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Abstract. Protein design promises immense rewards for science, medicine, 
and technology. However, to date, virtually all approaches to the problem 
have been qualitative and largely intuitive. This paper presents a quantita- 
tive methodology for the de novo design of proteins as well as supporting 
algorithms, including a parallel simulated annealing optimization protocol. 
With these algorithms it is possible to choose sequences that should adopt 
any plausible structure. A protorype design system has succeeded in 
selecting sequences that appear correct to a variery of analyses. 

1. Introduction 

Proteins are linear pseudo-polymers of amino acids that fold into unique three- 
dimensional structures whose shapes depend entirely upon the linear sequence. Though 
researchers have been attempting to understand the forces governing this folding process 
for decades, the problem remains largely unsolved: we can not determine the conforma- 
tion a protein will adopt from knowledge of its sequence. W~thin the past few years, 
however, it has been recognized that the reverse problem-finding a sequence which will 
fold into a desired structure-may be considerably simpler. 

The recent explosion in the techniques of molecular biology has provided the 
practical tools needed to construct novel proteins, and studies of the three-dimensional 
structures of proteins over the last few decades have provided many of the basic 
principles which are important in maintaining these structures. The combination of 
these two areas of research with the goal ofdesigning new amino acid sequences that will 
adopt a desired structure is now one of the outstanding aims of modern biochemistry. 

The benefits of an ability to design "custom-made" enzymes are incredible. For 
example, while most conclusions about the fundamental elements of protein structure 
have been from the observation of natural proteins, evolution has probably constrained 
natural sequences and structures to a subset of the full potential range [I, 21. Separating 
chance from necessity has been one of the principal challenges of modern protein 
structure studies. Without manipulating protein sequences directly, it is impossible to 
ask questions such as whether alternative packings between secondary structure ele- 
ments are forbidden by nature or simply inaccessible to evolution, and what general 
constraints exist on protein sequences in a given fold [3]. 
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Figure 1. Models of two designed four-helix proteins: Felix and Alpha-1. A. Felix was designed to adopt 
a four-helix bundle with a disulfide linkage. The structure was drawn from the model coordinates in 
PDB entry lflx. B. The structure of Alpha-1 was confirmed by crystallography (PDB entry ldl), bur 
these helices aggregated to form a hexamer instead of the desired tetramer. These figures and others in 
the text were drawn with molscript [67]. 

In addition to fundamental scientific understanding, there are several other reasons 
for designing proteins. Perhaps the most obvious utility of this work is the construction 
of new catalysts, since proteins may be capable of carrying out reactions presently 
requiring dangerous or expensive reagents at high concentrations, temperatures, or 
pressures. Of similar economic importance is the ability to create "molecular toolkits" 
of custom-made proteins, designed to fulfill a variety of complementary tasks. Vision- 
aries imagine using these individually in nanotechnology or in coordinated groups for 
"molecular computing [4]. Protein design also has implications for medicine in roles 
such as antigen display [5,  61 and degradation-resistant protein mimetics. Most 
importantly, a better understanding of protein structure will aid our ability to compre- 
hend and subvert the molecular mechanisms of illness and disease [7]. 

2. Protein Design 

2.1. Design by ModcIing 

It is unsurprising, therefore, that many groups have attempted to build new proteins. 
One of the earliest de novo protein design attempts was to build a beta-bell protein with 
a structure similar to catalase domain 2 [B]. After selecting a suitable structure and 
making a "template" upon which to place a sequence, the sequence itself was selected. 
The first consideration in the beta-sheets was the hydrophobic-hydrophilic character of 
single positions. At the turns, statistics about residue frequencies in specific positions 
[9] were manually, qualitatively applied. Similar criteria [I 0- 131 were then applied to 
find residues which most commonly form beta-sheets. Compromises were made to 
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provide sequence diversity and to facilitate packing within the sheet, and further trade- 
offs accommodated three dimensional "pairing preferences." With a complete sequence 
in hand, the structure was visually examined for inter-sheet packing, and some further 
modifications made. The final structure was then subjected tovarious tests ranging from 
energy minimization to manually shaking a CPKmodel. While initial attempts to build 
the protein failed, iterative modification of the sequence has led to the construction of 
proteins with some characteristics of the desired structure. 

This design approach has been concisely summarized [14], and Figure 2 diagram- 
matically shows the procedure. Note that the most important step, choosing an 
appropriate amino acid sequence, is performed manually using "physical, statistical, and 
intuitive criteria" [15]. This clearly described and relatively straightforward, iterative 
method is what I term design Ly modeIing, because the principal task is ensuring that the 
designed sequence could reasonably fit into the desired structure. 

