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Abstract
An automated procedure for protein design by optimiza-
tion of a sequence-structure quality has been developed.
The method selects a statistically optimal sequence for a
particular structure, on the assumption that such a protein
will adopt the desired structure. We present two optimi-
zation algorithms: one provides an exact optimization
while the other uses a combinatorial technique for com-
paratively rapid results. Both are suitable for massively
parallel computers. A prototype system was used to
design sequences which should adopt the four-helix
bundle conformation of myohemerythrin. These appear
satisfactory to secondary structure and profile analysis.
Detailed inspection reveals that the sequences are gener-
ally plausible but, as expected, lack some specific struc-
tural features. The design parameters provide some
insight into the general determinants of protein structure.

Introduction

Despite decades of research, our present understanding of
protein structure is still incomplete. While structural analy-
sis has yielded many of the fundamental rules governing the
general architecture of protein folds (Chothia & Finkelstein
1990), it has been limited by the relatively few known
protein structures and the fact that they have been limited by
evolution (Pastore & Lesk 1991). Therefore, mutation
analysis has become one of the most powerful tools for
studying the structure of proteins and has provided a wealth
of information about particular folds. However, this data
hasleft unanswered many general questions about the large-
scale structural features of proteins. The most clear evi-
dence of ourimperfect knowledge of protein structure is that
the protein folding problem remains largely unsolved: we
can not determine the conformation a protein will adopt
from the knowledge of its sequence alone.

Protein design has emerged as a promising technique for
understanding protein structure because finding a sequence
which will fold into a desired structure may be considerably
simpler than computationally folding a sequence into a
structure (Yue & Dill 1992). In addition to providing new
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scientific knowledge, new proteins have potential uses in
biotechnology and medicine.

Many groups have taken up the challenge of building
new proteins using “physical, statistical, and intuitive crite-
ria” (Sander 1991) in a procedure called design by modeling
(Brenner 1994). The four-helix bundle is one of the most
popular structures being designed (Regan & DeGrado 1988;
Hecht et al. 1990; Hill et al. 1990; Sander et al. 1992a;
Schafmeister et al. 1993 ), and such one structure has been
proven correct by crystallography. A related designed
protein, consisting of two antiparallel alpha-helices, has had
its structure solved by NMR (Kuroda etal. 1994). Attempts
have also been made to build other structures (Sander et al.
1992b) including alpha-beta barrels (Goraj et al. 1990;
Tanaka et al. 1994), a beta bell (Richardson & Richardson
1987), and a crystallin (Hubbard & Blundell 1989), as well
as some folds not occurring in nature such as a miniature
antibody (Pessi et al. 1993) and an alpha-beta “open sand-
wich” (Fedorov et al. 1992).

The success of several of these experiments has been
encouraging and the partial failures have frequently been
instructive. However, the manual procedure used to design
the proteins means that the procedure is fundamentally
irreproducible: the knowledge used to build one protein
cannot be directly applied to the construction of another.

Some experimentalists have gone to the opposite ex-
treme and made random sequences of amino acids either
with hydrophobic/hydrophilic patterns (Kamtekar et al.
1993) or a limited set of residues (Davidson & Sauer 1994).
While intriguing, these “design” experiments cannot be
directly used to select single proteins which should adopt a
given fold. However, some systems have been developed to
find proteins sequences which meet particular criteria. Ponder
and Richards designed sequences whose side chains could
adopt acceptable rotamer positions and pack densely (Pon-
der & Richards 1987), while Yue and Dill found binary
sequences of polar and non-polar residues which would
form more hydrophobic contacts in the desired structure
than in any alternative structure (Yue & Dill 1992).




A Quantitative Methodology

We have created a quantitative methodology which at-
tempts to combine the comprehensibility and success of the
design by modeling experiments with the reproducibility of
the more general methods. It relies principally on the
statistical features of all known protein structures to form a
function which measures the compatibility of given se-
quence and structure. This function is then optimized over
a selected structure to produce an “ideal” sequence for that
fold. Thus, the procedure can be easily repeated any number
of times on any structure.

The parameters entering into sequence-structure quality
function, detailed elsewhere (Brenner & Berry 1994), can
be divided into four main categories: position, neighbor,
uniqueness, and hints. The first two are the main contribu-
tors to the design procedure and are statistically based.
Position preferences describe the preference of a given
amino acid for particular position within a protein (e.g.,
lysine is well suited for a solvent exposed helical position)
The statistical tendency for two or more amino acids, such
as leucine and valine, to be near each other falls within the
neighbor preferences category. Uniqueness is a parameter
which attempts to ensure that the designed sequence will be
comparatively unstable in folds other than the desired one
(Yue & Dill 1992), and hints incorporates a wide variety of
details which are specific to the protein being designed, such
as large motifs and functionality.

