverage (Extended Data Fig. 7).  
However, our targeted manual inspection of the read alignment 
and coverage of relevant genes in the remaining six failed to  
suggest a widespread role for CNVs in other IEMs (Methods), 
though complex structural rearrangements may remain unde-
tected by WGS.
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for whom
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Fig. 1 | Low positive predictive value and complex differential diagnoses 
of MS/MS newborn screening for glutaric acidemia. Among 1,254 
newborns with positive glutaric acidemia type I (GA-I) MS/MS screen 
(California, July 2005 through December 2013), only 130 were ultimately 
diagnosed with any IEM. Of these 130, only 43 actually had a diagnosis of 
GA-I, while the rest had other IEMs, including MCADD, LCHADD, MMA, 
carnitine palmitoyl transferase deficiency type II (CPT2D), medium/
short-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (M/SCHADD), 
MADD, short-chain acyl-CoA dehydrogenase deficiency (SCADD), 
carnitine-acylcarnitine translocase deficiency (CACTD) or another fatty 
acid oxidation disorder (FAOD). The GA-I MS/MS screen is based on 
elevations of glutarylcarnitine (C5-DC), along with informative ratios. 
During the early part of the study, a derivatized method was used, in which 
hydroxydecanoylcarnitine (C10-OH) had the same mass-to-charge ratio 
as C5-DC. After the methodology was switched to use un-derivatized 
metabolites, it became hydroxyhexanoylcarnitine (C6-OH) that was 
coincident with C5-DC.

Table 1 | Distribution of analyzed newborns by study set, 
disorder and race/ethnicity

Total 
newborns 
(n = 1,190)

Affected 
(n = 805)

Unaffected false 
positives by  
MS/MS (n = 385)

Study set

Validation set 178 131 47

Test set 1,012 674 338

Categories of disorder

Fatty acid oxidation 
disorders

334

Organic acid disorders 237

Amino acid disorders 234

Race/ethnicitya

Hispanic 454 330 124

Non-Hispanic white 371 226 145

East Asian 79 57 22

African American 63 42 21

Other 223 150 73
aRace/ethnicity was based on nursery-reported categories from the newborn DBS forms.
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Additional WES false negatives could be due to limitations in 
variant interpretation. One individual with medium-chain acyl-CoA 
dehydrogenase deficiency (MCADD) had only one reportable vari-
ant in the ACADM gene (NP_000007.1:p.Tyr67His). A second 
variant located 14 bases 5’ from the splice site (NM_000016.4:c.388-
14A>G) had insufficient evidence for pathogenicity (Extended 
Data Fig. 8a). However, an experimental splicing reporter assay 
revealed that this variant switched splicing to a new 3’ site, extend-
ing exon 6 by 13 nucleotides, creating a premature termination 
codon (Extended Data Fig. 8b–e; Methods).

We next considered WES as a reflex follow-up test for MS/
MS-positive individuals before conducting further biochemi-
cal/clinical studies, to reduce the referral of unaffected infants. 
For six IEMs with challenges in MS/MS screening, we analyzed 
all IEM-affected and unaffected infants in validation and test sets 
with positive MS/MS, but with no reportable WES variants (Table 
2 and Extended Data Fig. 9). Among all MS/MS-positive individu-
als, the negative predictive value (NPV) or proportion of unaf-
fected individuals among those with no reportable WES variant, 
ranged from 33%, for multiple acyl-CoA dehydrogenase deficiency 
(MADD)/glutaric acidemia type II (GA-II) to 100% for long-chain 
3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD) (Table 
2). For very long-chain acyl-CoA dehydrogenase deficiency 
(VLCADD) and maple syrup urine disease (MSUD), one affected 
individual of each would have been wrongly excluded due to no 
reportable WES variant, whereas 48 and 16 false positives, respec-
tively, would have avoided further follow-up, provided that WES 
could be performed rapidly.

In 12 individuals, the initial clinical diagnosis in the GDSP 
database was not consistent with the gene reported by WES, 
but the final disorder assignment from our subsequent clinical 
review was concordant with WES. Often, the disorders in ques-
tion had overlapping MS/MS analyte profiles (Supplementary 

Table 6). For example, an individual clinically reported to have 
IVA, had a rare, homozygous, missense variant in the ACADSB 
gene encoding short/branched-chain acyl-CoA dehydrogenase 
(NM_001609.3:c.1165A>G; NP_001600.1:p.Met389Val (precursor 
protein), MAF 0.002%), suggesting 2-methylbutyryl-CoA dehydro-
genase deficiency. This variant causes skipping of ACADSB exon 
10 (ref. 22), leading to elevated 2-methylbutyrylcarnitine, which has  
the same MS/MS signature as isovalerylcarnitine, an analyte  
elevated in IVA13.

Another infant diagnosed with MADD/GA-II had a homozygous 
missense variant in ETHE1, encoding a mitochondrial sulfur diox-
ygenase (NM_014297.4:c.488G>A; NP_055112.2:p.Arg163Gln, 
MAF 0.003%). This variant causes ethylmalonic encephalopathy23, 
which may be difficult to distinguish biochemically from MADD/
GA-II (ref. 24).

A third individual, MS/MS-positive for both VLCADD and 
MCADD, had been diagnosed as unaffected upon follow-up, with 
notes suggesting VLCADD carrier status. WES revealed two mis-
sense variants in the electron transfer flavoprotein dehydrogenase 
gene ETFDH (NM_004453.3:c.250G>A; NP_004444.2:p.Ala84Thr, 
MAF 0.02% and NM_004453.3:c.524G>A; p.Arg175His, not 
observed in ExAC). These variants, previously observed as com-
pound heterozygous in patients with MADD/GA-II with onset of 
symptoms as teenagers or adults25, reduce protein activity; sibling 
studies indicated that NP_004444.2:p.Ala84Thr is penetrant (Z.-Y. 
Wu, personal communication). Notably, all pertinent MS/MS ana-
lyte values for VLCADD carriers were consistent with MADD/
GA-II (Supplementary Fig. 1).

The WES false positives in our study could have been due to lack 
of predictive accuracy for uncharacterized, rare, but benign vari-
ants, as well as colocalization of two reported variants on the same, 
rather than opposite, chromosomes. Long-read sequencing tech-
nologies could mitigate phasing limitations in the future.