This general protocol has been employed by a large number of different groups to 
seek alternative amino acid sequences for a variety of well-studied folds, Perhaps the 
most commonly attempted structure is the four-helix bundle [lG-201, two example of 
which are shown in Figure 2. Another popular structure is the alpha-beta barrel [2 1,221. 
In addition, a variety of other natural-like structures have also been designed [14,23]. 
In a similar manner, sequences have also been selected for folds not found naturally, such 
as a miniature antibody-type structure [GI, and an "open sandwich," consistingofa four- 
stranded antiparallel beta-sheet with one side screened by two alpha-helices [24]. 

Unfortunately, with one notable exception [22], none of these medium-size 
proteins has been shown to adopt the structure desired. Perhaps because of this, much 
current research on de novo design uses simpler systems to address more direct 
questions. One such approach is to build only single units ofsecondarystructure rather 
than linking them to form a full protein. 

For example, one group has attempted to build a four-helix bundle out of four 
aggregating alpha-helices called Alpha- 1 [18]. This approach permitted the inclusion 
of sequences with extremely high helix-forming tendencies because there was no need 
to "break" the helix to form turns. A crystal structure showed a curious result: while the 
sequence had formed helices and dimerized, the dimers trimerized to form a hexamer 
with novel structure. A 29 residue peptide designed to dimerize into a double-stranded 
parallel coiled-coil found a similar fate: x-ray crystallography revealed that a triple- 
stranded antiparallel coiled coil was formed instead [Z].  

1 I J v A 
I "Sketch out secondary srrucrure elements, ... 1 ("check quality of the model by analyzing, ... ] . . 

I orientations, and ... topology" I I Isolvarion, electrostatics, or interior ~acki&" I 
V A 

"Construct protein scaffold with "Optimize ... using visual inspection or ... 
exolicit backbone coordinates" usine molecular mechanics sohare" 

"Choose appropriate amino acid 
sequences in interior and surface regions" 

Figure 2. Design by modeling: A flow chart of the protein design methodology described by Sander 
[14]. Variants of this procedure have been used in nearly all protein design projects. 
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Nonetheless, these simpler approaches hold great promise, for the partial failures 
described above were instructive. A four-helix bundle based on Alpha- 1 now shows 
many characteristics of native proteins [26], and a similar bundle made of four helical 
peptides has been shown to adopt the correct structure [20]. However, perhaps the 
greatest success of design by modeling has been the construction ofa small protein which 
forms two alpha-helices linked with a disulfide bond (Figure 3). NMR studies have 
revealed that while the ends of the helices are somewhat frayed, the protein structure is 
much as desired [27]. This experiment clearly aside doubt about the possibility of 
protein design: in a small way, it has been successfully accomplished. 

2.2. Abiotic Protciin Design 

To surmount the relatively small preferences of natural amino acids for forming one type 
of secondary structure over another, many groups have begun experimenting with non- 
protein amino acids. To this end, alpha-aminoisobutyric acid (Aib) and alpha-beta- 
dehydrophenylalanine have been demonstrated to be- powerful 310- and alpha-helix 
initiators [28,29], while 4(2-aminoethy1)-6-dibenzofuranpropionic acid assists in the 
nucleation of beta-sheet structure [30], and the planar structure of alpha, beta- 
unsaturated amino acids has been found to help introduce type two beta-turns [3 11. 
Another non-protein amino acid, (S)-a-amino-(2,2'-bipyridine)-6-propanoic acid has 
been used as a highly ion-specific metal ligand [32]. One of the interesting results of this 
work with non-protein amino acids was the discovery that wen strong helix-breaking 
sequences such as Gly-Pro cannot terminate a helix nucleated by Aib [28]. This suggests 

Figure 3. NMR structure ofALIN. The structure of this antiparallel two-helix designed protein with 
a disulfide bridge was confirmed by 2D-NMR spectroscopy [27]. Coordinates for the structure were 
provided by Y. Kuroda. 
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that an even balance needs to be kept between secondary structure initiating and 
terminating sequences. This, in turn, provides a rationale for the relative instability of 
proteins [33]. 

Using different abiotic means, several groups have taken a more expedient approach 
to building new medium-size proteins. For example, a membrane-channel four-helix 
bundle calledTetraphilin is held together usingan o-arnidophenyl tetraphenylporphyrin 
ring [34]. In order to be assured of forming helices, this new protein also incorporates 
an Aib residue in each helix. "Template-Assisted Synthetic Proteins" employ a slightly 
different tack to force the association of otherwise independent elements of secondary 
structure: the peptide chains are connected to the lysines of a circularized peptide [35]. 
When forced to associate with other helices on a template, peptides with no defined 
structure when free in solution gain high helix content [36]. 