To form the evaluation function, each parameter is
weighted according to its relative importance and summed

Figure 1. General, automated protein design. The quantitative
protein design methodology accepts any plausible protein struc-
ture and selects a sequence which should be stable in that configu-
ration. The figure is by M. Elms.

g(x, u) returns position preference of residue u at position x

" h(u, v) returns neighbor preference of residue u adjacent to v

function tdso (1, r, s, t) returns (score, seq)

base case: no middle

if (1 + 1 == 1)
score = h(s, t)
seq = <nothing>

inductive case: ternary sum
else
score = 0 initialize to be lower than any actual score
m = ceil((1 + r) / 2) middle position
foreach a in amino acids
retl = tdso (1, m, s, a)
retr = tdso (m, r, a, t)
cur = retl.score + retr.score + g(m, a)
if (cur > score)
score = cur
concatenate left, middle, and right sequences
seq = retl.seq . a . retr.seq
endif
endfor
endif

return (score, seq)
endfun

Figure 2. Pseudocode for the 1-dimensional TDSO algorithm. To
optimize a function of n residues 1...n, with position and neighbor
preferences specified by the functions g and h, respectively, run
tdso (0, n+l, L, R),whereLand R are the left and right end-
caps. This will return the optimal sequence and its score. ’

with the others. This means that an arbitrary number of
detailed criteria can be incorporated in the design system
and that the method can be extended and modified as both
experimental results and theoretical research provide addi-
tional information.

Optimization Methods

Ternary Division Sum Optimization

One Dimension. The optimization of a sequence-structure
quality function containing position preferences is trivial: at
each position select the best residue (e.g., by table lookup).
So long as they are not overly complex, the uniqueness and
hints criteria serve only as masks limiting the residues at
particular positions. Thus, their inclusion does not increase
the computational complexity of the design task.
Unfortunately, the neighbor preferences complicate se-
quence selection considerably. If the residue at each posi-
tion interacts with the residues at every other position, then
the optimization procedure requires the evaluation of every
potential sequence—an exponential time procedure. In-
deed, this exponential complexity is one of the major
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Figure 3. Schematic of TDSO Operation. L and R are end caps.
See text for description

barriers to computational protein folding. However, one of
the principal reasons that protein design may be a
computationally easier task than protein folding is that the
positions of all the residues are known in advance. Thus,
interactions between residues which are distant in sequence
need only be considered if the residues are close in space. In
one dimension, the evaluation function F (with an implicit
structure) over a sequence S has the form:

F(S)= Y g00,5)+ 5 {(535) + h(55.)
=l

where s; is the residue at position i, g(x, u) is the position
preference of residue u at position x, and A(u, v) is the
neighbor preference of residues # and v.

A procedure for optimizing position and neighbor pref-
erences in one dimension was developed by Steven P.
Ketchpel (personal communication). A considerably more
efficient version of this algorithm, ternary division sum
optimization (TDSO), has been developed and its complex-
ity analyzed. The principle underlying TDSO’s operation is
that the optimal sequence is that which has the best begin-
ning, middle, and end. Pseudocode for the algorithm is
provided in Figure 2 and its operation is diagrammatically
portrayed in Figure 3.

TDSO begins with a sequence that has left and right end-
caps. Then it computes the position preference for each of
the 20 types of residue at the central location. To each of
these it adds the recursively computed qualities of the left
and right sides using the current central residue as the right
and left end-cap, respectively, for these sides. Recursion is
ceased when no central position can be selected, and the
remaining neighbor preference is computed. The algorithm
is O(nk198M) where k is the number of amino acids, 20, to be
considered. Thus, the single-dimension procedure is poly-
nomial and, although it is high order, is generally tractable
for relatively small n.

Many Dimension. When TDSO is extended beyond one
dimension to an arbitrary graph, it is impossible to pick a
center pivot position which will divide the graph into two
disjoint ones. Instead, it is necessary to find a set of nodes
which together partition the graph into two subgraphs, as
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shown in Figure 4. However, instead of needing to test k
residues at the center position at each recursive level, it is
necessary to test all combinations of residues at these
positions. If there are m border nodes, then k™ different
partitions must be tested and summed with the best “left”
and “right” subgraphs. As expected, the complexity of the
algorithm increases as the connectivity increases. The
graph version of the algorithm is O(nk®'08M) where c is a
measure of the connectivity of the grath and typically is a
function of n. For example, c is n(d-1 /d for a regular grid
of dimension d. Therefore, the complexity of TDSO grows
exponentially as aroot of n making this procedure unfeasible
except for trivial cases.

