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Abstract
The advent of next-generation sequencing has dramatically decreased the cost for whole-genome

sequencing and increased the viability for its application in research and clinical care. ThePersonal

Genome Project (PGP) provides unrestricted access to genomes of individuals and their associ-

ated phenotypes. This resource enabled theCritical Assessment ofGenome Interpretation (CAGI)

to create a community challenge to assess the bioinformatics community’s ability to predict traits

from whole genomes. In the CAGI PGP challenge, researchers were asked to predict whether

an individual had a particular trait or profile based on their whole genome. Several approaches

were used to assess submissions, including ROC AUC (area under receiver operating characteris-

tic curve), probability rankings, the number of correct predictions, and statistical significance sim-

ulations.Overall, we found that prediction of individual traits is difficult, relying on a strong knowl-

edge of trait frequencywithin the general population, whereasmatching genomes to trait profiles

relies heavily upon a small number of common traits including ancestry, blood type, and eye color.

When a rare genetic disorder is present, profiles can be matched when one or more pathogenic

variants are identified. Prediction accuracy has improved substantially over the last 6 years due to

improvedmethodology and a better understanding of features.
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1 INTRODUCTION

Sequencing of whole genomes has improved our ability to build new

methods for predicting phenotype from genotype. These new meth-

ods will be instrumental when applied in the clinic to achieve pre-

cision medicine. Community challenges are a mechanism to assess

how well the scientific community can solve certain problems in an

unbiased manner (Friedberg, Wass, Mooney, & Radivojac, 2015). As

part of the Critical Assessment of Genome Interpretation (CAGI) chal-

lenges (CAGI, 2016), we developed a genome-to-phenotype matching

challenge to assess how well individual traits and phenotypic profiles

could be predicted from whole-genome sequences. Using open con-

sent model genomes (from individuals who are comfortable sharing

them without any promises of privacy, confidentiality, or anonymity)

(Ball et al., 2014; PGP, 2016), we asked the community to predict traits

and/or profiles for whole genomes for which the matched phenotypes

had not yet been publicly released (but were available to and had been

held back by challenge organizers). We have iterated on this process

four times over the past 6 years, in 2010, 2011, 2013, and 2015, with

only slight deviations on the experimental design each year. Our aim

was to provide an opportunity for researchers to compare new meth-

ods and approaches for interpreting whole-genome sequences into

phenotype predictions.

The Personal Genome Project (PGP) is a research study that pro-

duces freely available scientific resources that bring together genomic,

environmental, and human trait data donated by volunteers (Ball et al.,

2014). More about the project PGP can be found in Ball et al. (2014)

and PGP (2016). The PGP follows an open consent model to human

genome sequencing and was the reason our prediction challenge was

possible (Ball et al., 2014). On the PGP recruitment and enrollment

website, individuals provide a public profile of their phenotypes by

answering a number of trait questions in different categories. Selected

individuals then have their samples collected and sequenced, and

their assembled genomes made available on the PGP Website along

with their survey answers. The PGP CAGI organizers decided that

as genomes and phenotype profiles were released, the matching key

between the genomes and the phenotypes would remain undisclosed

to allow submitters to blindly predict matches between available pro-

files and released genomes. Note that the trait data are self-reported

by PGP participants using the PGP project website and are updated on

the CAGI challenge website at the beginning of the challenge.

The PGP challenge has been held in 2011, 2013, and 2015. In this

manuscript, we present the methodologies of the challenge submis-

sions as well as an assessment of each submitter’s ability to predict

individual traits and to match whole genomes to phenotype profiles.

We also assess whether we observe improvement over the 6 years of

hosting this challenge. Using simulations, we show that the best groups

made predictions that are statistically better than random submis-

sions.Wealso show that in order to obtain accurate predictions of indi-

vidual traits, an estimate of the statistical priors must be known. We

then show that 5%–10% of the PGP profiles can be matched based on

a small number of common features including ancestry, blood type, and

eye color. In specific cases, when a rare genetic disorder was present,

profiles could be matched to a genome when one or more pathogenic

variants were identified.