Metal ions provide another way to bind independent elements of secondary 
structure together. For example, a Ru(I1) ion was coordinated to four 15-residue alpha- 
helicesvia a linker to form a remarkably stable metalloprotein. Asimilar system making 
use of a Fe(I1) ion to assemble a three-helix bundle linked by a bipyridine moiety [37] 
is almost certainly the most elegant experiment in de novo design to date. Because of 
the asymmetry of the linker, four stereoisomers of the molecule (due to different 
coordination of the linker to the Fe(I1)) are possible. Reverse phase HPLC separates the 
isomers, making it possible to see if any forms were favored. For some sample helices, 
there was no preference between different forms, suggesting a "molten globule" interior. 
Most design experiments require sophisticated and difficult methods to elucidate the 
protein's structure-and these succeed only when the protein fold is somewhat stable 
and unique. However, this approach provides easy access to information about the 
protein's structure, allowing researchers to quickly determine whether they have 
succeeded in producing specific inter-helix interactions. 

2.3. Generalized Approaches 

While the various design efforts described above have been scientifically valuable, the 
qualitative and intuitive nature of manual design makes it impossible to hlly describe 
all of the criteria and knowledge that enter into the method. In particular, design by 
modeling is fundamentally irreproducible. Therefore, some investigators have created 
more generalized procedures to explore protein design. 

Experimentalists have produced fascinating results by making large numbers of 
random sequences. For example, when proteins were made of 80 to 100 glutarnine, 
leucine, and arginine residues in random sequence, five percent are soluble and resistant 
to intracellular degradation [38]. By contrast, when a four-helix bundle is made with 
designed turns, but random hydrophobic sequence on the interior and hydrophilic on 
the exterior, some GO percent of the proteins survive in the cell [39]. While this result 
does not show that the desired structure was formed frequently, if at all, it does clearly 
demonstrate the importance of the hydrophobic effect in protein structure. 

One of the earliest theoretical studies in protein design worked on a different 
principle, assuming that residue packing is the dominant force in protein folding. TO 
this end, Ponder and Richards developed an algorithm to determine which residues 
could pack to form a particular structure [40]. Thus, it designs sequences whose 
sidechain rotamers are sterically compatible with a given fold. However, this criterion 
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Figure 4. HP (HydrophobiclPolar) model of protein structure. In this model, the structure quality is 
simply the number of hydrophobic (dark) residues neighboring other hydrophobics; polar (white) 
residues have no interactions. If the structure to be designed is A, then Band Care two optimal-quality 
sequences for the fold. Howwer, the variation at position three means that the sequence shown in C 
can adopt sequence Dequally well. The heuristics dweloped in [42] would select Bover C, wen though 
the rwo sequences are o f  equal qualiry, because B incorporates "negative design" for structure D. 
(Adapted from [42],  with permission.) 

seems to become weak and the algorithm too computationally difficult when normal 
variation [41] is permitted within the core of the protein. 

Consequently, other groups have attacked the protein design problem by making 
different assumptions and considerable simplifications. One design system describes 
proteins as strings of hydrophobic and polar residues that lie on a lattice [42]. In this 
model, hydrophobic interactions are the only force driving protein folding; thus, every 
hydrophobic residue touching another hydrophobic residue stabilizes the protein, while 
all other interactions are ignored. The protein design problem is then defined not as 
finding the most stable sequence for a given fold, but finding the sequence that, when 
folded into the desired structure, has a lower energy than when folded into any other 
structure (Figure 4). 

Because this model is uncomplicated, it elegantly contains none of the arbitrary 
parameters and compromises that plague all the other design methods. More important, 
it is defined rigorously enough to be amenable to mathematical analysis. To this end, 
a number of heuristics have been developed for rapidly distinguishing structures likely 
to fold uniquely into the desired structure. 

This approach suggests another reason why protein structures have such poor 
stabilities: rather than having the lowest-energy sequence, a given structure has a 
sequence that has destabilized itself in ways which destabilize other structures even more. 
One can imagine evolution blindly playing a game of brinkmanship, making a protein 
sequence increasingly unstable for the desired structure, in the hope of making 
undesirable conformations have a very high free energy. 

If this is indeed the case, and if secondary structure lies in a delicate balance between 
nucleation and termination, then protein design is a task requiring even more subtle 
weighting and compromise than would be suggested by the experience of design by 
modeling. To attempt to optimize a function of such a huge number of parameters with 
any degree of sophistication, a quantitative method is necessary. In addition, reproduc- 
ibility of the procedure when applied to different structures is necessary to ensure that 
i t  encapsulates genuine general and fundamental information about protein structure. 
For this reason, it is necessary to make use of a filly qualified methodology to select new 
protein sequences. 
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3. A Quantitative Methodology for Design of Proteins 

3.1. Methodology 

In order to explore the field ofprotein structure, I have developed a design methodology 
that attempts to combine the comprehensibility and relative success of design-by- 
modeling experiments with the scientific rigor of the generalized methodologies [43, 
441. At its core, this extensible protocol uses quantitative statistics about all known 
protein structures. In addition, the methodology employs a theoretical model to 
incorporate anti-design (as in Figure 4) and various "hints" such as specific features of 
particular folds and requirements for functionality These parameters are combined as 
a weighted sum which measures the quality of a particular sequence for a particular 
structure. To design a protein, this quality evaluation function is optimized for a given 
structure. 