However, though the running time of this algorithm
grows dramatically with sequence length, it may still be
tractable if various approximations are applied, including
alpha/betacutoffs (Horowitz & Sahni 1978; Aho etal. 1983)
and heuristics that reduce k, the number of choices at each
position, from 20 residues to just a few classes (e.g., hydro-
phobic, polar, and neutral). Moreover, the main foreach
loop in TDSO is straightforward to parallelize, and with the
exception of the selection of the best middle residue, no
communication is necessary. Consequently, near-ideal
speedup on massively parallel computers should be easy to
achieve.

Simulated Annealing

While the exact optimization provided by TDSO is essential
for verification of results, it is too time consuming when the
design procedure is being developed and extended. For this
reason, combinatorial optimization methods have been used
to design sequences with a prototype sequence-structure
quality function. In particular a straightforward simulated
annealing protocol (Metropolisetal. 1953; Pressetal. 1988)
and several variants have been applied.

Serial. On a single processor, a sequence can be optimized
for a particular structure by iterating over the sequence and
randomly mutating residues at each position to any other
residue. After each change, the modified sequence is
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Figure 4. First level of multi-dimensional TDSO.



analyzed by the sequence-structure evaluation function and
the mutation is accepted or rejected according to the varia-
tion in quality and the current temperature.

The parameters selected for the model system (below)
caused the system to be cooled too quickly to converge to a
single designed sequence. However, the different sequences
generated from each set of parameters showed no signifi-
cant difference in quality. Moreover, while (nearly) every
natural protein adopts only a single structure, any given
natural structure can be formed by several different se-
quences. Thus it is unnecessary to select the best possible
sequence as stipulated by the objective function; near-
optimal sequences will provide satisfactory results. Indeed,
since the margins of error in the various rules which contrib-
ute to the overall methodology are considerable, the best
sequence computed by the statistics is unlikely to optimize
the underlying parameters that the statistics attempt to
describe. In addition, the variable residues in the sequences
designed with similar criteria help provide some insight into
which positions are most constrained by the quality func-
tion.

Parallel. While the serial Metropolis method can produce
results very quickly for small proteins with easily comput-
able quality measures, it becomes inconvenient when work-
ing with large proteins and complex objective functions.
Even in these complex instances, the computational design
procedure is much faster than actually synthesizing the
designed protein. However, to develop, test, and improve
the design methodology, it is necessary to generate large
numbers of sample sequences. Therefore, methods to
increase the speed of designing new sequences are of
considerable practical utility.

Because the quality function F is the sum of the qualities
of each of the individual positions (although each position’s
quality depends on its neighbors), it is not difficult to
parallelize the simulated annealing algorithm. One method
of implementing this is to block partition the sequence

A
Jefapiep

Jrdrepap
S

Figure 5. Schematic of DUPSA data distribution. Boxes are the
sequence, and the large circles show segments of sequence to be
optimized by a single node. Small circles show position prefer-
ences and doubleheaded arrows, neighbor preferences. Open-
headed arrows show where communication is necessary.

left, right
delimit region of sequence to be optimized for this node
sequence )
the whole sequence, a portion of which will be optimized
procedure dupsa()
foreach temperature
gsync  synchronize all nodes
while not ready to drop temperature
foreach position between left and right
foreach node with a neighbor residue
if message received from this node
set asynchronous receive for a
new message from this node
endif
endfor
choose a random new residue for current position, and
accept or reject it according to normal annealing criteria
if residue changed
foreach node with neighbors to residue
asynchronous send node the change
endfor
endif
endfor
endwhile
endfor
endproc

Figure 6. Pseudocode for the DUPSA algorithm. Prior to running
dupsa, each node has the global variables left and right set to
delimit the regions of sequence to be optimized. Thus, on each
node, positions left....right of the array sequence are selected by the
optimization procedure. Positions of sequence outside this region
are filled in by the asynchronous receive messages from neighbor
nodes, and those positions which do not neighbor the region being
optimized have random values. Following dupsa, each node must .
send the region of sequence it optimized to a leader node which
collates the information. A considerable amount management
detail has been omitted for clarity. Full source is available from
SEB.

evenly across the compute nodes of the parallel computer.
Because of the neighbor preferences, every node needs to
keep arecord of the current neighbors of all of the positions
whichitis trying to optimize. Therefore, as shown in Figure
5, each node has an array for storing the whole sequence and
“imagines” that it knows the entire sequence at the current
level of annealing. However, each optimizes only the small
subset of the sequence assigned. To be isomorphic with the
serial optimization algorithm, synchronous communication
must be used. That is, each node must wait until it has
received messages containing information about the current
neighbors before proceeding with the annealing. Coded this
way, the parallel algorithm does provide significant speed
enhancement over the serial one in many cases. However,
as the number of neighbors increases, the communication
overhead grows dramatically.