Moreover, through the four iterations of PGP challenges, we found

that challenges are a good measure of our standing in predicting phe-

notypes fromwhole-genome sequences. The authors found it of inter-

est that, at best, only 20%–25% of whole genomes (the best cor-

rect matching prediction in PGP 2015) could be matched to profiles
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TABLE 1 Comparison of PGP 2015, PGP 2013, PGP 2011, and PGP 2010

PGP 2015 PGP 2013 PGP 2013 (assessed) PGP 2011 PGP 2010

Genomes 23 77 50 10 10

Phenotype profiles 101 291 183 - -

Traits 239 239 239 40 40

Submissions 5 16 16 4 1

Groups 4 5 5 4 1

Notes: PGP 2010 and PGP 2011 requested submitters predict each of the 40 traits, and PGP 2013 and PGP 2015 requested submitters match genomes to
entire profiles. Note in 2013, 27 genomes and 108 profiles were trivially removable as unmatchable since 27 profiles had published 23andMe data and 108
profiles had no indicated sample taken on the PGPwebsite. This is shown in the two columns of PGP2013, inwhich column “PGP2013 (assessed)” shows the
information of data used to do the assessment.

derived fromparticipant reported phenotype, suggesting that our abil-

ity to identify individuals or individual traits from a genome is far less

accurate than one might expect based on our significant advances in

genome interpretation approaches over the last two decades.

2 MATERIALS AND METHODS

In this section, we first give an overview of the four iterations of CAGI

PGP challenges (i.e., PGP 2010, PGP 2011, PGP 2013, and PGP 2015),

and thendiscuss indetail each iterationof the challenge, includingdata,

submitters’ methods, and assessment methods.

2.1 Overview

In this subsection, we briefly introduce the four iterations of PGP chal-

lenges, with comparisons of the four PGP challenges shown in Table 1.

In 2010, challenge participants were asked to predict 32 binary

traits of the “PGP10,” which were the first 10 individuals sequenced

by the PGP project. The survey answers were withheld until after the

submission deadline to ensure blinded predictions by the submitters.

Predictors for 2010were told howmany predictions they got right, but

not which predictions they got right, and thus were essentially blind

to the results. The 2010 experiment was deemed a trial run, and as

the data remained unspoiled, it was repeated in 2011 (PGP 2011) with

the same data. Only those results of PGP 2011 are reported here. In

total, there were four submissions from four groups for that challenge.

One of the submissions used a novel methodology, which generated a

patent application (Chen et al., 2014).

By 2013, PGP had made a website available that included all the

participants, their survey answers, and limited information about the

status of the sequencing of their genome, including whether a sam-

ple had been collected from that individual and was awaiting sequenc-

ing. Since the survey answers were now available publicly, the chal-

lengewas changed to a blindedmatching challengewhere groupswere

asked to match a genome sequence to a phenotypic “profile.” These

profiles were a list of “yes” or “no” answers from the survey questions,

based on whether the individual considered her/himself to have each

of 239 phenotypes. Seventy-seven phenotype profiles were released

that had a matched genome, whereas a number of other profiles were

released for which the matched genome was not yet sequenced. The

truematches between theprofiles andgenomeswere kept undisclosed

by PGP for the duration of the challenge, and challenge participants

were asked to submit the probabilities each genome had of matching

to each profile. In total, 16 submissions fromfive groupswere received.

In addition, therewas an optional challenge in PGP 2013, whichwas to

predict individual traits from genomes.

In 2015, the 2013 matching challenge experiment was repeated,

and 23 genomes and 101 phenotype profiles were released. We

received five submissions from four different teams. Assessment was

performed similarly to that of 2013 and the results from both chal-

lenges were compared.

Below and in the Supp. Material, we describe the submissions of

independently submitted challenge predictors who were willing to

share their methods. These identified groups are named and the list is

as follows.

Group1: the group of Rachel Karchin at Johns Hopkins University;

Group2: the group of Silvio Tosatto at the University of Padova;

Group3: the group of JohnMoult at the University ofMaryland;

Group4: the group of Julian Gough at the University of Bristol; and

Group5: the group ofMario Stanke at the University of Greifswald.

To be consistent, we have also named four submitters, who declined

to be included or were otherwise unreachable, as Group6, Group7,

Group8, and Group9. For groups that had multiple submissions, we

numbered them by adding _1, _2, _3, and so on after group name and

provided a description of their differences.

2.2 PGP 2011

Data provided in the PGP challenge for 2011 included genomes of

10 participants and 32 binary traits. The traits are listed in Table 2.

The challenge was aimed at predicting the values of each binary trait

based on genome sequence. In total, there were four submissions for

the binary trait prediction challenge and themethodologies of the two

identifiedmethods and the assessment methods are described below.