As the evaluation function incorporates information about all natural protein 
structures, the procedure is general, automated, and reproducible. Any fold to be 
designed can be fed into the design system, and optimization ofthe evaluation function 
will generate a sequence that should adopt that structure. 

The decision to embrace statistics for the evaluation function relies upon the 
following assumptions: 1) It is possible to derive statistics about residues that are capable 
of incorporating sufficient thermodynamic information to form correctly folded 
proteins and 2) Thermodynamics will be completely dominant over kinetics in the 
formation of the protein structures; i.e., folding intermediates need not be considered. 

Unfortunately, there is no conclusive proof that either of these assertions is true, and 
a formidable amount of evidence mitigates their veracity. Indeed, the success or &lure 
of the design system is a partial test of these claims. However, the success of the 
statistically-based quantitative design system may not be predicated on these assurnp- 
tions being entirely true, and it seems that both assumptions have some merit. In 
particular, there is much evidence that statistics can reveal and describe significant 
features of protein structure. Not only are many statistics intuitively comprehensible 
(e.g., the high fraction of prolines in turns), but statistical methods seem to be capable 
of distinguishing some correct structures from incorrect ones and even matching 
sequences with folds [45-481. Additionally, while it is dear that, in general, the folding 
process cannot be entirely ignored (as shown by the existence of proteins that can not 

Category Parameters 
Position Secondary Structure 

Solvent Accessibility 
"Cap" Positions 
Torsion Angles 

Uniqueness Theoretical Models 

Category Parameters 
Neighbor Primary Structure Neighbors 

Secondary Structure Neighbors 
Tertiary Structure Neighbors 
Total Surface Area Neighbors 
Size 

Hints Motifs from the Literature 
Functionality 
Ease of Synthesis 
Suitabili for Characterization n 

Table 1. Several parameters for the quantitative design methodology. 
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be reversibly denatured), it seems unlikely that any particular folding intermediates are 
absolutely necessary for the small proteins currently being designed. 

The statistics are obtained by scanning the protein databank (PDB) [49, 501 and 
ascertaining various characteristics of individual residues. The method includes 
virtually all variables which could have effects on structure and which can be measured 
and fruitfully applied to protein design. It is probable that some of these features are of 
marginal importance. However, because the methodology provides the ability to specrfy 
explicitly the importance of one feature relative to another, rules derived from less 
important parameters can be assigned lower weightings. 

All of these statistical parameters are divided into two categories for the computa- 
tional reasons described in 93.3. PositionpreferPnces are those that relate a position in 
a protein structure with an amino acid at that point and are independent of the types 
of other residues in the protein. The complementary category, neighbor preferences, 
describes the likelihood of a given residue having specific atoms, residues, or structures 
nearby. Examples of these parameters are shown in Table 1. 

However, because "showing that a sequence fits well with one particular structure 
does nothing to prove that there is not another structure it fits even better" [51], it is 
necessary to incorporate "anti-design" for other potential structures. For this reason, the 
heuristics developed by Yue & Dill [42] (see 52.3 and Figure 4) are included to provide 
uniqueness of structure. 

Since it is possible that particular structures have features which are not general, it 
also necessary to provide various hints to the design system. In addition to including 
these large motifs, this category can also provide features related to functionality or 
information to aid synthesis and characterization of the designed protein. 

3.2. Protein Structure Databare Weighting 

For a statistically-based design system to succeed, the selection of parameters measured 
is of paramount importance. However, in order for these parameters to be meaningful, 
it is also imperative that the statistics be collected in a carefully selected manner, taking 
account of the data-set from which they derive. This is particularly important when 
dealing with protein structure information, because the PDB is immensely biased 
towards certain structures and contains data of variable quality. To surmount this 
problem, many researchers simply select a small number of "model" structures [52]. 
However, recently a new, quantitative method for selecting a unique subset of the PDB 
of high quality has been developed; in effect, it selects a single structure of high quality 
from each cluster of homologous proteins in the database [53]. 