DUPSA. For this reason, an asynchronous version of the
optimization procedure has also been developed. In this
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algorithm (Figure 6), called delayed update parallel simu-
lated annealing (DUPSA), messages about residue posi-
tions are sent to nodes containing their neighbors only if
there has been a change. More importantly, each compute
node optimizes its sequence with the most recently received
information rather than waiting for messages with the most
current neighbors to be received. This means that compu-
tation continues during the communication delay between
when a neighbor residue changes and when this change is
registered. As shown in Figure 7, even for with the simple
prototype quality function (see below), there was a signifi-
cant speedup over the serial algorithm when using this
procedure, although for very small proteins the communica-
tion overhead still becomes predominant when more than
two processors are used. However, when a (hypothetical)
more complex is employed and multiple annealings are run
in parallel , up to 100 compute nodes can be profitably used
for even very small proteins.

There was some concern that the time period between
residue change and update at neighbor nodes could poten-
tially be problematic. However, for the design systems
tested, this gap where out-of-date neighbor information is
used had no detrimental effect on the final sequences. Thus,
the DUPSA selects sequences as well as the serial simulated
annealing protocol in a fraction of the time. Moreover,
DUPSA is general enough to be applied to any similar
optimization where local interactions are present.

A Model System

A model system containing only a few of the parameters in
the full methodology has been used to evaluate the potential
of the quantitative methodology (Brenner 1993; Brenner &
Berry 1994). By formulating an evaluation function which
incorporates only naive secondary structure, solvent acces-
sibility, and primary structure neighbor preferences, we did

Speedup with DUPSA on Model System
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Figure 7. Speedup when the model evaluation function without
the diversity hint was optimized for several structures using
DUPSA.
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not expect to produce a system which would produce
reasonable sequences. However, the model system which
operates on those parameters, as well as a hint (called
diversity) to force the composition of the designed se-
quences toreflect that of the SwissProt database (Bairoch &
Boeckmann 1991), has done surprisingly well. The system
has been used to design sequences for phage 434 Cro
(Brenner 1993; Brenner & Berry 1994), hemoglobin, two
SH3 domains (Brenner 1994), lactate dehydrogenase, and
ubiquitin. Here we present new sequences to adopt the fold
of Themiste zostericola myohemerythrin (Sheriff et al.
1987), as represented by the coordinates in PDB entry 2mbhr.
Mpyohemerythrin is perhaps the canonical four-helix
bundle, with four long, well formed helices. The natural
protein binds oxygen through two irons which are coordi-
nated by several histidines. However, no rules for ligand
binding or other functionality were incorporated into the
model design system used to select these sequences.

Designed Sequences

Toexplore therange of the design system and to gain a better
understanding of the relative importance of its constituent
parameters, a wide variety of different parameter weightings
were used in designing the sequences shown in the Se-
quence Table. Thus some sequences were built using
secondary structure preference almost exclusively (e.g., 44-
46), while others were mainly selected on the basis of
solvent accessibility (as in 47 and 48). However, most
sequences were designed using a mix of all four parameters.

When inspected, most sequences appeared normal, aside
from a possible excess of certain residues such as lysine and
alanine. However, few sequences, particularly those se-
lected with a strong bias towards secondary structure, look
positively bizarre because of their extremely biased residue
composition. Intriguingly, none of the designed proteins
showed significanthomology (p <0.001 for blastp (Altschul
et al. 1990) with the seg filter and match matrix on the May
1994 nr database) to any natural proteins. As a test of the
sequences’ propensity to adopt the correct local structure,
they were subjected to secondary structure prediction (Rost
& Sander 1993; Rost et al. 1994) and scored on how well the
predicted structure matched the desired structure. Perhaps
surprisingly, nearly all produced very good results; indeed,
the designed sequences generally scored higher than the
native.

Structural Models

In addition, structural models were made threading the
designed sequence onto the structure of the natural
myohemerythrin structure, using the method in (Brenner &
Berry 1994). A schematic view of the natural and a designed
protein (Figure 8), shows that the selection of residues
looked reasonable, although, the packing between the heli-
ces was much looser in the designed sequence than in the
natural. In addition, none of the many hydrogen-bonded
turns in the natural sequence appeared in the designed
sequences. However, since that no information about either



Figure 8. Themiste zostericola myohemerythrin structure (coordinates from PDB entry 2mbhr) threaded with natural and designed sequences.
The natural protein is shown in A , while a model has been constructed by threading a designed sequence (Sequence Table, line 1) onto the
2mhr backbone in B. The force field used for generating the structural model from the designed sequence contained an error which results

in misshapen aromatic residues.

of these features was included in the optimization function,
these results were expected.