Fig. 2 | Whole-exome pipeline design and analysis. a, Diagram of pipeline for analysis. For each exome, the pipeline considered only variants with 
genotype quality (GQ) > 15 that impacted principal transcripts (per annotation of principal and alternative splice isoforms, APPRIS35) for 78 genes 
associated with currently screened IEMs. Variants were identified through any of three arms. The predicted impactarm (left) included variants 
with population MAF < 0.5% in both 1000 Genomes Project20 and ExAC21 databases and predicted protein alteration (stop gain or loss, frameshift 
insertion or deletion, alteration of canonical splice motif, nonsynonymous missense, in-frame insertion or deletion, start gain or loss) (i); combined 
annotation-dependent depletion (CADD)36 score > 23 (ii); or predicted splicing impact (determined by database of splicing consensus single-nucleotide 
variant (dbscSNV) labeled random forest meta-estimator (RF))37 with meta-prediction score >0.5 (iii). The curation arm (center) included variants with 
MAF < 0.1% annotated as disease mutation (DM) or questionable disease mutation (DM?) in HGMD16 or as pathogenic/likely pathogenic by ClinVar17, 
with at least one review star. Among HGMD DM/DM? or ClinVar pathogenic/likely pathogenic variants with MAF ≥ 0.1% (n = 60), 19 were considered 
reportable and 41 were excluded (Supplementary Table 2). The predicted CNV arm (right) applied XHMM38 to IEM genes except three with common 
intragenic deletions (ETFA, HCFC1 and PRODH). For variants in X chromosome genes(*), the MAF threshold was adjusted to 0.02%. For genes with ≥1 
heterozygous variant, local phasing was performed when reads overlapped the multiple variant positions. Finally, variants annotated as benign in ClinVar 
with at least two review stars were excluded. From the list of resulting variants, the corresponding genes with ≥1 homozygous or ≥2 heterozygous 
variants were reported. Exceptions(**) were X-linked ornithine transcarbamylase, for which ≥1 flagged, heterozygous OTC gene variant was reported, as 
heterozygous females can display a clinical phenotype;30 and methionine adenosyltransferase-1A, for which heterozygous variant MAT1A NP_000420.1:p.
Arg264His causes autosomal dominant disease39. For each individual, a single gene was chosen as the likely disease-causing gene by a score incorporating 
IEM prevalence and variant severity (Methods). b, Contributions from components of the pipeline in identifying variants in the test set of exomes from 674 
IEM-affected infants. Of the 571 cases correctly identified by the pipeline, 360 had only rare HGMD/ClinVar curated variants, whereas the rest required 
additional curation or predictions. Of the 103 individuals missed by exomes, the pipeline reported a single autosomal heterozygous variant in 53 individuals 
in a gene consistent with the disorder and no variants in 50. c, Sensitivity of exome pipeline by disorder for the 674 IEM-affected infants from the test 
set. For each IEM, the numbers of individuals correctly identified by exomes are shown by green bars and the number missed by exomes are shown by 
brown bars, with sensitivity for each IEM disorder shown in parentheses. Core IEMs screened by California (left); secondary/add-on IEMs (right). IEMs 
sharing a common causative gene were not distinguished by the exome predictions alone. These included trifunctional protein deficiency (TFP) and 
LCHADD (blue shading), PKU and hyperphenylalaninemia (pink shading) and the various MMA subtypes (yellow shading). ASAL, argininosuccinate 
lyase deficiency; BKT, beta-ketothiolase deficiency; 3HMG, 3-hydroxy-3-methylglutaryl-CoA lyase deficiency; PKU, phenylketonuria; CIT-I, citrullinemia 
type I; CTD/CUD, carnitine transporter deficiency/carnitine uptake defect; 3MCC, 3-methylcrotonyl-CoA carboxylase deficiency; MCD, multiple 
carboxylase deficiency; IBD/IBG, isobutyryl-CoA dehydrogenase deficiency; ARG, arginase deficiency; remethylation, remethylation defects; BIOPT-BS, 
biopterin disorders (co-factor biosynthesis); MGA type I, 3-methylglutaconyl-CoA hydratase deficiency; CPT-I and CPT-II, carnitine palmitoyl transferase 
deficiency type I and II, respectively; EE, ethylmalonic encephalopathy; Hyperphe, hyperphenylalaninemia; 2MBCD, 2-methylbutyryl-CoA dehydrogenase 
deficiency; OTC, ornithine transcarbamylase deficiency; MET/MAT, hypermethioninemia/methionine adenosyltransferase I/III deficiency; CATD/CACTD, 
carnitine-acylcarnitine translocase deficiency; MAL, malonic acidemia.
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Of greater concern for screening, however, were the 12% exome 
false negatives. Upon manual inspection of all genes relevant to the 
IEM diagnosis in each individual in the validation set, observed 
variants were either common or not protein-altering, with low like-
lihood of pathogenicity. Inadequate exome coverage may have lim-
ited our ability to detect deletions, but might be improved by using 
optimized gene panels26,27. Areas of poor coverage included exon 1 
of MCCC2 (Extended Data Fig. 4), a locus of known pathogenic 
variants. Identifying pathogenic variants that are not clearly protein 
altering remains challenging.

Cases could also be missed owing to incomplete knowledge 
of genetic disease. We analyzed 78 proven IEM-associated genes, 

but other relevant genes may be yet undiscovered; 12 of 19 indi-
viduals with methylmalonic acidemia (MMA) had no WES vari-
ants detected (Fig. 2c), similar to a previous report28. Moreover, 
genetic mechanism may be dominant, epistatic, epigenetic or 
oligogenic with synergistic heterozygosity29. Finally, inherent bio-
logical factors limit disease prediction from sequence alone; for 
example, heterozygous OTC variants in females manifest variable 
penetrance depending on X chromosome inactivation patterns in 
hepatocytes30.

Nonetheless, following identification of infants with abnor-
mal analytes on MS/MS by NBS, the metabolic centers to which  
these infants are referred may find WES invaluable for suggesting  
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a definitive diagnosis by identifying pathogenic variants in 
IEM-associated genes. Our examples of discordance of recorded 
diagnoses and WES findings indicate that deep sequencing could 
facilitate rapid and precise clinical resolution for newborns with 
positive MS/MS on NBS, as previously suggested31.

WES turnaround time and cost, which are critical concerns for 
NBS programs, were not addressed in our research study, in which 
archived batches of samples were processed together. Future WGS 
could be faster; diagnostic WGS for critically ill infants have ranged 
from 2 to 3 weeks9 to <24 h32,33. The modest caseload of positive 
NBS screens for IEMs (0.3% of births) suggests that deep sequenc-
ing could become sufficiently economical and rapid to provide 
effective information as a secondary test after a positive MS/MS 
result. Clinical considerations for individual IEMs would dictate 
whether urgent referral after a positive MS/MS screen is required or 
whether referral could await sequencing results.

The high specificity of WES using curated variants prompts its 
consideration for well-characterized, treatable Mendelian disorders 
not amenable to MS/MS, but for which screening could be justified 
if a suitable DNA-based test were available. However, suitability of 
WES or WGS must be evaluated for each disorder. Though sensi-
tivity of WES alone may be too low to meet standard criteria for 
NBS34, sequencing could potentially identify many treatable condi-
tions that presently go unrecognized until too late for optimal inter-
vention due to lack of an alternative current NBS test. As a form 
of screening, sequencing would require weighing of benefits versus 
costs and societal implications, and might not be limited to the neo-
natal period. Our study also underscores the value of the California 
Biobank Program, which has provided unrivaled, diverse popula-
tion representation for research to inform approaches to advance 
public health.
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Methods
NBSeq samples and study set. From the roughly 4.4 million children born in 
California from 7 July 2005 to 31 December 2013, the NBSeq project obtained two 
de-identified 3.2-mm punches from DBSs obtained for NBS from each of 1,728 
newborns. The samples included those from all 1,325 infants screened by MS/MS 
who were subsequently confirmed to have an IEM, as well samples from 9 infants 
not identified by MS/MS screening, but diagnosed clinically. Also included were 394 
MS/MS false-positive infants selected from 10,011 individuals, for whom MS/MS 
screening was positive, but who were ultimately diagnosed as unaffected. All MS/MS 
false positives from well-baby nurseries for three FAODs (VLCADD, LCHADD and 
MADD) and three other IEMs (PKU, MSUD and IVA) were requested to investigate 
the hypothesis that genetic variants could underlie the abnormal analytes leading to 
false-positive MS/MS results. False positives in neonatal intensive care units, where 
concomitant illness (for example, prematurity and liver abnormalities) and clinical 
interventions (for example, total parenteral nutrition) produce frequent alterations 
of MS/MS analytes, were excluded from our request for DBSs.

DNA was prepared from the DBSs and WES was performed as described14. We 
sequenced 1,416 exomes, which included all the DBS specimens from the CDPH 
Biobank, with the exception of those from a random subset of 312 non-Hispanic 
white and Hispanic individuals for SCADD, 3MCC and elevated phenylalanine, 
which were excluded due to budgetary limitations. This led to exclusion of specimens 
from 56 SCADD, 54 3MCC and 201 initial hyperphenylalaninemia by MS/MS 
(including 61 individuals with classic PKU, 45 with variant hyperphenylalaninemia, 
38 with benign hyperphenylalaninemia and 58 individuals who were false-positive). 
From 1,190 exomes out of the 1,416 that passed quality control metrics and were 
phenotypically relevant, we developed and evaluated a pipeline to identify individuals 
for potential review based on variants reported in an IEM gene, as described later.

To obtain an unbiased estimate of the predictive accuracy of exomes, we first 
divided the 1,190 samples into a validation set (178 samples) in which we were 
unblinded to final diagnosis to explore the robustness of parameter choices in our 
exome analysis pipeline (data not shown) and a test set (1,012 samples), which was 
subjected to the final optimized pipeline only once and whose results are reported 
here. Of the 178 samples in the validation set, 129 were affected with an IEM 
diagnosed following positive NBS by MS/MS; two were affected, but had not been 
identified by MS/MS NBS but were diagnosed clinically; and 47 were unaffected 
MS/MS false positives (Table 1). Of the 1,012 samples in the test set, 674 were from 
IEM-affected individuals, 667 were diagnosed following MS/MS NBS and 7 were 
identified clinically with disease; there were also 338 MS/MS false positives.