Even this, though a vast improvement, is not entirely satisfactory for statistical use 
of the PDB. By selecting only a single representative of each fold, the overwhelming 
majority of the entries in the database-and the data they contain-is excluded from 
consideration. For this reason, I have developed a protein structure weighting algorithm 
that removes bias while ensuring arbitrarily high average structure quality and retaining 
nearly all of the information in the database 143,541. Under this scheme, better quality 
structures or those that are unique in the database garner high weightings, while poor 
or over-represented ones receive low weightings. If natural proteins are assumed to be 
wenly distributed and the center of gravity ofknown protein structure classes is assumed 
to correspond with that of natural proteins, then these weightings can then be applied 
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to statistical data from the PDB to deduce "global" features of proteins. 
Figure 5 diagrammatically shows how the algorithm would operate on two proteins 

with some overlapping content. If the two proteins shown in Figure 5Awere both to be 
used in some statistical analysis, a bias would result from the overlapping character of 
the two proteins. To compensate for this by weighting, the similar portions of the two 
proteins are first notionally separated from those regions which are unique, as shown in 
Figure 5B. (The weighting protocol does not actually separate portions of sequence or 
structure and weight them differently. Rather, it assigns the whole protein the weighted 
average of the scores computed for overlapping and unique sections ofthe protein.) The 
similar regions of the two proteins are then individually considered (5C) and assigned 
a weighting according to their quality, such that the sum of the two weightings is unity 
(the weighting of a unique protein). Quality is determined by considering 1) how fine 
the experimental data are (the resolution), 2) how well the protein structure model fits 
the data (the R-value), and 3) how well the structure resembles "reality" (the bond angles 
and other stereochemical checks). In Figure 5D, the protein on the left is of about half 
the quality of the darker one on the right. If the weighted portions of protein are 
reassembled, as in Figure 5E, it is clear that there is now a uniform weighting of difTelent 
structure types, where redundant information has been weighted according to quality. 

Figure 5. A protein structure weighting scheme. See $3.2 for explanation; reproduced from [43,44]. 
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Figure 5F shows how a database might "appear" after being weighted according to this 
method. 

3.3. Ternary Division Sum Optimization 

Once parameters have been selected for inclusion in the design system and the relevant 
statistics collated, they can be used for automatically designing protein sequences. This 
is accomplished by optimizing a function over sequences which assigns qualities for a 
given structure. 

It is trivial to optimize a function of thepositionprej.kencer, at each position, simply 
select the residue that has the highest statistical quality. Because every site is independ- 
ent, the complexity of such an algorithm would be merely O(n). However, the neighbor 
prejerences mean that each residue is not independent. If it were necessary to consider 
all potential interactions between different positions, the optimization problem would 
be ofexponential complexity. However, ifonly immediate neighbors are considered, the 
problem becomes markedly simpler: a high-order polynomial algorithm exists to 
optimize position and neighbor preferences in one dimension (Steven P. Ketchpel, 
personal communication). Ternary division sum optimization (TDSO), a variant on 
Ketchpel's algorithm which is considerably more efficient, can be applied to protein 
design. 

The algorithm which works on the principle that the best sequence is the one with 
the best beginning plus middle plus end. As shown in Figure 6, TDSO first appends left 
and right "end-capsn to the sequence. Then it computes the position preference for each 
of the 20 types of residue at the central location. It then adds, to each of these, the 
recursively computed qualities of the left and right sides using the current central residue 
as the right and lefi end-cap, respectively, for the sides. Recursion is ceased when no 

0 Position Preference 

Neighbor Preference 

Figure 6. Schematic representation of TDSO algorithm. Line I shows a model sequence of length 
seven, with left and right end-caps appended. The optimal sequence is that which has the best left, 
middle, and right portions. The middle is simply the position preference of a particular residue io in 
the central position. The optimal lefi and right halves for that residue are computed recursively using 
the current middle residue as an end-cap. Line 2 shows the left side, and line 3 shows the lefi side of 
that sub-sequence. Recursion ceases when, as in line 3, the lefi and right sides consist only of end-caps; 
at this point all half-neighbor preferences are summed with the position preference. 
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central position can be selected, and then several half-neighbor preferences are com- 
puted. (A half-neighbor interaction is the preference of the residue at one position for 
its neighbor on one side. In total, there are four half-neighbor interactions at each 
position: the preferences of the residue at that position for each neighbor, and the 
preferences of both neighbors for it.) 

When TDSO is extended beyond one dimension to an arbitrary graph, it is 
impossible to pick a center pivot position which will divide the graph into two disjoint 
ones. Instead, it is necessary to find a set of nodes which together partition the graph 
into two subgraphs. However, instead of needing to test 20 residues at the center 
position at each recursive level, it is necessary to test all combinations of residues at all 
the positions. If there are m border nodes, then 2 0 m  different partitions must be tested 
and must then summed with the best "left" and "right" subgraphs to find the best set of 
residues for the entire graph. As expected, the complexity of the algorithm increases as 
the connectivity increases. 

Although the running time of this algorithm grows dramatically with sequence 
length, it may still be tractable if various approximations are applied, including alpha/ 
beta cutoffs [55,56] and heuristics that reduce the number of choices at each position 
from 20 residues to just a few classes (e.g., hydrophobic, polar, and neutral). The 
algorithm is simple to parallelize, and it should be able to achieve near-ideal speedup on 
massively parallel computers because it has virtually no communications overhead. 