2.2.1 Submissions

In 2011, we received both identified submissions from Group1 and

Group2 and anonymous submissions from Group6. Their methodolo-

gies are described in Supp.Material.
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TABLE 2 List of binary traits used for prediction in PGP 2011

Trait ID Trait name

1 Asthma

2 Crohn’s disease

3 Ulcerative colitis

4 Irritable bowel syndrome

5 Rheumatoid arthritis

6 Type II diabetes

7 Coronary artery disease

8 LongQT syndrome

9 Hypertrophic cardiomyopathy

10 Glaucoma

11 Color blindness

12 Bipolar disorder

13 Celiac disease

14 Psoriasis

15 Lupus

16 Breast cancer

17 Prostate cancer

18 Migraine

19 Lactose intolerance

20 Dyslexia

21 Autism

22 Osteoporosis

23 Incontinence

24 Kidney stones

25 Varicose veins

26 Sleep apnea

27 Tongue rolling (tube)

28 Phenylthiocarbamide tasting

29 Blood type: has A antigen?

30 Blood type: has B antigen?

31 Blood type: is Rh(D) positive?

32 Absolute pitch

2.2.2 Assessments

Weused several different approaches to evaluate the performances of

the four submissions from PGP 2011, which included area under the

curve (AUC) of receiver operator characteristics (ROC) curve (Fawcett,

2006) and simulations based on probability permutation. Each submis-

sion was assessed for accuracy of predicting the 40 binary traits and

ROC and precision recall (PR) curves were generated. The ROC AUC

was used as amechanism to rank submissions. In order to assess statis-

tical significance of a submission, a simulation-based permutation test

was performed. Each submission was permuted 10,000 times and the

resulting ROC AUC was determined and compared with the submis-

sion AUC. Details of each assessingmethod are discussed as follows.

ROC AUC: The ROC AUC is one of the most effective methods to

evaluate the performance of prediction results (Fawcett, 2006). The

ROC AUC of the prediction output of each submission was calcu-

lated based on the predicted probabilities and the true binary answers

of 320 (10 genomes × 32 traits) genome trait pairs. We also plot-

ted the PR curves based on these probabilities and the true answers.

The ROC curves and PR curves were generated from the JAVA pack-

age “jstatplotter.jar” (developed by Kevin Van Bui at the University of

Pittsburgh).

Simulations: We designed and developed simulations to test the

hypothesis that permuted data derived from the actual submission

could exceed the accuracy of the submitting group, andwe used this to

estimate the P value. The simulations were conducted in the following

steps:

1. Generate 10,000 random results based on randomized permuta-

tion of the probabilities of the 320 genome and trait pairs of a

submission;

2. Calculate the AUCs of the randomized results;

3. Calculate the distance of submission’s AUC from the average AUCs

of the permuted results;

4. Calculate P values based on the following equation:

P value = #of simulationswithAUCgreater than the submission
#of simulations

(1)

Scoring: We also scored each submission based on the statisti-

cal analysis mentioned above, that is, ROC AUC and AUC distance

from simulated results. By adding the two ranks of each submission

together, we ranked the four submissions.

2.3 PGP 2013

Data provided by CAGI for this challenge included 77 genomes and

291 phenotypic profiles, 214 of which were decoys (i.e., they did not

match any genome). The phenotype profiles included a list of self-

reported binary traits (e.g., asthma, breast cancer, lung cancer, colon

polyps, and melanoma) and additional phenotypic and genetic infor-

mation provided by PGP participants. Each profile included 239 traits

(list of trait names that could be found in Supp.Material). The challenge

requiredmatching each genome to the appropriate phenotypic profile.

There were 16 submissions from five groups. Each submission was a

TSV file that contained probabilities for each participant genome to

the 291 challenge profiles. Twenty-seven of the 77 genomes had addi-

tional genotypic data from 23andMe, and predictions on these were

considered to be trivial andwere removed from the analysis, which left

50 genomes being considered. The submissions and assessments are

described as follows.