Variant calling and quality control. Variant calling and annotation. DNA 
extraction, library construction and exome sequencing were performed as 
previously described14. The 1,416 samples were sequenced in three batches (batch 
1, 188 samples; batch 2, 411 samples; batch 3, 817 samples) and the quality 
control (QC) metrics were grouped accordingly. Batches 1 and 2 had paired-end 
read lengths of 101 bp, whereas batch 3 had a paired-end read length of 151 bp. 
Raw sequences were mapped to the reference genome (v.37), using BWA mem 
algorithm (v.0.7.10)40. Resulting SAM files were converted to binary format, 
sorted and lane merged using Picard tools (v.1.81). Duplicates were marked in the 
alignment files with Picard tools v.1.81 (http://broadinstitute.github.io/picard/). 
Next, realignment around known indels and base quality score recalibration were 
performed using GATK toolkit (v.3.3)41. Variants were called using the GATK 
Haplotype Caller function and variant scores were recalibrated with the GATK 
VQSR function42. Combined calling was used on all samples. Variants were 
annotated using Varant (http://compbio.berkeley.edu/proj/varant/Home.html), a 
custom tool, as described43, with the following public datasets: Gencode (v.19)44, 
APPRIS (v.24)35, 1000 Genomes Project (phase 3)20, Exome Sequencing Project 
(ESP) (ESP6500SI-V2-SSA137)45, Exome Aggregation Consortium (ExAC v.0.3.1)21, 
CADD (v.1.3)36, MetaSVM and MetaLR from dbNSFP v.3.1a46 and dbscSNV v.137. 
Variants previously associated with disease from HGMD (v.2014.1)16 and those with 
star ratings for known deleterious variants from ClinVar17 (ftp://ftp.ncbi.nlm.nih.
gov/pub/clinvar/tab_delimited/variant_summary.txt.gz) were added to the call set. 
CNV calls on all 1,190 NBSeq samples were made using XHMM38.

Quality control metrics. We developed a battery of quality assessment metrics to 
ensure that exomes from DBS samples were suitable for variant interpretation47. 
The sequences were assessed for quality of read mapping, assessment of DNA 
damage and quality of the final called variants.

Mapping-related metrics. The percentage of unmapped reads was <1.7% in all 
the samples (median = 0.4%, first quartile = 0.3%, third quartile = 0.5%; Extended 
Data Fig. 1a). The nonduplicate, properly oriented paired reads with mapping 
quality ≥20 were classified as high quality. The percentage of high-quality read 
pairs was quantified (median = 61%; Extended Data Fig. 1b). Batch 3 contained a 
larger percentage of duplicates than the other batches (Extended Data Fig. 1c), but 
numbers of high-quality read pairs were comparable in all batches (Extended Data 
Fig. 1d,e). All batches had sufficiently large insert sizes for analysis, although batch 
2 had slightly lower insert sizes for the same read length (Extended Data Fig. 1f). 
The proportion of read pairs with each end mapped to a different chromosome was 
small (median = 0.004).

Median coverage depth across the capture region was 59× (first quartile, 
52×; third quartile, 68×). Comparison between the three batches showed that for 
median capture coverage, batch 1 and batch 2 were similar, whereas batch 3 had 
the highest median depth of coverage, likely because of longer reads (batch 1, 
median = 53; batch 2, median = 56; batch 3, median = 63; Extended Data Fig. 1g).  
Batch 2 had the lowest fraction of capture covered for all depths and batch 3 had 
the highest (Extended Data Fig. 1h). This could indicate lower uniformity of 
coverage in batch 2 compared to the other two batches. The coverage over the 
78 genes transcripts associated with IEMs was examined for the same set as the 
metrics above and similar trends were observed (Extended Data Fig. 1i,j).

DNA damage-related metrics. The number of mismatches with respect to the 
reference genome was computed for all high-quality reads as an estimate of DNA 
damage caused by nucleotide mis-incorporations. The fraction of reads with 0 
mismatches with the reference was slightly lower (median = 0.74) than typically 
observed in other datasets, which tended to be >0.8. A larger number of samples 
in batch 3 had fewer perfectly matched reads compared to the others (batch 1, 
median = 0.88; batch 2, median = 0.79; batch 3, median = 0.70; Extended Data  
Fig. 2a). The higher mismatch rate in batch 3 was due to their longer read length, 
with an increased rate toward the ends; when only the first 100 bases of each read 
were analyzed in batch 3, mismatch data were comparable to that for the other 
batches (Extended Data Fig. 2b).

The distribution of nucleotide mis-incorporations by base change was 
investigated by calculating the allele distribution at each position and from these 
distributions, calculating the frequency of a base change from the reference to 
every other base. The fraction for a change of, for example, A>C, was computed as 
the ratio of the number of times an A>C change was seen to the total number of As 
seen. Positions with variants reported after calling the alignments were excluded, 
as these are presumed to be real variations. The C>A and G>T distributions were 
higher in batch 2 for several of the samples compared to batches 1 and 3, with 
C>T and G>A also slightly higher (Extended Data Fig. 2c). However, when the 
nucleotide change fractions were analyzed using high-quality single-nucleotide 
variant (SNV) calls (‘PASS’ by the GATK VQSR algorithm and with GQ ≥ 30) this 
bias was absent, with all nucleotide change fractions in similar ranges for the three 
batches (Extended Data Fig. 2d).

Variant-related metrics. The fraction of sites with GQ ≥ 30, both reference and 
variant, was calculated from the total number of sites both for the entire exome 
capture as well as transcripts from the 78 IEM-associated genes. The fraction of 
sites with marked ‘PASS’ and with GQ ≥ 30 was within adequate range for the three 
batches (Extended Data Fig. 3a,b). Next, the high-quality variants were classified 
based on frequency in 1000 Genomes Project (defined as common, ≥0.1%; rare 
<0.1%). SNVs and indels were analyzed separately. Common and rare SNVs and 
indels occurred at similar frequencies in the three batches (Extended Data Fig. 3). 
Transition/transversion ratios were in the same range for the three batches for both 
common and rare SNVs and comparable to the range of 1000 Genomes Project 
samples (Extended Data Fig. 3).

Quality control criteria for sample exclusion. The samples that passed QC were 
required to satisfy the following quality criteria:
•	 Median coverage across Nimblegen capture ≥20×.
•	 Fraction of high-quality sites (GQ ≥ 30) ≥0.9 across the capture.
•	 Estimated contamination by VerifyBamID48 (freemix) <3%.

Overall, 200 samples out of 1,416 failed at least one of the above criteria. 
Some areas of systematic decreased coverage were noted, as with the relatively 
poor coverage of exon 1 of the MCCC2 gene, compared to ACADM, well covered 
throughout (Extended Data Fig. 4). Of 1,216 exomes that passed QC, 26 from 
infants with an IEM not within the core panel of 48 disorders were further 
excluded. The remaining 1,190 samples were analyzed in our study.

Exome analysis pipeline. Variant interpretation was guided by the principle that 
in current NBS, specificity is subordinate to maximal sensitivity because missed 
cases can have catastrophic consequences, whereas false positives can be resolved 
as unaffected following referral. Thus, like some NBS programs reporting DNA 
sequence information, our pipeline deliberately reported variants of uncertain 
significance (American College of Medical Genetics and Genomics guidelines)49.

Pipeline development. Our goal was to evaluate exome sequencing as an NBS tool. 
In contrast to sequencing for diagnosis of individual patients already exhibiting 
clinical abnormal phenotypes, sequencing in a screening setting presents different 
challenges and requirements, some of which include:
•	 NBS has no a priori phenotypic information and is applied on a 

population-level to individuals, who are nearly all asymptomatic at the time of 
the screen.

•	 While it is accepted that diagnostic exomes will resolve only 25–60% of undi-
agnosed cases (depending on the types of disorders), much higher sensitivity 
is required for NBS. For example, MS/MS NBS for IEMs is typically >99% 
sensitive.
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•	 Specificity also has to be high in NBS to avoid excessive cost, referrals to 
specialists and family anxiety.

•	 In diagnostic settings, DNA sequence analysis may take into account family 
history, sequence of family members in addition to the patient and custom-
ized, in-depth curation of variants; but NBS must be performed on single indi-
viduals in a high-volume, largely automated mode with limited manual review.

Given these differences, it was not obvious whether a diagnostic exome 
pipeline was appropriate for screening or how it should be modified. We therefore 
developed exome analysis pipelines taking NBS requirements in consideration 
(Extended Data Fig. 5). It was important to understand how altering some 
commonly used parameters in pipelines would influence the sensitivities and 
specificities of disease predictions from exome data. However, we lacked sufficient 
data to train a sophisticated model to learn these parameters automatically. 
Therefore, with the goal of identifying robust parameter choices, we devised a 
framework to iteratively perturb and tune pipeline parameters.