3.4. Dekzyed- Update Parallel Simuhted Annealing 

While (nearly) every natural protein adopts only a sirigle structure, any given natural 
structure can be formed by several diierent sequences. Consequently, it is unnecessary 
to select the best possible sequence as computed by the design methodology; near- 
optimal sequences will provide satisfactory results. Indeed, since the margins of error 
in the various rules which contribute to the overall methodology are considerable, the 
best sequence computed by the statistics is unlikely to optimize the underlying 
parameters that the statistics attempt to describe. Moreover, as sequences similar to the 
optimal one will be close to it in energy, stochastic sampling and optimization methods 
suggest themselves as time-efficient methods of designing new proteins. 

It is possible to apply a straightforward simulated annealing protocol [57,58] to the 
protein design problem by setting the elements as follows: 

ConFguration: The protein is a sequence of residues 1.. .n, each ofwhich can be 
any of the 20 principal biological amino acid residues. 
Rearrangementc A residue at a particular position may be mutated to any other 
randomly selected residue. 
Objectivefinction: This is the quality measure described in 93.1. 
Annealing schedule: While the precise schedule must vary with the particular 
parameters included in the objective function, it has been found useful to make 
rearrangements in an ordered way, by iterating over the sequence until specified 
number of mutations in the sequences occur, at which point the temperature is 
dropped. 

While this method can produce results very quickly when using easily computable 
quality measures on small proteins, it becomes inconvenient when working with large 
proteins and complex objective functions. Even in these complex instances, the 
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Figure 7. Schematic representation of DUPSA data distribution. The boxes represent positions in a 
sequence to be selected, and each circle represents a compute node containing a small number of these 
positions. Because the optimization requires neighbor information, communication (arrows) is 
required between nodes holding neighbor residues. 

computational design procedure is much faster than actually synthesizing the designed 
protein. However, to develop, test, and improve the design methodology it is necessary 
to generate large numbers of sample sequences. Therefore, methods to increase the 
speed of designing new sequences are of considerable practical utility. 

Because the objective function is principally the sum of the qualities of each of the 
individual positions (the uniqueness and hints parameters may abrogate this rule and 
need to be dealt with specially), it is not d%cult to parallelize the simulated annealing 
algorithm. To do so, the sequence is divided evenly across the compute nodes of the 
parallel computer and each node finds the best amino acids for the region of sequence 
assigned to it. Because of the neighbor preferences, every node needs to keep a record 
of the current neighbors of all of the positions which it is trying to optimize. Inter-node 
communication is used to provide this information as the simulated annealing progresses. 
Figure 7 diagrammatically represents the division of sequence over the compute nodes. 

Synchronous communication must be used if this algorithm is to be isomorphic 
with theserial optimization algorithm. That is, each node mustwait until it has received 
messages containing information about the current neighbors before proceeding with 
the annealing. Coded this way, the parallel algorithm does provide significant speed 
enhancement over the serial in many cases. However, as the number of neighbors 
increases, the communication overhead grows dramatically. 

Asynchronous message passing provides a partial solution to this problem: rather 
than waiting to receive information about changed neighbors, each compute node 
optimizes its sequence with the most recently received information. This means that 
there is a potentfallyproblematic delay between when a neighbor residue is changed and 
when this change is registered. However, for the design systems tested, this gap during 
which out-of-date neighbor information is used had no detrimental effect on the final 
sequences. Thus, this Delayed-Update Parallel Simulated Annealing (DUPSA) proto- 
col selects sequences as well as the serial simulated annealing protocol in a fraction of the 
time. 

4. A Model System 

4. I .  Construction 

A complex quantitative design system contains a multitude of parameters, making it 
difficult to understand directly how particular characteristics have interacted to produce 
the resultant sequence. Therefore, a comparatively simple model protein design system 
was created to gain some understanding about the overall feasibility and promise of 
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quantitative protein design. In addition, one of the most difficult tasks in building the 
design system is determining appropriate weightings for each of the various parameters 
(e.g., how important is secondary structure preference relative to solvent accessibility?). 
A basic system which contained only the most important parameters facilitated setting 
the weightings on these parameters to approximately correct values, which will be altered 
only slightly when more abstruse criteria from the methodology are added to fine-tune 
the output. 

The central components of the model system were secondary structure preference 
and solvent accessibility, both of which are statistical position preferences (see 93.1). 
Primary structure neighbor preference was also incorporated mainly as a test of the 
optimization procedures' ability to operate on neighbor parameters. In addition, it 
readily became apparent that a diversity hint, which ensures that the composition of the 
sequences models that of natural sequences, was necessary because of the particular way 
in which solvent accessibility is measured. (For a detailed description of the measure- 
ment of these parameters, and the details of both optimization procedure and analysis, 
see [43,44] .) 