What is more surprising, however, is how well the
designed sequences fared when the structural models were
analyzed with environmental profiles (Liithy et al. 1992).
Most scored about as well as the native structure and none
of the sequences failed this verification assay.

In general, these uniformly positive evaluations of the
designed sequence over a extraordinary range of different
weightings agree with the results found for the all-helix Cro
protein. It may be that this indicates that al weightings are
acceptable. However, it seems more likely that the evalua-
tion techniques used simply fail to differentiate between
some good and poor sequences. If this is the case, then
selecting appropriate weightings will be one of the most
challenging tasks in constructing fully successful quantita-
tive design systems. Nonetheless, some quality variation is
visible, and can be exploited to ensure that experimentally
constructed proteins have the optimal set of weighted pa-
rameters. Moreover, data culled from beta sheet proteins,
which show more variation in quality (Brenner 1994), can
also be used to tune the design system.

Conclusion

Protein design is a challenging task which provides a new
way of understanding protein structure and has practical
utility. However, most work in this field has been
irreproducible and unverifiable because of the qualitative
and intuitive nature of the design process. We have pre-
sented a quantitative methodology which automatically

designs proteins by optimizing a sequence-structure quality
function over a particular structure to yield an optimal
sequence. With the parallelizable supporting algorithms,
the task is relatively quick and amenable to exploration.
Indeed, a model system containing only a few criteria has
already designed sequences which score well according to
secondary structure and tertiary structure evaluation.

We are initiating the essential experimental work to
synthesize and characterize proteins designed by the quan-
titative system. Concomitantly, more sophisticated ver-
sions of the protein design system are being constructed. If
successful, the method will be able to generate new proteins
with pre-determined structure and confirm the relationships
between statistically observed features of proteins and their
relative structural importance.
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Designed Sequence

a GWEIPEPYVWDESFRVFYEQLDEEHKKIFKGIFDCIRDNSAPNLATLVKVTTNHFTHEEAMMDAAKYSEVVPHKKMHKDF
b LLLLLLLLLLLHHHLLLLHHHHHHHHHHHHHHHHHHHLLLHHHHEHHHHHEHHHHHHHHENHEELLLLLEHHHHHEHEHEHE
¢ 12345678901234567890123456789012345678901234567890123456789012345678901234567890

MKRNGKRPQGHKDFSPKTKEALDIAEKALKAINILDKETVEKAGQHFYKVLNEALKNIFHWLNRGKGRPVKELQKDLKDL
MKRHGKRPQGYKDFSPKTRKMADILEKALKALNVLQKETVEKAVDNIYKGINEALKNIFNSLHRGKGRPVKEAQKDIKQA
MRKYGKRPQGNKDVSPKTKEALDIREKMAKILNIFDKNTVEKAVDNIYKGFDEALKNIFHWLHRGKGRPVKEAQKQLKDL

MRKYGKRPQGNKDVSPKTKEALDIAEKALKALNIFDKNTVEKAGQHFYKGINEALKNIFHWLHRGKGRPVKEAQKDIKQL
MKRYGKRPQGYKNVSPKTKEALDILEKILKALHIFDKDTVEKAVDNFYKGINEALKNIFNWIHRGKGRPVKEAQKDLKDF
MKRDGKRPQGYKDFSPKTKELADVAEKAMKALNIFDKNTVEKAGONIYKGWHRALKNIFNSLHRGKGRPVKEADKDIKQL

MKRYGKQPQGNKNVPSKTKEALDILEKAEKALNILDKETVEKAVDHFYKGAHRLAKHLMNWINRGKGRPVKEAQKDIKDF
MKRYGKRPQGDKNVSPRTKEALDILEKALKALHIFDKNTVEKAVDNIYKGAHRALKHLMNWMNRGKGRPVKEAQKQLKQA
MRKHGKRPQGYKDFSPKTKEALDVAEKALKAINVLDKETVEKAVDNIYKGINRALKNAFNWLHRGKGRPVKRLQKDLKDF