2.3.1 Submissions

In 2013, we received both identified submissions from Group1,

Group2, and Group3 as well as anonymous submissions from Group7

and Group8. Group1 and Group2 are groups that participated in PGP

2011, whereas Group3was a new submitter group in PGP 2013. Their

methodologies are described in Supp. Material, with overview shown

in Table 3.
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TABLE 3 Overview of methodology of PGP 2013 submissions

Group7 Group2 Group3 Group1 Group8

Nongenomic
information

None None None None Posts from PGP
forum

Ancestry No No 1000Genomes
Project data

No DIYDodecad 2.1

Traits used 107 traits from
training set

All Mendelian traits All Traits self-reported
by certain
participants

Filter variants for
each trait

200 Selected nsSNPs from
top 10 genes

In-housemethods HGMD andGWAS
hits

N/A

Mathematical model Naive Bayes Correlation Bayesian Bayesian network Trait specific

Parameter estimation Estimate odds ratio of
each variant from
training set

Search PubMed in
estimating disease
similarity

From training set and
guesswork

Literature and
guesswork

N/A

2.3.2 Assessments

As noted by one team (Group8), there were 108 profile that could be

readily identified as being decoys, because the PGP website reported

that no blood or saliva samples had been collected for these partic-

ipants (Ball et al., 2014; PGP, 2016). However, only this team explic-

itly used such information to exclude these profiles in the prediction,

which gave them an advantage that was not based on the merits of

their genetic interpretation. Thus, we assessed the submissions only

based on the 50 genomeswithout 23andMe data, andwe excluded the

108 profile decoys in question from our evaluation, leaving 183. We

used different approaches to evaluate the performances of the five dif-

ferent submissions, which included correct predictions and probability

rankings.

Correct prediction: For this assessment, we considered a prediction

for a genome to be correct if the trait profile assigned to the highest

probability by the predictor was the correct trait profile for that indi-

vidual.We counted the number of correct predictions by the following

steps: (1) for each genome, determine which trait profile was assigned

the highest probability; (2) for each genome, determine if this highest-

ranked trait profile was correct; and (3) count for how many genomes,

from a total of 50, the highest-ranked trait profile was the correct one.

We also calculated the correct prediction rate by dividing the number

of correct prediction by the total number of genomes, that is, 50.

Mean ranking of the true match: We calculated the mean ranking

of the true match phenotype profile in each of 50 participants with

genomes in each submission by the following steps: (1) rank all prob-

abilities of the 183 phenotype profiles for a genome/participant; (2)

identify the rank of the correctmatch for each participant; and (3) take

themean of the identified ranks of the correct matches.

Scoring: We also scored each submission based on the statistical

analysis including criteriamentioned above, that is, the number/rate of

correct predictions and the mean ranking of true matches. By adding

the ranking numbers for the two above-mentioned scoring criteria

together as the overall score of each submission, we got the overall

placement of all 16 submissions.

2.4 PGP 2015

The CAGI PGP challenge in 2015 was similar to 2013. We asked

submitters to match 23 genomes to 101 phenotype profiles. The

phenotype profiles remained largely unchanged from 2013. In CAGI

2015, there were 239 binary traits, which included both Mendelian

traits and “complex” traits. The challenge included 78 additional decoy

phenotype profiles that did not match any genome. The submissions

and assessment methods are described below.

2.4.1 Submissions

We received five submissions from four teams for the PGP Chal-

lenge of CAGI 2015. Each submission was formatted as a TSV file and

contained probabilities for each participant genome to 101 profiles.

The prediction methods of the identified submissions were from

Group1, who applied an improved version of the method used in

the 2013 challenge, Group4 and Group5. The latter two groups (i.e.,

Group4 and Group5) were new participants in the CAGI PGP chal-

lenges. We also received anonymous submissions from Group9. Their

methods are described in Supp.Material.

2.4.2 Assessments

We assessed the 2015 challenge using the assessing methods from

the 2011 challenge and the 2013 challenge, which include ROC AUC,

simulations, correct prediction, mean ranking of true match, with

additional description for PGP 2015 introduced as below. Also, we

included several other comparative analyses including an analysis of

prediction performance of each participant, and an analysis of ances-

try, blood type, and eye color of the participants in the challenge (Supp.

Material).

ROC AUC: In PGP 2015, the ROC AUC of the prediction output

of each submission was calculated based on the predicted probabili-

ties and the true binary answers of 2,323 (23 genomes × 101 pheno-

type profiles) genome phenotype profile pairs. We also plotted the PR

curves based on these probabilities and the true answers.