Systematic exploration of parameter perturbations formed the basis of the final 
exome analysis pipeline50. Briefly, using the 178-sample NBSeq validation set and 
starting from two initial reference pipelines that used parameter combinations 
favoring either high sensitivity or high specificity, we systematically explored the 
consequences of perturbing the following parameters on both sensitivity and 
specificity: size of IEM gene list, variant callers, choices of transcript models, 
choice of population databases, MAF thresholds in population databases, databases 
of predicted and curated variants and choice of inheritance models. We studied 
the impact of each parameter on overall performance by altering a single or a 
few parameters at a time. As an example, prediction results were surprisingly 
sensitive to the choice of population database to determine MAF. We studied the 
impact of MAF thresholds of 0.1%, 0.2%, 0.5%, 1%, 2% or 5% in three different 
databases: 1000 Genomes Project, ExAC and the NHLBI ESP. MAF thresholds 
using 1000 Genomes Project or ExAC yielded better sensitivities than in the 
ESP database alone, possibly due to technical artifacts from differing sequencing 
technologies and study designs used in the different databases. Informed by these 
observations, our final pipeline implemented population MAF thresholds that 
considered both the ExAC and 1000 Genomes Project databases. The impact of 
individual parameter choices on the 178-sample NBSeq validation set, evaluated in 
an iterative fashion, guided the design and parameter choices for the final pipeline 
(Fig. 2a) that was applied to the 1,012 samples (674 IEM-affect and 338 MS/MS 
false positives) in the NBSeq test set.

Architecture of the final exome analysis pipeline. Once finalized based on the NBSeq 
validation set, the automated exome analysis pipeline (Fig. 2a; code available at 
https://github.com/nbseq1200/NBSeq1200paper) was run once on each sample 
in the NBSeq test set while blinded to any phenotypic data, reflecting a typical 
application setting for a primary newborn screen. The analysis was restricted to the 
variants in the exon slice of the 78 known IEM-associated genes (Supplementary 
Table 1). The pipeline considered only variants with GQ > 15 and the impact of 
variants was annotated with respect to APPRIS principal transcripts. The pipeline 
reported variants through one of three primary arms:
•	 Predicted impact arm: all variants with MAF < 0.5% (in both ExAC and 1000 

Genomes Project) that satisfied any of the following criteria:

•	 annotated as protein-altering by Varant (StopGain, StopLoss, FrameShiftInsert, 
FrameShiftDelete, SpliceDonor, SpliceAcceptor, NonSynonymous Missense, 
InFrameDelete, InFrameInsert, StartGain, StartLoss)

•	 CADD36 score >23
•	 computational splicing-effect meta-prediction tool (dbscSNV)37 score >0.5
•	 Curation arm: variants with population autosomal MAF < 0.1% (in both ExAC 

and 1000 Genomes Project databases) annotated as ‘DM’ or ‘DM?’ in HGMD 
or as ‘pathogenic/likely pathogenic’ by ClinVar with at least one review star. Our 
NBSeq team manually curated 60 variants with MAF ≥ 0.1% from these sources, 
finding 19 to be reportable as potentially pathogenic and excluding 41 (Supple-
mentary Table 2). The NBSeq variant curation is described in detail below.

•	 CNV arm: XHMM38, a tool to call CNVs from exomes, was run with default 
parameters on the full-sample BAM files. XHMM calls from three genes 
(ETFA, HCFC1 and PRODH) were excluded because XHMM called CNVs 
with a frequency >1% in these genes in 600 exomes extracted from the 1000 
Genomes Project. As XHMM does not output zygosity, we inspected the BAM 
files in the predicted deletion regions to make zygosity calls, the only manual 
step in the pipeline.

The variants reported through any of the above arms were considered further 
by the pipeline. For variants in X chromosome genes, the MAF threshold was 
adjusted (see below). To avoid spurious multiple, close-by variant calls when 
encountering a single deletion or insertion event, the pipeline reported only a 
single variant if multiple heterozygous variants appeared within 15 bases of each 
other. For heterozygous variants within 500 bases of each other, a local phasing 
procedure queried the reads overlapping both variant positions. If both variants 
appeared in the same read, only one was reported. Finally, any variants that were 
annotated as benign in ClinVar with at least two review stars were excluded.

From the remaining variants, the pipeline identified the corresponding 
genes with ≥1 homozygous or ≥2 heterozygous variants, as the majority of 
these disorders are autosomal recessive. For the X-linked OTC gene, the pipeline 
reported ≥1 variant in either hemizygous males or heterozygous females, as 
heterozygous females can display a clinical phenotype30,51. Another exception 
was MAT1A, for which the pipeline reported a particular heterozygous variant 
NP_000420.1:p.Arg264His known to cause autosomal dominant disease39. Finally, 
for each sample, the pipeline reported at most a single prominent genotype based 
on the highest score (see below) combining disease prevalence and variant severity.

Minor allele frequency threshold adjustment for X-linked genes. In the exome 
analysis pipeline, the MAF for genes encoded on the X chromosome was adjusted 
as follows. Given the MAF threshold chosen in the pipeline for the autosomal 
chromosomes, fA, the X chromosome MAF is adjusted to fX, as given by the 
following relationship:

1
2
f 2X þ 1

2
fX ¼ f 2A

When fX � 1
I

, we can approximate
fX ffi 2f 2A
I

NBSeq variant curation. The exome analysis pipeline excluded nonrare variants 
unless existing evidence suggested possible pathogenicity. In 31 IEM-associated 
genes (ACAD8, ACADM, ACADS, ACADSB, ACADVL, ASL, ASS1, BCKDHA, CBS, 
CD320, CPT1A, CPT2, DBT, FAH, GCH1, HADHA, HPD, MCCC2, MCEE, MLYCD, 
MMAB, MTRR, MUT, OTC, PAH, PCCA, PCCB, PRODH, SLC22A5, SLC25A13, 
TAZ), 60 variants with MAF > 0.1% in 1000 Genomes Project and ExAC databases 
were characterized as DM or DM? in HGMD and/or characterized as pathogenic 
or likely pathogenic in ClinVar. All evidence supporting the classifications was 
reviewed by the NBSeq team, which determined that missense variants should 
be considered potentially pathogenic, to beconsistent with the requirements of a 
screening test, including that specificity was generally subordinate to sensitivity. 
Variants were therefore considered reportable if there was any evidence that they 
could be disease-causing, even if at low penetrance. After NBSeq curation, 19 of the 
60 variants reviewed were deemed ‘reportable’ and 41 were deemed ‘not reportable’ 
(Supplementary Table 2). The list of reportable variants were incorporated into the 
primary exome analysis pipeline, as the NBSeq inclusion list.

As an example, the NM_000098.3:p.Phe352Cys variant in CPT2 is 
polymorphic, with MAF 4.7% in 1000 Genomes Project and 2.2% in ExAC, but 
was indicated ‘DM?’ in HGMD, while ClinVar status in the most recent version 
was likely benign, but with no stars. Literature review supported the assertions that 
this was a polymorphism, but not a totally benign one; published data suggested 
it was a risk factor for acute encephalopathy in the setting of serious viral illness 
in infancy52. In contrast, NM_000137.2:p.Arg341Trp in FAH was on the border of 
being polymorphic, with MAF 0.8% in 1000 Genomes Project and 1.7% in ExAC. 
This variant was classified as ‘DM’ in HGMD on the basis of literature53 that, when 
carefully reviewed, did not support the assertion, while functional expression in 
yeast and cultured cells54 showed the protein carrying the missense variant had 
activity equal to that of wild-type protein. This variant, therefore, was designated as 
‘not reportable.’

Selection of the most prominent genotype in a sample. A scoring scheme was 
designed to select one gene at most as the predicted cause of disease for each 
sample. For each reported variant allele a in a particular gene g for the sample, a 
variant score S(a,g) was obtained as follows:

S a; gð Þ ¼
1
3 * M að Þ þ I að Þ þ D að Þð Þ þ P gð Þ; a is not a CNV

1þ P gð Þ; a is a CNV

�

whereP(g) = unit normalized prevalence of the disorder corresponding to gene g 
(Supplementary Table 1)

M að Þ ¼
1; MAF að Þ<0:05%
0:5; 0:05%≤MAF að Þ<0:1%
0; otherwise

8
<
:

D að Þ ¼
1; Curation að Þ 2 HGMD DMð Þ;Clinvar 4 aaað Þ;Clinvar 5 aaaað Þf g
0:5; Curation að Þ 2 HGMD DMð Þf g
0; otherwise

8
<
:

I að Þ ¼
1; Consequence að Þ 2 SevereSet
0:5; Consequence að Þ 2 MildSet
0; otherwise

8
<
:

SevereSet = {StopGain, StopLoss, FrameShiftInsert, FrameShiftDelete, 
SpliceDonor, SpliceAcceptor}

MildSet = {Missense, InFrameDelete, InFrameInsert, StartGain, StartLoss}.
MAF(a) was the maximum MAF of the allele a in 1000 Genomes Project 

and ExAC databases. Curation(a) determined the presence/absence of the allele 
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a in HGMD and ClinVar databases. Consequence(a) determined the impact of 
the variant allele. The P(g) values for the 78 genes were derived from the birth 
prevalence of the corresponding disorders in California19.