MKRYGKRPQGYKDVPSKTKEALQVLEKALKAINIFDKNTVEKAVDNIYKGINEALKNIFHWMHRGKGRPVKEAQKDLKDF
MKTYGKRPTGNRKNVPSRTRKVINILQRIMKIAHVADYPTAEKAVDHLPEIAQEALKHLMNWLNEGSGRPVKEAQKQLKDF
MKRHGRYPYGYKNCSPRTKEMADIAEKALKVLNVAQENTVEKAIDHI SKVAHRALKNIFNSTPEGSGRPVKEIQKDLKDF

MEKTGKRPYGTKSFSPKTKEALHVADKALKLAHGIDKNTVQKAIDNIPEGCNRAVKNWFNSWQRGSGRPVKEADEDMKQT
MKRDGKRPNGDKDFSPRTEKEAEIAEKEAEALHLEDEDTPEKALQHFYELEQEAEKHLFNWLQEGNPRSIKEAEKDEKEL
MKRDGKRPDGDKDFSPRTKEAEDIAEKEAEALHLEQENTPEKALENIYEIEDEAEKHLMHWLQEGNPRSIKELQEQEKEA

MKRDGKRPDGDKDFSPRTEKEAEIAEKAEKELHLEQEDTPEKALQHFYEIENEALKNLFHWLQEGNPRSIKEAQEDEKEA
KRKYGKRPQGYKDVSPKTKKIFDVAEKEAKALNGFDKETAEKAGDNIYKGINEALKNIFNSWHRGKGRPVKEAQKDIKDF
KRKYGKRPQGYKDVSPKTKKALDVAEKEMKAINGFDKETAEKAGDNIYKGFNEALKNIFNSWHRGKGRPVKEAQKDLKQA

KRKYGKRPQGYKDVSPKTKKALDVAEKALKAINGFDKETAEKAGDNIPKGFNEAIKNWMNSLHRGKGRPVKEAQKDEKDF
KRKYGRQPEGNKHVSPRTKKTCQVAEKAMKTAHGI DKDTAEKAGQHVPKGINECVKNVFNS INRLKARP IKEAQKDWKDM
MRKYGRRPQGHENVSPKTKKAVDVAEKAVKITNVADKETVEKAGDNFYKGFNEAIKHWMNSCHRLKARPVKEADKQCKDF

RRRYGRQPEGYKNVSPKTKKAVDIAEKAIKMANGAQKNTAEKAGDHVPKGWNEAVKNCMHSFHRLKVESVKEAQKDLKDF
MTPTGSNPTGNKHFSPRTKEALDVLERLVEIFHLADESTPEKAVDYAWQILQRLIKNIANTAHRGSGRSIKECDEQAEDL
MTPTGTYPNGPKDVSCGTKELFDVIERVLEMAHILDFSTVEKALDNLYRALYEALRQAAHSADRGSGNSIKEIHRQLEQA

MPSTGRYPTGSDSVPPSTKELADVLEKALRLFYVIQRDTVEKAIDHFYELFHRALKNAMHWLNEGNPDSIKEAQEDIRQA
MRRYGKRPQGYKDVPSKTKELADIAEKALKALNILQKNTVEKAIDNIYKGAHRALKNIFHWMNRGKGRPVKELQKDEKDL
MKRDGKRPQGDKNFSPKTKEALQVAEKAMKEINILQKNTVEKAIDNIYKGFHRALKNAMHWLHRGKGRPVKELDKQLKDL

MKRYGRQPQGNKDFSPKTKEALDIAEKALKALNIFDKNTVEKAVDHFYKILHEALKNIFNWLHRGKGRPVKEAQKDIKDL
MKRYGKRPQGNKDVSPKTKEAVDVARKALKALHGAQKETVERAGQHFYKGINEALKNIFNWINRGKGRPVKEAQKDLKDI
MKRHGKRPQGYKDVSPKTKEALDVAEKALKAINIFDKETVEKAGQNIYKGFNRALKNIFNSLHRGKGRPVKEAQKDIKDY

MRKYGKRPEGHKDVSPRTKEAVDIAEKMAKALNIFDKETVEKAGQNIYKGINEALKNAFHWINRGKGRPVKEAQKDLKQL
MKRYGRQPTGNKDFSPRTKEALQILEKAMKALNILQKNTVEKAVDNFYKIAHRALKNIFHWLHRGKGRS IKELDEDLKDF
MKRYGRQPNGYKDFSPKTKEALDVAEKAMKILHLAQKNTPEKALQHFYKILDEALKNIFNWLHRGKGRPVKEAQRDIKDL