Correct prediction: For the assessment of PGP 2015, we also con-

sidered a prediction for a genome to be correct if the trait profile

assigned the highest probability by the predictor was the correct trait

profile for that individual. We computed the number and rate of cor-

rect predictions using the similar steps of the ones in PGP 2013, but

with the total number of genomes as 23.
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Mean ranking of the truematch:We also calculated themean rank-

ing of the true match phenotype profile in each of 23 participants with

genomes in each submission by the similar steps as the ones in PGP

2013, that is, (1) rank all probabilities of the 101 phenotype profiles

for a genome/participant; and (2) identify the rank of the correctmatch

for each participant; and (3) take themeanof the identified ranks of the

correct matches.

Simulations: We also designed and developed simulations to

test the hypothesis that permuted data derived from the actual

submission could exceed the accuracy of the submitting group, and

we used this to estimate a P value. The simulations were conducted

in the similar steps of the ones in PGP 2011, that is, (1) generate

10,000 random results based on randomized permutation of the

probabilities of the 2,323 genome and phenotype profile pairs of

a submission; (2) calculate the AUCs of the randomized results;

(3) calculate the distance of submission’s AUC from the average

AUCs of the permuted results; and (4) calculate P values based on

Equation (1).

Scoring: We also scored each submission based on the statisti-

cal analysis including criteria mentioned above, that is, ROC AUC,

the number/rate of correct predictions, the mean ranking of true

matches, and simulations. By adding the ranking numbers for the four

above-mentioned scoring criteria together as the overall score of each

submission, we got the overall placement of all five submissions.

3 RESULTS

Below are the assessment results of PGP 2011, PGP 2013, and PGP

2015.

3.1 PGP 2011

The assessment results of PGP 2011 are shown in Figures 1–3 and

Tables 4 and 5. Figure 1 is the ROC curves of the four binary predic-

tion submissions of PGP 2011. Submissions of Group2_1, Group2_2,

Group6, and Group1 have AUCs of 0.5121, 0.4631, 0.2785, and

0.8614, respectively, as shown in the second column of Table 4. Figure

2 shows the PR curves of the four submissions of PGP 2011. The simu-

lation results of PGP2011are shown in the third and fourth columnsof

Table 4 and Figure 3. In Figure 3, the red line is the AUC of the submis-

sion from Group1, the green line is the average AUC of all the 10,000

permuted results for the Group1’s submission, and the blue lines are

the AUCs of all simulations. Note that only the Group1’s submission is

significant as it has a P value smaller than 1.0× 10−5. Table 5 shows the

overall placement of all the four submissions based on their AUC and

simulation results.

3.2 PGP 2013

The assessment results of PGP 2013 are shown in Tables 6–8.

Table 6 shows the number of correct predictions and mean ranking

of true matches. We can see that the submission of Group1 had the

highest number of correctmatches of 6 and the bestmean rankof 25.4.

F IGURE 1 ROCAUC curves of the four submissions of PGP 2011

F IGURE 2 PR curves of the four submissions of PGP 2011

These are also shown in the overall ranking in Table 7. We also con-

ducted simulations for the best submission from Group1. Specifically,

for each genome, we randomly selected one phenotypic profile by uni-

form sampling. We made 10,000 such predictions for all 50 genomes.

The largest number of genomes correctly predicted was four, imply-

ing that the observed prediction of six was statistically significant with

a probability of less than 10−4. Similarly, the best average rank from

simulationwas 75.2, nearly three times that of the observed rank from

submission of Group1. Above all, the submission from Group1 group

had the highest performance in the 2013 challenge.

In addition, Group1 and Group2 submitted predictions for individ-

ual traits based on genomes to an optional challenge of PGP 2013. In

the main challenge, the submission from Group1 correctly identified
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F IGURE 3 AUC comparison of simulative results and submission for the best submission fromGroup1 of PGP 2011

TABLE 4 Comparison of AUC, simulation results for the four sub-
missions of PGP 2011