For each gene that had either ≥1 homozygous or ≥2 heterozygous autosomal 
variants reported by the pipeline in a sample, the sum of the two highest scoring 
alleles in that gene was computed. Homozygous variants contributed two alleles 
and only one variant was required for X-linked genes. The gene with the highest 
sum for the sample was reported as the predicted disease gene for that sample.

Assessment of predictions from the exome analysis pipeline. The exome analysis 
pipeline reported 507 variants in genes associated with corresponding disorders 
in IEM-affected individuals in the NBSeq test set (Supplementary Table 5). The 
majority of these variants were nonsynonymous (Extended Data Fig. 6a). To ensure 
an objective and unbiased interpretation of the results, the exome analysis pipeline 
developers (A.N.A., Y.W. and S.E.B.) were blinded to the diagnoses of the individual 
cases in the NBSeq test set. The exome analysis pipeline was run on the NBSeq test 
set exomes and the resulting predictions from the exome analysis pipeline were 
submitted to the NBSeq clinical team (R.J.C., R.C.G., H.T. and M.K.), who then 
assessed those predictions independent of the pipeline development team.

The data used for assessment are shown in Supplementary Table 3, listing for 
each case the reviewed diagnosis key (deemed the gold standard) and the results 
reported by the primary exome analysis pipeline, as well as alternative pipelines. 
Numerical aspects of assessment were computed using software available at https://
github.com/nbseq1200/NBSeq1200paper.

Incorporation of clinical evidence to generate a ‘reviewed’ diagnosis key. As part of 
the follow-up of positive NBS results, the GDSP database has recorded summaries 
of diagnostic testing and annual patient summaries for infants with IEMs. To 
assure that the exome predictions would be measured against the best current 
clinical disease assessments, for those cases for which the exome pipeline was 
discordant with the GDSP diagnosis, the clinical team generated a ‘reviewed 
diagnosis’ key for all NBSeq study cases based on the strength of evidence for 
the clinical diagnoses recorded in the GDSP database and recent literature. 
This reviewed diagnosis key was used to compare infant diagnoses with exome 
predictions.

There were three main types of discrepancies between exome predictions 
and clinical reports. The first group had a mismatch between the predicted gene 
by the pipeline and the gene implicated in the clinical diagnosis of an affected 
infant (n = 22). The second group had gene predictions in MS/MS false-positive 
individuals, who had been initially reported as unaffected (n = 45). The third group 
had a failure to predict a gene in an initially diagnosed infant (n = 188). Members 
of NBSeq with access to the GDSP database (R.J.C. and H.T.) reviewed recorded 
clinical notes with a metabolic geneticist (R.C.G.) to assess explanations for the 
discrepancies.

The diagnoses of 12 of 22 infants in the first group (different exome 
identification versus clinical record) were resolved with establishment of a 
‘reviewed diagnosis.’ In six infants, there may have been an error in selecting the 
disorder from the drop-down list for diagnosis in the online case report. In the 
remaining six, the exome identified the gene for an alternative in the differential 
diagnosis of the screening result, and the follow-up data were most consistent 
with that alternative. For evaluation of exome predictions, these 12 infants were 
re-classified as correctly identified by exome.

In the second group (exome positive, IEM negative), 26 of the 45 infants had been 
resolved as false-positive for PKU, but had two rare variants in the PAH gene. After 
levels of amino acids from follow-up testing were reviewed, 10 of the 26 diagnoses 
were re-classified as hyperphenylalaninemia. Almost all of the remaining infants in 
the exome-positive group were either clinically identified as VLCADD(het) or MS/
MS false-positive for VLCADD, with one remaining unresolved due to death of the 
infant. In most of these cases, the exome revealed two variants in the ACADVL gene; 
in three, the exome identified variants in genes for MADD.

In a third group (exome-negative, IEM-positive) 78 infants were re-classified 
as unaffected. This included 40 individuals clinically identified as SCADD. The 
NBSeq curation team had reviewed and excluded from the exome pipeline the 
common variant in the ACADS gene (rs57443665, Supplementary Table 2), but 
infants with this variant often had been given an initial clinical diagnosis of 
SCADD 55–57. These were re-classified as not affected. There were 23 individuals 
with carnitine uptake defect and 15 with VLCADD in this third group. Long-term 
follow-up data suggested that the majority of the infants were unaffected and the 
classification was updated to reflect this. The remainder of this group consisted 
of small numbers of each of the other metabolic disorders included in the study. 
For the majority of them, the follow-up data provided ample evidence of the 
correctness of the clinical diagnosis.

As a final step in the clinical review, the individuals for which the 
documentation was sufficient to be confident of the clinical diagnosis were 
designated as a ‘clinically confident’ subset. All diagnoses of SCADD, whether 
predicted by the exome or not, were excluded from the clinically confident subset 
due to published data indicating that the most commonly encountered variants 
may lead to biochemical abnormality on MS/MS screening, but are not associated 
with clinical disease57.

Assessment of exome sequencing as a primary screen. Overall sensitivity and 
specificity. For evaluation of exomes as a screen for all NBS IEMs combined, we 
matched all test set predictions from the NBSeq exome analysis pipeline to their 
associated clinical diagnoses in the reviewed diagnosis key and calculated two 
main metrics: the overall sensitivity and overall specificity.

IEM-affected diagnoses, for which the gene predicted by the exome analysis 
pipeline matched the IEM in the reviewed diagnosis key, were considered 
correct. IEM-affected diagnoses, where no gene was predicted by the pipeline, 
were considered incorrect, as were instances where the pipeline predicted a gene 
inconsistent with the clinical diagnosis in the reviewed diagnosis key.

For each IEM, sensitivity was calculated as the number of infants in the test set 
correctly identified by the exome analysis pipeline divided by the total number of 
IEM-affected individuals in the test set. As some individuals with particular IEMs 
had been excluded from sequencing, the IEM-specific sensitivities were weighted 
by their prevalence in California19 to obtain the overall sensitivity of the final 
exome analysis pipeline across all IEMs (values in Supplementary Table 1, those 
<0.04 per 10,000 were treated as 0.04). Among the 674 affected individuals in the 
test set, 571 were correctly identified by the exome pipeline (Extended Data Fig. 
6b). The overall sensitivity of the final exome analysis pipeline when weighted by 
the disorder prevalence was 88%.

To calculate overall specificity, we considered situations where the pipeline 
predicted genes that did not match the IEM diagnosis according to the reviewed 
diagnosis key. For each IEM d, we calculated the disorder-level specificity as one 
minus the proportion of individuals not affected with d, where the exome analysis 
pipeline reported a gene associated with d. (Of note none of the false-positive 
cases were reported for a disorder on the same CDPH screen as the actual disease.) 
Using this strategy, overall specificity was 98.4%.

CDPH determines the sensitivity of MS/MS screening by evaluating whether 
an individual that screens positive is reported as diagnosed with any IEM in their 
screening panel (without regard to whether the diagnosed IEM is in the primary 
differential diagnosis of the screen). By measuring sensitivity using this approach 
for comparison with MS/MS performance, the primary exome analysis pipeline has 
a sensitivity of 90%.

Performance on data subsets. As the NBSeq study set included a large group of 
heterogeneous IEMs, we performed further ancillary assessments on various 
relevant slices of the data. The sensitivity and specificity of exome predictions 
across different IEMs were heterogeneous (Fig. 2c and Supplementary Table 4). 
The distribution of zygosity of the reportable variants also varied across different 
IEMs (Extended Data Fig. 10).

Some disorders were too rare to have sufficient samples to make a statistically 
robust estimation of sensitivity, reflected in their large 95% Clopper–Pearson CI 
ranges (Supplementary Table 4). Two-sided Clopper–Pearson CIs were calculated 
using the ‘exactci’ function from R package PropCIs (https://github.com/shearer/
PropCIs). When grouping by conditions in the national Recommended Uniform 
Screening Panel, conditions (core conditions) versus secondary conditions, overall 
sensitivities were comparable (89% for core versus 88% for secondary conditions). 
We further classified the IEMs into four tranches based on their population 
prevalence in California19. The weighted sensitivity of the most common IEMs 
(>2.5 per 10,000) was 91%, whereas that of the rarest (<0.04 per 10,000) was 78%, 
indicating that the more common IEMs could be identified better from sequences 
than rarer ones. Finally, in the ‘clinically confident’ subset that included only 
individuals with sufficient clinical follow-up data for a highly confident clinical 
diagnosis, the overall sensitivity of the exome analysis predictions improved to 
93.7%, but was still insufficient for use as a general primary screen across all IEMs.