MKRTGRQPTGNKDFSPKTKEAVDILEKILKALNIADKDTPEKALQHFYRVLNEALKNIFHWLHRGKGRPVKELQKQAKDF
MKRHGKRPDGYKDVSPRTKRLAQIAEKVAKIMNIFDKYTVEKAGDNVYKITNEALKNAFHWINRGKPRSVKEAQKQCKDL
MKRHGKQPEGYKSFSPKTKEAVDVLEKALKALNIAQKNTVRKAIHNIYKIAQEAMKNAMNS IHRGPGRSVKEAQKDLKDL

MKRNGRQPQGYKDCSCKTKEALQVAEKMAKAVNIAQKYTVEKAIDHFYKIVNRAVKNMFNWTHEI PGRPVKEADKQLKDY
GETPASPGYGNNPMVGRLKRATNIFDALDKWIHVTMLKVVEDLGCSVHLVPKYKEKNFLISCSDVPSFHIQQAQKSLART
KGSQVLNQFADSQAVCGNKECINIPAEAATKTHLYEKDMAQTLLKRVWKGLERGFRWLLPMDINGPTRYITRYDPPVHSA

PAPPGREIVANELGSVKYKTLKTLFDQCKRDITVMEHNDADILMNSVTFGLLEIARNCARSFNRLYAMSGERVDLATIEKL
KKKYGKRPQGDKDCPPKTKKLMDIIEKALKFFHILQKNTVEKAGDNLYKGANEALKHLFNSLNRGKPRSIKEAQKDLKDA
KKKYGKQPQGHKDCPPKTKKRADIFRKAAKAINIADKNTVEKAGQNAYKGLNELMKHAMNSFHEGKPRSVKELDKDLKDE

KRRNGKRPQGDKDVPPKTKKLADIFEKAEKMLNIAQKNTVEKAGDNLYKGLHRLAKHLFHWLNRGKPRS IKEADKQEKDF
PPPPPKNPPPPKDHPPKPEEAAEAAEEAAEAAEAAEENPPEEAAEEAAEAAEEMAEEAAEMAEEGGPNGAEEAEEEAEEA
PPPPPKNPPPPKDWPPKPEEAAEAAEEAAEAAEAAEENPPEEAAEEAAEAAEEAAEEAMEAAEEGGPNGAEEAEEEAEEA
PPPPPKNPPPPKDHPPKPEEAAEAAEEAAEAAEAAEENPPEEAAEEAAEMAEEAAEEMAEAAEEGGPNGAEEAEEEAEEA
KKKHGKQPQGDKDVSPKTKKRFDVAEKREKFINGIDKETAEKAGDNGPKGINEAGKNIMNS INRGKGRPVKERQKDIKQA
KKKHGKQPQGHKDVSPKTKKRFDVAEKERKICNGIDKETAEKAGDNGPKGINEAGKNIMNS INRGKGRPVKERQKDIKQA
MTPTGRQVTGPESLPFSTKEILQVLQYCWKVINIVDLSTAEKALQHFYRGINEALKNIANSLNRGHPHPVKDIDEDLRDV
MRWNGSYCTGPETVPGRMKEAVDILEKLARLANVIDLNTAEKALQHFSTVAQRALKNLMHYINEIPGRSVKEADEDLRQL
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Sequence Table. Sequences designed to adopt the fold of Themiste zostericola myohemerythrin fold (Sheriff et al, 1987), PDB entry 2mhr.
Line a shows the natural protein sequence and b lists the crystallographically assigned secondary structure (H: helix; E: sheet; L: loop).
Sequences designed by the prototype system to adopt this fold are given on line I-50. A variety of different weightings of the constituent
parameters were used, as shown in the Derivation column; from darkest to lightest, the regions represent the relative weighting, on an arbitrary
scale, of secondary structure preference, solvent accessibility preference, primary structure neighbor preference, and diversity. The
Prediction column (lines a, 7-50) shows how well the sequences’ secondary structure prediction agreed with the desired secondary structure

50 ISMB-9%4



Derivation  Prediction Praofile

LEKIGGLSAPVDAKNVDYCKEWLVNHIKGTDFKYKGKL Myohemerythrin
YHHHHLLLLLLLHHHHHHHHHHHHHHHHHLHHHHLLLL Native Stucture
12345678901234567890123456789012345678 Sequence Numbers