AUC AUC distance P value

Group1 0.8614 0.3611 < 1.0× 10−5

Group2_1 0.5121 0.0227 0.3158

Group2_2 0.4631 −0.0336 0.7332

Group6 0.2785 −0.2201 0.9999

TABLE 5 Ranking of the four PGP 2011 submissions based on sev-
eral metrics

Ranking
via AUC

Ranking via
AUC distance

Overall
score

Overall
placement

Group1 1 1 2 1

Group2_1 2 2 4 2

Group2_2 3 3 6 3

Group6 4 4 8 4

27 genomes with 23andMe data and also successfully tied five

genomes to corresponding phenotypic profiles. We therefore focus

on the predictions on these 32 participants/genomes. Empirically, we

defined three risk categories (i.e., risk of a participant/genome having a

phenotype) based on predicted probabilities: low risk with probability

lying between 0.5 and 0.7, middle risk with probability lying between

0.7 and 0.9, and high risk with a probability greater than 0.9. For each

participant, we counted the number of traits to which the participant

provided a negative response in the survey. Generally, the submission

made sparse predictions on disease risk for these 32 participants

compared with reported number of positive traits. For all 32 genomes

TABLE 6 AUC, correctmatches, andmean ranks of each submission
for PGP 2013

Number of correct
predictions out of 50 Mean rank

Group1 6 25.4

Group8_2 5 35.2

Group8_4 5 37.3

Group8_3 5 37.9

Group8_1 4 39.8

Group3_2 2 37.1

Group3_3 2 45.1

Group3_1 1 35.8

Group2_4 1 68.5

Group7_1 0 59.4

Group2_1 0 66.6

Group2_2 0 67.0

Group2_5 0 69.2

Group2_3 0 79.3

Group2_6 0 84.5

Group7_2 0 183.0

correctly predicted in the main challenge, the submitters predicted

that each genome carried, on average, an additional 2.4 low-risk traits,

1.1middle-risk traits, and0.2high-risk traits, on topof theaverage11.2

reported phenotype traits. Table 8 lists the number of reported and

predicted traits for five participants without 23andMe data. From the
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table, we can see that the predictions estimated that each participant

potentially carried 4.4 additional traits on top of the reported traits.

3.3 PGP 2015

The assessment results of PGP 2015 are shown in Figures 4–6 and in

Tables 9 and 10. Figure 4 and the second column of Table 9 show the

ROC curves and AUC of all the five submissions. We observed that

the submission of Group1 had the highest AUC of 0.8531, whereas

Group5_1 andGroup5_2 hadAUCsof 0.7982 and0.7976, respectively.

The AUC of the predictions of Group4 and Group9 were lower (i.e.,

0.5170 and 0.6132). In addition, Figure 5 shows the PR curves of the

five submissions. The figure demonstrates the higher performance of

the submissions of Group1 and Group5.

The last two columns of Table 9 and Figure 6 show the simulation

results. From Figure 6, we observed that the AUC of Group1’s submis-

sion was higher than the permuted results. The last two columns of

Table 9 show the distances between the submissions’ AUCs and the

average simulated AUCs, and the P values demonstrating significant

TABLE 7 Ranking of the 16 submissions in the PGP 2013 challenge

Ranking via
number of
correct
predictions

Ranking via
mean rank

Overall
score

Overall
placement

Group1 1 1 2 1

Group8_2 2 2 4 2

Group8_4 2 5 7 3

Group8_3 2 6 8 4

Group3_2 6 4 10 5

Group3_1 8 3 11 6

Group8_1 5 7 12 7

Group3_3 6 8 14 8

Group7_1 10 9 19 9

Group2_4 8 12 20 10

Group2_1 10 10 20 10

Group2_2 10 11 21 12

Group2_5 10 13 23 13

Group2_3 10 14 24 14

Group2_6 10 15 25 15

Group7_2 10 16 26 16

TABLE 8 The number of reported and predicted traits for five par-
ticipants without 23andMe data in PGP 2013

Number of predicted traits

huID
Number of
reported traits Low risk Mid risk High risk

hu619F51 3 2 1 1

huA05317 5 6 2 0

huEA4EE5 7 2 0 0

hu661AD0 4 3 1 0

hu5CD2C6 7 3 1 0

F IGURE 4 ROCAUC curves of the five submissions of PGP 2015

differences from the permuted results. From these two columns, we

can see that all the submissions were significantly different from ran-

domprediction, especially submissions fromGroup1 andGroup5, with

small P values (smaller than 1.0 × 10−5).

The third column of Table 9 shows the results of the correct predic-

tions for each submission. From the column, we can see that Group1

got five correct predictions out of 23 true matches, whereas Group5

had three correct predictions. Other submissions had one correct pre-

diction.

The fourth column of Table 9 shows the mean ranking of the true

match phenotype profile for each of the 23 genomes/participant. From

this column, we can see that Group1 obtained the true matches in the

mean ranking of 16.93 of 101 for the 23 genomes, and Group5’s sub-

missions had 21.54 and 23.65 out of 101.

In addition,wealso added the rankingof the correctmatches among

the five submissions to get the ranking of each participant/genome.