Alternative specificity calculation. We also estimated the overall specificity of 
exome predictions using two additional, orthogonal approaches. The first approach 
used all 1,216 sequenced individuals who passed QC filters and compared exome 
predictions to MS/MS results to estimate specificity. Briefly, across all 1,216 
individuals, from their raw MS/MS data, we used the CLIR analysis tools1 to infer 
likelihood of each IEM. For each MS/MS screen, the CLIR tool produced a 4-point 
score for likelihood of a particular IEM: 1, negative; 2, possible condition; 3, 
probable condition; and 4, very probable condition. We therefore estimated exome 
false-positive calls by counting the number of cases where the primary exome 
analysis pipeline predicted a gene, but the associated CLIR likelihood score was 
‘1’ (Supplementary Table 7). The overall specificity of exome pipeline using this 
strategy was 97.45%.

A second approach involved running the exome analysis pipeline on 2,504 
individuals from the 1000 Genomes Project phase 3 (ref. 20). These were not 
directly comparable to our NBSeq data, primarily due to differences in sequencing 
technology (genomes versus exomes) and underlying cohort ancestry distribution. 
Nonetheless, the 1000 Genomes Project dataset represents a large cohort of 
individuals for whom the likelihood of newborn IEMs should be low. The 
whole-genome genotypes were obtained from: ftp://ftp.1000genomes.ebi.ac.uk/
vol1/ftp/release/20130502/ and annotated using Varant43. The specificity of the 
primary pipeline on the 1000 Genomes Project dataset was 95%, slightly lower 
than that compared to the value calculated based on NBSeq data. Estimates of 
overall specificity of exome predictions from these two approaches supported the 
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conclusion that our primary exome pipeline had insufficient specificity to be used 
alone as a primary screen.

Alternative pipelines and findings. To investigate the contributions of different 
components of our final exome analysis pipeline (Fig. 2a), we evaluated overall 
sensitivity and overall specificity of various alternate pipelines that either truncated 
or modified the pipeline in different ways (Extended Data Fig. 5b–i). Truncating the 
CNV arm altogether removed only three true-positive individuals and the overall 
sensitivity was 88% (Extended Data Fig. 5c). Truncation of the curation arm reduced 
the sensitivity to 87% (Extended Data Fig. 5d). More drastically, the truncation of 
the prediction arm, which considered all rare protein-altering variants, resulted in 
an overall sensitivity of 59% (Extended Data Fig. 5e). An alternative pipeline that 
used the predicted impact arm alone had a sensitivity of 86% (Extended Data Fig. 
5f). A stringent pipeline that reported only rare ClinGen or HGMD high-confidence 
curated variants in the IEM genes had a far lower sensitivity of 55%, but had an 
extremely high specificity of 99.4%, the latter comparable to MS/MS (Extended 
Data Fig. 5h). Finally, even though the primary exome analysis pipeline allowed 
only a single gene call per sample, we evaluated an alternate pipeline that removed 
this restriction, allowing for multiple gene calls per sample if more than one gene 
contained two reportable variants. This pipeline had an overall sensitivity of 88.6% 
and reduced specificity of 94.7% (Extended Data Fig. 5i).

Assessment of exome sequencing as a follow-up test. In addition, using the final 
pipeline results, we asked whether the exome slice could be used as a follow-up 
test to MS/MS, particularly to reduce false positives. That is, we assessed the ability 
of exome data to identify IEM-negative cases among MS/MS-positive cases (MS/
MS false positives) without eliminating IEM positives. Hence, we determined the 
specificity (proportion of exome slice negatives among IEM negatives), which 
indicated how many true negatives would be removed from further consideration 
by eliminating cases with no gene variants on exome analysis after a positive 
MS/MS test. We also determined the NPV, the proportion of exome negatives 
among the MS/MS positives that were IEM negative (unaffected). The NPV must 
be very close to 1 to ensure that true IEM cases are not excluded, whereas the 
specificity should be high but not necessarily close to 1, as it simply indicates the 
effectiveness of the exome as a secondary screen. We defined ‘exome negative’ as 
individuals where no reportable variants were reported in genes for the disorder(s) 
corresponding to the MS/MS positive result.

For six MS/MS screened disorders for which we had originally requested all the 
MS/MS true positives and MS/MS false positives from the study period (VLCADD, 
PKU, LCHADD/TFP, IVA, MSUD and GA-II), we first quantified the number 
of alleles characterized by our pipeline as pathogenic for both IEM-affected 
and MS/MS false-positive individuals (Extended Data Fig. 9). Using the above 
exome-negative definition, we then calculated the specificity and NPV for each of 
the six MS/MS screens (Table 2).

Follow-up exploratory studies of selected exome false-negative individuals. In 
half of the cases for which exomes failed to predict the corresponding IEMs (exome 
false negative), the screening pipeline reported no variants, nor were any found 
upon manual review. An example was an individual affected with GA-I, for whom 
all variants in the associated GCDH gene were either common or in a deep intronic 
region. Exploration of the genetic data in a diagnostic or research context with 
experimental functional studies could be used to systematically explore why exome 
analysis failed to predict IEMs in 12% of the IEM-affected individuals. In a selected 
few such exome false-negative individuals, we performed follow-up studies to 
investigate potential causes for exome false negatives.

Whole-genome pilot study of eight exome false negatives. WGS was performed on 
samples from eight individuals from the NBSeq validation set, where the pipeline 
had failed to predict associated genes. The eight WGS samples were sequenced 
and jointly variant-called using the same protocol as described above for NBSeq 
exomes. As WGS typically provides more uniform coverage compared to exomes, 
we reanalyzed the exome slice of these eight individuals from their WGS data using 
the same primary analysis pipeline described above. The predictions from the 
exome analysis pipeline remained unchanged for these eight cases.

Using the IGV browser58, we further manually inspected the read alignment, 
mapping quality and overall coverage in the associated genes in sample BAM 
files in every exome false negative case in the validation set. No anomalies in 
coverages were identified except in two of the eight individuals, where we noted 
poor coverage of an IEM gene, IVD. This led us to suspect large deletions, which 
were confirmed upon investigation of the genomic region around IVD in the WGS 
alignment files in these two individuals (Extended Data Fig. 7). The first infant 
had almost no coverage in the region spanning the first three exons of IVD. The 
second infant had almost no coverage of exon 12 of IVD along with low coverage 
across the whole gene. Both samples strongly indicated the presence of large 
deletions in the gene. To support this further, we searched for split reads (reported 
by the BWA mem algorithm) from the sample BAM files that also overlapped the 
IVD gene region. The first individual had 11 such split reads spanning the deleted 
region confirming the deletion event. We did not find such split spanning reads in 
the second infant.

Functional assay of an intronic variant in an exome false negative. IEM-affected 
individuals, where the pipeline reported only a heterozygous variant, could suggest 
a second variant in the relevant gene that the pipeline may have failed to interpret 
correctly. In an illustrative case of an MCADD-affected individual, the final analysis 
pipeline reported a heterozygous pathogenic variant in the ACADM gene (Y67H). A 
second intronic variant 14 bases from the splice site (NM_000016.4:c.388-14A>G) 
was observed but not reported by the pipeline (Extended Data Fig. 8a). (Note that 
the position −14 is just outside the range considered by the pipeline’s splice impact 
predictor.) Given the proximity of the variant to the splice site, it was hypothesized 
that it could impact splicing. One possibility considered was that it could be a 
branchpoint A mutation; however, the branchpoint prediction tool SVM-BPfinder59, 
which did predict six other As in the 50-bp region 5’ to the exon, did not identify 
this site. Given the confidence of the clinical diagnosis and the proximity of the 
second variant to the splice site, we performed an experiment to determine the 
variant’s impact on splicing of the ACADM gene.

To determine whether NM_000016.4:c388-14A>G influenced splicing of the 
ACADM pre-mRNA we generated a heterologous splicing reporter using the human 
HBB gene as a model as described60. Sequences corresponding to ACADM exon 6 
and flanking introns were cloned into HBB intron 1. A mutant construct containing 
the A>G mutation at position −14 relative to the 3’ splice site of intron 5 was also 
generated (Extended Data Fig. 8b). The following primer sequences were used:

ACADM exon 6 forward: 5’ ccaatagaaactgggcatatgattagtgcatttcactatagtaga 
3’; ACADM exon 6 reverse: 5’ tgtctccacatgcccagatctattatgatactttcttggca 3’; 
ACADM mutant reverse: 5’ cgaagaaaactgacattaaa 3’; ACADM mutant forward: 5’ 
tttaatgtcagttttcttcg 3’; HBB exon 1 forward: 5’ gcaacctcaaacagacacca 3’; and HBB 
exon 2 reverse: 5’ agcttgtcacagtgcagctc 3’.