SKDIYPGKGKPQKEIGRQAWRMALSVAFGVTYKCYPKM
NKDFYPGKGKPEKEIGRDVWQMALSVAFGVTYKCHPKT
SKEAYPGKGKPEKEVGRQAWQMALSIAFGVITYKCHPKT

SKELYPGKGRPQKEIGRDVWDFLASVAMGVTYKTPSKM
SKEAYPGKGRPQKEVGRQAWQMALSVAMGVCTKCHPKT
SKEIYPGKGKPEKEIGRQAWQMALSVLFGVTYKCHPKT

SKEIYPGKGKPQKRVGRQAWDFMASILFGVCTKCYPKT
NKQAYPGKGKPEKEIGEDITDFLFSVLFGICTKCYPKT
SKQIYPGKGKPEKEIGEQAWQMALSILFGVTYKCHPKM

SKEAYPGKGRPQKEVGRQAWDMALSVLFGICTKCHPKT
SKDFYSGKGRSQKEIGEDLWDFLASVAFGVCTSCYPST
NKQAPYGKGRCQKEIGQDFWDFTLSVAMGVSTKTSPST

SRDCPYGKARPQKEVIEQASHFLMSVTFGVTYKIYSKT
SKERYNGRGKPQKEILEQAWEMALSLEMIGFYKYNSKP
NKEAYNGRGRPEKEILEQLTEMALSLEFIGFYKYNSKP

NKEAYNGRGKPQKEILRELTEMALSLEMIGFYKYNSKP
SKQRYHGKGKPEKKVGRQVWQMALSGAMGIPTKCHPKM
SKDIYHGKGKPEKKIGRQVWQMALSGRFGIPTKCHPKM

SKQRYHGKGKPQKKIGEDIWQMALSGRFGICYKCHPKM
SKDAPYGRAKPEKKVGEDIWQFSFSGYFGVITKTYSKM
SKDIPYGKGKPQKKIGEQIWQFITSGAMGLPTRSYSKT

SKDTPYGKGKPQKEIGRQVWDFICSITFGISTKTYPKM
NKELYPGYGRPQKEIVEQLSEFAMTLAFMGCYDVNSGS
NRDFYSGPGKPNKEIVRQLTQFALWFVMLGVTCINSSP

I'KEMPSGTGRVNKQILEQLWEALFYVIAVGCTNCGSGS
SKEFYSGKGKPQKEIGRQLWDFLASLAMGFSTKCHPKP
SKEAYPGKGKPEKEIGRDIWQFLASLAFGVTYKCYSKP

SKERYSGKGKPEKEIGRQLWQMALSLAMGVTYKCSPKP
SKDFYPGKGRPEKEVGEDVWQMALSGIFGICYKCHPKM
NKDIYPGKGKPEKRVGEQAWQMALSGVFGVCTKCHPKM

SKDFYPGKGKPQKEIGRDVWQMALSGVFGVCYRCHPKT
SKELYPGKGKPQKEIGEDVWQALATVMAGTCYKTPSKP
SKEIYNGKGKPEKEIGRQVWDMALSLAFGTVTKTPSKT

NKEIYSGKGKPEKEVGRDITQMALSLAMAGCYKNYSKP
SKDFYPGKGKPEKEIGEQAWQMALSVTFGVPTKCHSKT
SRDFYPGKGRPQKEVGEDVWDFTCWITFGVCYKTSPKT

NKDLPSGKGRPEKEIGEDLSRFLASGIFGVSTKTHPKT
VITNGDYAETQLARQILREWYDPAGSMAFILGERFESLT
TREVSYVLFALNKEMFTSGDEVLHFAVPGIQSDILSGS

TQQGYQSPPYPEKGVKHQVSDFAWHGWLGIFTSATSVL
SKELYHGRGRPQKKIGEQAWEFRAWIAMGVTTKCYPKM
SKELYYGRGRPQKKIGEQLWRFLLWIAMGIFTKCSPKT

SKECYYGKGKPQKKIGRQAWEMALSIAMGICTKFYPKT
AEEAEGPPGKPPEEAAEEAAEAEAEAEMAGHYKWNGGP
MEEAEGPPGKPPEEAAEEAAEAEAMAEAAGHYKHGNGP
AEEAEGPPGKPPEEAAEEAAEAEAMAEAAGHYKWNGGP
SKQRYYGKGKPQKKVGEQGWQOMAFSGHFGGCYKCYSKM
SKQRYYGKGKPQKKVGEQGWDFHFSGAMGGFYKCYSKM
WKEASYGRGRLEKEAGRQLSDFCFTAMAGAVTYFSPSM
SKDITSGRGYPQKEIGQHFSDFCTWLVAGFSTPVSPYF

on line' b. The score here was computed by adding two points for every position which was predicted to have the correct structure and
deducting one for every position which was predicted to have an undesired structure. For scale, line b shows the score that would be received
by a perfect prediction. The Profile column shows how well the structural models of the designed sequences rate in a profile analysis. The

bars show by how much the assigned score exceeds the minimum quality cutoff of 24.0. The profile score of the natural myohemerythrin
is 48.8.
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