The design system accepts detailed information about the protein to be designed, 
and then applies the parameters listed above to find the optimal sequence for that 
structure. For example, alanine would receive a good position preference score at a 
hydrophobic position in an alpha-helix, while lysine would score well in a hydrophilic 
helical position, and proline in a turn. Optimizing all the parameters over the entire 
structure results in the selection of a single protein sequence. 

The design protocol has been applied to a variety of different proteins including 
phage 434 cro [43, 441, myohemerythrin [59], m~oglobin, hemoglobin, lactate 
deh~dro~enase, and ubiquitin. Here, I report sequences designed by the model system 
to adopt the structure of two different SH3 domains. 

4.2 Designed Sequmces$r the SH3 Fold 

SH3 domains derive their name from "src homology," and characteristically bind small 
proline-rich peptides (for a review, see [60]). Typically, they consist of two beta-sheets 
which lie against each other to form a barrel-like structure. Generally, the sheets are 
composed of five to seven strands, and frequently the strands are not linear, due either 
to bulges or turns. In addition, some SH3 domains contain one or more small helices. 
In the case study here, sequences were designed to fold into the structure of the SH3 
domains of human phospholipase C gamma (PDB entry 1 hsp) [61] and chicken brain 
alpha spectrin (PDB entry lshg) [62]. These sequences are 71 and 57 residues long, 
respectively, although the termini of 1 hsp are from the expression vector and are without 
experimental restraints. 

A wide variety of different weighting of the four constituent parameters were used 
in designing the sequences, which are shown in Figures 8 and 9. The designed sequences 
looked very similar to each other, though they have no significant identity (p < 0.001 
for blastp [63] with the seg filter and match matrix on the May 1994 nr database) to 
either the natural sequences nor to any other protein. Intriguingly, even residues at 
positions strongly conserved between different SH3 domains [62] were not retained by 
the designed sequences. Notwithstanding this, most sequences appeared fairly normal, 
although there was an apparent excess of certain residues (such as lysine) and a strange 
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Figure 9. Sequences designed to adopt the alpha spectrin SH3 domain fold [62],  PDB entry lshg. Line 
ashows the natural protein sequence and blists the crystallographically assigned secondary structure (H: 
helix; E: sheet; L: loop). The numbering on cis in accordance with [62]. Sequences designed by the 
prototype system ($4) to adopt this fold are given on line 1-50. Avariety of differentweightings of the 
constituent parameters were used, as shown in the Derivation column; from darkest to lightest, the 
regions represent the relative weighting on an arbitrary scale of secondary structure preference, solvent 
accessibility preference, primary structure neighbor preference, and diversity. The Prediction column 
(lines a, 1-50) shows how well the sequences' secondary structure prediction agreed with the desired 
secondary structure on line b. For scale, line b shows the score that would be received by a perfect 
prediction. The Profikcolumn shows how well the structural models of the designed sequences rate in 
a profile analysis. The bars show by how much the assigned score exceeds the minimum qualiry cutoff 
of 11.5. Sequences 3840 received zero scores because they contained incorrect residues. 



S.E. BrennerlDesign of Proteins 

repetitiveness was found in some unstructured regions (e.g., positions 63-71 of Figure 
8). In addition, sequences whose design criteria were dominated by one parameter often 
looked peculiar. For example, when secondary structure had a very large weighting, the 
sequences degenerated into poly-proline at turns and poly-valine in sheets (Figures 8 and 
9, lines 44-46). Surprisingly, when diversity was the overwhelming criterion for making 
alpha spectrin's SH3 domain, the optimization procedure was apparently unable to 
select residues that satisfy all the criteria and inserted the nonsense residues B and Z into 
the sequences. 

The sequences were subjected to secondary structure analysis by the PHD algo- 
rithm [64, 651. The predicted structure was then compared against the desired 
structure, and a score was computed. Almost all of the designed sequences did relatively 
poorly on this test, as shown by the small size of the prediction bands in Figures 8 and 
9. However, since the natural sequences also failed to produce accurate predictions, it 
is unclear how to interpret the result. As the prediction algorithm is honed to work on 
families of homologous sequences, it is perhaps unsurprising that it did not produce 
good results when asked to evaluate the sequences individually. The problem was 
probably exacerbated by the mostly beta-sheet structure, as beta-strands are short 
relative to most alpha-helices. 

The designed sequences were also evaluated at the tertiary structure level. Several 
three dimensional models (Figures 10 and 1 1) were constructed for each of the designed 
sequences and visual inspection did not reveal any major flaws. (Some aromatic residues 
were innocuously misshapen because of an error in the force field used to create the 
models from the designed sequences.) For example, the core of the barrel of a 1 hsp 
analog seemed suitably filled with hydrophobic residues, and the surface was mostly 
covered with largely polar and charged residues. It is interesting that even non-polar 
groups on the surface of the protein thought to be functionally important [GI] were 
generally replaced with hydrophilic residues in the designed sequences because the 
design system was not provided with any parameters relating to function. There is also 
no reason to believe that the beta-bulges (such as that at positions 51-52 in lhsp) and 

Figure 10. Human phospholipase C gamma SH3 domain structures threaded with natural and 
designed sequences. The coordinates and secondary structure assignments of PDB entry lhsp are 
viewed in two orientations to highlight the barrel (A, B) and beta-sandwich (C, D) characteristics of the 
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other deformities in the native structure would exist in the designed proteins, as the 
model design system did not include statistical information at that level of detail. 