Plasmid DNA containing wild-type or mutant reporter was transfected 
into HEK293 cells and spliced reporter transcripts were analyzed by reverse 
transcription PCR (Extended Data Fig. 8c). As expected, the wild-type reporter 
construct exhibited constitutive inclusion of ACADM exon 6 in the HBB 
transcript. By contrast, the −14A>G mutation induced a new isoform with 
reduced electrophoretic mobility, suggesting activation of a cryptic 3’ splice site, 
confirmed upon sequencing the amplicons derived from the wild-type or mutant 
reporter transcripts (Extended Data Fig. 8d). Assuming that the −14A>G mutation 
also activated a cryptic 3’ splice site in the endogenous ACADM pre-mRNA, the 13 
nucleotide extension of exon 6 in the ACADM mRNA would induce a premature 
termination codon and result in nonsense mediated decay of the aberrant message 
(Extended Data Fig. 8e). Taken together, our data indicate that the −14A>G 
mutation is sufficient to induce aberrant splicing of ACADM intron 5 and results in 
a defective mRNA isoform.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The de-identified residual DBS from the California Biobank for this project (SIS 
request number 496) were obtained with a waiver of consent from the Committee 
for the Protection of Human Subjects of the State of California, under project 
no. 14-07-1650 and in compliance with CDPH Biospecimen/Data Use and 
Confidentiality Agreement. California blood specimens and any data derived from 
the newborn screening program are confidential and subject to strict administrative, 
physical and technical protections. California law precludes any researcher from 
sharing blood specimens or uploading individual data derived from these blood 
specimens into any genomic data repository. Researchers desiring access to these 
data would need to make a separate application to the CPDH. Data in Fig. 2b,c and 
Extended Data Figs. 6, 9 and 10 can be found in Supplementary Table 3.

Code availability
Variant calling and annotation for the exome sequences were performed using 
previously published methods as described above. The code used for the screening 
analysis of exome data and subsequent assessments are deposited in GitHub 
(https://github.com/nbseq1200/NBSeq1200paper).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Metrics for WES reads and coverage. a, Percentage of reads unmapped to the reference genome. b, Percentage of high quality read 
pairs (MQ > 20), without duplicates and properly paired. c, Percentage of duplicates in the reads across three sequencing batches d-e, Number of reads 
and high quality reads plotted batchwise. f, Inferred insert sizes plotted batchwise. g, Median coverage across Nimblegen capture region plotted batchwise 
h, Median coverage across 78 genes region plotted batchwise. i, Median fraction of capture covered at coverage depths of 1x to 30x plotted batchwise.  
j, Median fraction of 78 genes region covered at coverage depths of 1x to 30x plotted batchwise. In figures a-f and i-j, individual sample values are plotted, 
and adjacent box plots display the median (red) and interquartile ranges for the dataset, whiskers extend to the last data point within 1.5 times the 
interquartile range. The sample sizes for the boxplots in a-h were: batch1 (n = 180), batch2 (n = 292), batch3 (n = 744). Violin plots superimposed on the 
box plots show the data density and mean value (blue).
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Extended Data Fig. 2 | DNA damage related metrics for the three sequencing batches. a, b, Fraction of reads with 0 (green), 1 (yellow), 2 (orange), and 
≥3 (red) mismatches with reference genome considering (a) all bases of the reads and (b) first 100 bases of the reads. Batches 1 and 2 had read lengths  
of 101 bases and batch 3 had read length of 151 bases. All three batches had similar mismatch rates when only the first 100 bases were considered.  
c, Nucleotide mismatches by base change (NMBC) in the 1216 samples plotted batch wise. d, Frequencies of all single nucleotide changes by base type 
in high quality SNVs in the 1216 samples plotted batchwise. High quality SNVs from the VCF calls defined as marked PASS by GATK VQSR algorithm and 
with GQ ≥ 30. In both c and d, box plots display the median and inter quartile ranges for the dataset, whiskers extend to the last data point within 1.5 times 
the interquartile range and outliers beyond this are marked with circles. The sample sizes for the boxplots were batch1 (n = 180), batch2 (n = 292),  
batch3 (n = 744).

NATURE MEDiCiNE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


LettersNaTurE MEDICINE

Extended Data Fig. 3 | Variant related quality metrics for 1,216 samples plotted batch wise. a, Confident sites across capture (from the GVCF file) 
b, Confident sites across 78 genes (from the GVCF file) c, Common high quality SNVs d, Rare high quality SNVs e, Common high quality indels f, Rare 
high quality indels g, Transition/Transversion ratios for high quality common SNVs h, Transition/Transition ratios for high quality rare SNVs. High quality 
variants are those marked as PASS by GATK VQSR and have GQ ≥ 30. Common variants have a frequency greater than 0.001 in 1000 Genomes Project 
phase 3 database and rare variants have a frequency less than 0.001 in the database. Individual sample values are plotted and adjacent box plots display 
the median (red) and interquartile ranges for the dataset, whiskers extend to the last data point within 1.5 times the interquartile range. Violin plots 
superimposed on the box plots show the data density and mean value (blue). The sample sizes for the boxplots were batch1 (n = 180), batch2 (n = 292), 
batch3 (n = 744).
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Extended Data Fig. 4 | Example showing variability of gene coverage in two iEM genes in the study across 1,216 samples. MCCC2, top, has poor coverage 
in the first exon across all samples. In contrast, ACADM, bottom, has good coverage across the gene. The blue vertical lines indicate positions with known 
pathogenic variants in HGMD and ClinVar. Plot of log10 of the median, 20th percentile and minimum coverage for each coding exon across all samples for 
a given sample set. Dark grey: Median coverage, medium grey: 20th percentile coverage, light grey: minimum coverage for each position. Coverage quality 
of each exon is indicated by colored blocks beneath the exon. Coverage quality of each exon is indicated by colored blocks beneath the coverage plot. Red: 
Greater than 15% of exon has less than 10x median coverage; green: 95% of the exon has minimum 20x coverage. UTRs that are part of the coding exons 
have a smaller indicator thickness. Regions of the exon that overlap with the capture array are indicated in blue just below the coverage plot. Exon scale in 
bases is shown in each plot.
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Extended Data Fig. 5 | Alternative pipelines derived from the final exome analysis pipeline to explore sensitivity-specificity tradeoffs. We created 
several alternate pipelines, altering or truncating different parts of the final exome analysis pipeline to probe contributions to overall sensitivity and 
specificity from various components of the pipeline. For each pipeline, the overall sensitivity and specificity on the NBSeq test set are shown. a, Final 
exome analysis pipeline b-i) Alternatives: b) Altering final pipeline by considering every CNV call homozygous c-e) Truncating the CNV arm, curation arm 
and predicted impact arm, respectively. f-g, Retaining the predicted impact arm or curation arm only, respectively h) Retaining only the rare pathogenic 
HGMD & ClinVar databases i) Allowing multiple gene calls for each sample if more than one gene predicted.
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Extended Data Fig. 6 | Distribution of variants reported by the exome analysis pipeline in the NBSeq test set. a, Number of different variant types 
reported by the pipeline in IEM-affected individuals in genes associated with their IEMs the NBSeq test set (n = 674 individuals). b, Distribution of the 
types of variants responsible for the predictions of disease status in the 571 affected individuals correctly identified by the exome analysis pipeline.
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Extended Data Fig. 7 | Whole genome sequencing confirms potential IVD deletions in two individuals diagnosed with isovaleric acidemia initially 
missed in exome. In two cases where we performed WGS upon follow up of an exome false negative, we identified large deletions in the associated IVD 
gene. The WGS read alignments in the genomic region spanning the IVD is shown on the right for the two cases. The first case had almost no coverage in 
the region spanning the first three exons of IVD. The second case had almost no coverage of exon 12 of IVD along with low coverage across the whole gene. 
The first case had 11 split reads spanning the deleted region confirming the deletion event of the first three exons.
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Extended Data Fig. 8 | Experimental splicing assay of a potentially pathogenic intronic variant in an exome false negative case. a, In an individual 
affected with MCADD, the exome analysis pipeline reported only a single rare nonsynonymous variant. A second rare intronic variant 14 bases from the 
splice site (NM_000016.4:c.388-14A>G) was a suspected pathogenic modification of the branchpoint A nucleotide. b, Diagram of the heterologous 
HBB splicing reporter construct containing the wild type ACADM sequence or the c.388-14A>G variant. c, RT-PCR analysis of reporter transcripts from 
wild type or mutant (lanes 1 and 2, respectively) reporter plasmids expressed in HEK293T cells (amplicons resolved by 12% PAGE and stained with SYBR 
Gold). The two spliced products are shown to the right of the gel image. The experiments were performed three times independently with similar results. 
d, Chromatograms corresponding to the sequence spliced junctions between HBB exon 1 and the wild type or mutant ACADM exon 6 constructs (left 
and right panel, respectively). e, Open reading frame of aberrant ACADM mRNA containing a 13 nt extension of exon 6 (red), resulting in a premature 
termination codon (PTC, *). Top, DNA sense strand; middle, predicted polypeptide; bottom, DNA reverse complement.
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Extended Data Fig. 9 | Stratification of iEM-affected and MS/MS false positives by alleles reported by the exome analysis pipeline for NPV estimation 
of NPV of exome as a follow-up test after a positive MS/MS screen. For six MS/MS screens (VLCADD, PKU, LCHADD/TFP, IVA, MSUD, and GA-II), 
IEM-affected and MS/MS false positive cases in the NBSeq test set are stratified by the number of alleles reported by the exome analysis pipeline in the 
genes associated with those screens.
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Extended Data Fig. 10 | Zygosity distribution of variants reported by the pipeline in relevant gene(s). For each IEM, bars show the zygosity distribution 
of the variants in relevant genes reported by the exome pipeline for the 674 IEM-affected cases from the test set. The numbers of cases correctly identified 
by the pipeline are broken down into those that had homozygous variants in relevant gene(s) (dark blue) and those that had two heterozygous variants 
in relevant genes(s) (orange). The number of cases that failed to be identified by the pipeline are broken down into those that had one heterozygous 
variant in relevant gene(s) (light blue) and those that had no reported variants in the relevant gene(s) (dark red). Left, core IEMs screened by California; 
right, secondary/add-on IEMs. IEMs sharing a common causative gene were not distinguished by the exome predictions alone. These included TFP and 
LCHADD (blue shading), PKU and hyperphenylalaninemia (pink shading), and the various MMA subtypes (yellow shading).
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A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Residual, de-identified newborn dried blood spot samples were obtained from the California Genetic Disease Screening Program (GDSP) 
and used to prepare DNA for exome sequencing. The GDSP Screening Information System (SIS) is a custom database of the California 
Department of Public Health Information Technology Services Division. It houses all case data for the newborn screening and follow-up 
programs. Information available at GDSPAdmins@cdph.ca.gov

Data analysis The 1,416 samples were sequenced in three batches (Batch 1: 188 samples, Batch 2: 411 samples, Batch 3: 817 samples) and the QC 
metrics were grouped accordingly. Batches 1 and 2 had paired-end read lengths of 101 bp whereas batch 3 had paired-end read length 
of 151 bp. Raw sequences were mapped to the reference genome (v37), using BWA mem algorithm (v0.7.10). Resulting SAM files were 
converted to binary format, sorted and lane merged using Picard tools (v1.81). Duplicates were marked in the alignment files with Picard 
tools v1.81 (http://broadinstitute.github.io/picard/). Next, realignment around known indels and base quality score recalibration were 
performed using GATK toolkit (v3.3). Variants were called using the GATK Haplotype Caller function and the variant scores were 
recalibrated with GATK VQSR function. Combined calling was used on all samples. Variants were annotated using Varant (http://
compbio.berkeley.edu/proj/varant/Home.html), a custom tool, as described, with the following public datasets: Gencode (v19), APPRIS 
(v24), 1000 Genomes (phase 3), ESP Project (ESP6500SI-V2-SSA137), Exome Aggregation Consortium (ExAC v0.3.1), Combined 
Annotation Dependent Depletion (CADD) (v1.3), MetaSVM and MetaLR from dbNSFP v3.1a, and dbscSNVv1. Variants previously 
associated with disease from HGMD (v2014.1), and those with star ratings for known deleterious variants from ClinVar (ftp://
ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/variant_summary.txt.gz, accessed September 2017) were added to the call set. Copy 
number variant (CNV) calls on all 1,190 NBSeq samples were made using XHMM. Using the IGV browser, we further manually inspected 
the read alignment, mapping quality and overall coverage in the associated genes in sample BAM files in every exome false negative case 
in the validation set. The code and scripts used for the screening analysis of exome data and subsequent assessments are deposited in 
GitHub (https://github.com/nbseq1200/NBSeq1200paper)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The de-identified DBS from the California Biobank for this project  (SIS request number 496) were obtained with a waiver of consent from the Committee for the 
Protection of Human Subjects of the State of California, under project number 14-07-1650, and in compliance with CDPH Biospecimen/Data Use and Confidentiality 
Agreement.  California blood specimens and any data derived from the newborn screening program are confidential and subject to strict administrative, physical 
and technical protections. California law precludes any researcher from sharing blood specimens or uploading individual data derived from these blood specimens 
into any genomic data repository.  If other researchers desire access to these data, they would need to make a separate application to the California Department of 
Public Health. Data in figures 2b and 2c and Extended Data Figs 6,9,10 can be found in Supplemental Table 3.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No sample size calculation was performed. The sample size reflects the total number of affected cases in California in the study period, all 
false positive cases for a select set of disorders from the well-baby nursery. From the roughly 4.4 million children born in California July 7, 
2005, to December 31, 2013, we obtained two de-identified 3.2 mm punches from dried blood spots (DBS) obtained for newborn screening 
(NBS) from each of 1,728 newborns. The samples included those from all 1,325 infants screened by tandem mass spectroscopy (MS/MS) who 
were subsequently confirmed to have an inborn error of metabolism (IEM), as well samples from 9 cases not identified by MS/MS screening, 
but diagnosed clinically. Also included were 394 MS/MS false positive cases selected from 10,011 individuals, for whom MS/MS screening was 
positive, but who were ultimately diagnosed as unaffected. All MS/MS false positives from well-baby nurseries for the long-chain fatty acid 
oxidation disorders (VLCAD, LCHAD, MADD), and three other IEMs (PKU, MSUD, IVA) were requested to investigate the hypothesis that 
genetic variants could underlie the abnormal analytes leading to false positive MS/MS results.  We sequenced 1,416 exomes and analyzed 
1,190 exomes out of the 1,416 that passed quality control metrics and were phenotypically relevant. This is the largest study to date 
addressing the question of exome sequencing for IEMs, and the study was highly powered to provide accurate estimates of sensitivity and 
specificity in the test set.

Data exclusions From the 1,728 de-identified dried blood spots obtained, a random subset of 312 non-Hispanic white and Hispanic cases for SCADD, 3MCC, 
and elevated phenylalanine,  were excluded due to budget limitations. Of the 1,416 samples sequenced, 200 were further excluded as they 
did not meet quality thresholds set for the study, and 26 were excluded as they were affected with disorders not under evaluation in the 
current study. Exclusion criteria for the random subset of 312 cases were not pre-established. The quality metrics that resulted in the 
exclusion of 200 cases were pre-established. The 26 cases excluded due to the underlying disorder were excluded based on pre-established 
criteria.

Replication A validation set was used to design the automated exome analysis pipeline. The automated exome analysis pipeline (Fig. 2a, main paper; code 
available at https://github.com/nbseq1200/NBSeq1200paper) was run once on each sample in the NBSeq test set while blinded to any 
phenotypic data, reflecting a typical application setting for a primary newborn screen. The clinical team generated a “reviewed diagnosis” key 
for all NBSeq study cases based on the strength of evidence for the clinical diagnoses recorded in the GDSP database and recent literature. 
This reviewed diagnosis key was used to compare clinical diagnoses with exome predictions. The test set is a replication study of the validation 
set results – and the sensitivity and specificity derived from the test set replicated what was found in the validation set. That was the only 
replication study performed or needed.

Randomization We first arbitrarily divided the 1,190 samples into a validation set (178 samples) in which we were unblinded to final diagnosis so as to explore 
the robustness of parameter choices in our exome analysis pipeline (data not shown), and a test set (1,012 samples), which was subjected to 
the final optimized pipeline only once and whose results are reported here. 

Blinding The team developing the analysis pipeline (A.N.A., Y. W. and S.E.B.) were blinded to the test set during pipeline development and assessment. 
S.E.B. remains blinded to permit future analyses on this unique dataset. 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Population characteristics This study employed residual DBS derived from individuals affected by IEMs during an 8.5yr period in the State of California, as 
well as all of those who screened positive for 6 IEMs.  A random subset of 312 non-Hispanic white and Hispanic cases for SCADD, 
3MCC, and elevated phenylalanine were excluded due to budget limitations

Recruitment The NBSeq project used deidentified newborn dried blood spot samples obtained from the California Biobank Program (SIS 
Biobank request ID number 496) in compliance with CBP Biospecimen/ Data Use and Confidentiality Agreements. The CBP 
contains biospecimen and data resources of the California Department of Public Health’s Genetic Disease Screening Program 
(GDSP), which administers the Newborn Screening Program in the state of California. Samples and data are made available to 
researchers for approved purposes, including the development and evaluation of screening tests and strategies. 

Ethics oversight This study was approved by the California Committee for the Protection of Human Subjects (CPHS), under project number 
14-07-1650. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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