The structural models were tested using a profile methodology [45], and most of 
the designed sequences received scores well above the minimum acceptable [66]. 
Indeed, as shown in Figure 8 and 9, many scored better than the natural sequence. 
However, as the criteria used to design the sequences are similar to those used by the 
profile method, these results must be considered suspect. 

The results for sequences designed to fold into these two SH3 domains form an 
interesting contrast to those designed to adopt the phage 434 cro fold [44]. Sequences 
for this five-helix protein received very good secondary structure prediction scores and 
astounding profiles. Because the analyses were so laudatory over a wide variety of 
different weightings, it was difficult to discern the relative importance each of the 
constituent parameters of the optimization function. However, since the apparent 
quality of the sequences designed for the SH3 domains varied more widely, it was 
possible to glean additional insight into the interactions of the different parameters. 

Perhaps the clearest conclusion that can be drawn is that there needs to be some 
balance between different parameters in order to produce reasonable sequences. When 
a single criterion dominated, as in Figures 8 and 9, lines 37-39, the results were poor. 
Moreover, it seems that the best sequences were generated when the sum of the diversity 
and secondary structure preference was about five times that solvent accessibility (using 
the scale in Figure 8 and 9), as in lines 14-16 and 32-37. However, as shown by lines 
11-13, it seems that secondary structure preference should be the larger of the two 
contributors to the sum. These conclusions garner some support because the results are 
consistent between the sequences designed for the 1 hsp and the lshgstructures and also 
because they can be logically interpreted. As described elsewhere [44], the solvent 
accessibility measure used in the model system strongly favors particular residues, 
especially lysine. In alpha-helices, this complements the statistically strong helical 
preference of lysine (data not shown); however, in beta-sheets, these statistical preference 
are at odds, and some compromise must be made. This compromise can be easily seen 

SH3 domain. Only residues 5-64 are shown because the NMR structure was constructed with 
constraints for residues 8-62 only. The natural protein is shown in A and C, while a model has been 
constructed by threading a designed sequence (Figure 8, line 14) onto the lhsp backbone in Band D. 
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B 

Figure 11. Chicken alpha spectrin SH3 domain structure (PDB entry lshg) threaded with natural (A) 
and designed (B) sequences. The designed sequence is from Figure 9, line 14. 

in the designed sequences: lysine occurred with remarkable frequency at the solvent 
exposed N termini of many strands, but rarely within them. The relative compatibility 
of solvent accessibility and secondary structure in helices would help to explain why the 
automated system had apparently more success with all-helix proteins than with the 
beta-sheet SH3 domains. 

In summary, the prototype design system was capable of designing novel sequences 
for the SH3 domains of both phospholipase C gamma and alpha spectrin, and visual 
inspection revealed no major flaws in models made with the sequences. While the 
secondary strycture predictions did not agree well with the desired structure, the native 
sequences generally did equally poorly. In addition, profile analysis suggests that the 
designed sequences could reasonably adopt the desired structures. Perhaps most 
intriguingly, distinguishable variation in the qualities of sequences derived from 
different parameter weighting made it possible to gain some insight into the relative 
importance of each parameter. 

5. Conclusions 

Protein design is a stimulating field of structural molecular biology which offers a new 
way to understand protein structure, and recent experiments have proven that it is 
possible to make new proteins with a desired fold. However, most work in this field has 
been irreproducible and unverifiable because of the qualitative and intuitive nature of 
the design process. To remedy this, I have developed a quantitative methodology for the 
design of proteins which operates by optimizing a quality function over the structure to 
be built. To support this methodology, I have created algorithms both to gather statistics 
for the quality function and to optimize the quality function over a particular structure. 

A simplified prototype design system has been used to test the methodology, and 
the results have been surprisingly positive: designed sequences appear suitable to both 
manual inspection and profile analysis. Moreover, a tentative understanding about the 
contributions of different parameters to sequence selection has been gained. However, 
the designed sequences do reveal flaws in the model system which may be rectified by 
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a more complete implementation of the design methodology. 
This research is now entering its most exciting stage, for more sophisticated versions 

of the protein design system are being built and experimental work to synthesize some 
designed proteins and characterize their structure is beginning. When the design 
methodology systems produces sequences which correctly adopt the desired folds, it will 
reveal precise new relationships between observed features of proteins and their 
structural importance. 
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