From the results shown in the first two columns of Supp. Table S1, the

best predicted participant was participant 14 (with a very small aver-

age ranking as compared with other participants), and the worst pre-

dicted participants were participants 16 and 21. We also listed pro-

file information of each participant in the order of average ranking of

each participant (Supp. Table S1). From the table, participant 14 was

the only person with AB+ blood type among the 23 participants. In

addition, from the ancestry analysis in Supp. Figure S1, we can see the

two worst predicted participants are in the native American ances-

try group, whereas the best predicted participants are across different

groups.

3.4 Comparisons of PGP challenges

Here, we compare the three PGP challenges, that is, PGP 2015, PGP

2013, and PGP 2011. From Table 1, we can see that PGP 2013 had

more genomes and phenotype profiles, as well as more submissions,
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F IGURE 5 PR curves of the five submissions of PGP 2015

when compared with PGP 2011 and PGP 2015. From Tables 6 and 9,

we can see that the highest proportion of correct predictions was in

PGP 2015, with five out of 23 correct (around 21.74%), as compared

with PGP 2013, where the best prediction was 6 out of 50 correct

(around 12.00% correct). The top-ranked submission from Group1 in

PGP 2015 had improved prediction performance with respect to the

top-ranked submission, also from Group1, in PGP 2013, from 12.00%

to 21.74% in terms of correct prediction. From the overall placements

of submissions in three challenges in Tables 5, 7, and 10, we can see

Group1 group had the best performance over the three challenges.

4 DISCUSSION

We live in an era of genetic testing, either performed in the clinic or

by direct-to-consumer (DTC) genetics services.Many results of genetic

testing are difficult to interpret (Hudson, Javitt, Burke, Byers, & ASHG

Social Issues Committee, 2007), though this is not always made suf-

ficiently clear to patients or customers. It is important to understand

the accuracy and limitations of currently available methodologies for

interpreting the relationship between a patient’s genetic information

and phenotypic traits.

4.1 PGP 2011

In the assessment of PGP 2011, we focused primarily on assessing

binary trait predictions. Interestingly, one team had a vastly higher

ROC AUC than the other teams. We hypothesized that Group1’s sub-

missionwas superiordue to their accuratemodelingof theoverall rates

of traits in the general population, a challenging problem due to the

lack of available data and the educated guesswork that goes into build-

ing predicted population rates. This is an important issue and needs to

be addressed in order to make accurate genomic predictions. Further,

whileAUC is relatively high, overall precision remains low for all teams,

suggesting that individual trait prediction is still very difficult. The pre-

diction of Group1 was, by our assessment, the only statistically signifi-

cant submission.

4.2 PGP 2013

Four groups (i.e., Group1, Group2, Group3, and Group7) used system-

atic approaches to modeling the probability of a trait given genomic

data. One group (i.e., Group8) found participants with self-reported
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TABLE 9 AUC, correct matches, mean ranks, and simulation results of each submission for PGP 2015

AUC Number of correct
predictions out of 23

Mean rank AUC distance P value

Group1 0.8531 5 16.93 0.3534 < 1.0× 10−5

Group5_1 0.7982 3 23.65 0.2981 < 1.0× 10−5

Group5_2 0.7976 3 21.54 0.2971 < 1.0× 10−5

Group4 0.6132 1 39.59 0.1134 0.0001

Group9 0.5170 1 49.30 0.017 0.0387

TABLE 10 Ranking of the five submissions of PGP 2015

Ranking via
AUC

Ranking via number of
correct predictions

Ranking viamean
rank

Ranking via AUC
distance

Overall score Overall
placement

Group1 1 1 1 1 4 1

Group5_1 2 2 3 2 9 2

Group5_2 3 2 2 3 10 3

Group4 4 4 4 4 16 4

Group9 5 4 5 5 19 5

traits and then searched the genetic data for specific genotypes of

these traits. Their mathematical model contained multiple unknown

parameters, such as variant frequency and penetrance. For many of

the phenotypes, no accurate estimation or sufficient data exits for such

parameters. This difficulty caused three groups to resort to intuitive

guesswork when developing the models, which is hard to justify and

which varied from group to group.

Interestingly, one team revealed that for certain participants, sev-

eral discrepancies were observed between the provided traits and

what genomic data could indicate. Such discrepancies, among other

difficulties mentioned above, could have reduced the performance of

complex models built for this challenge. On the other hand, some sim-

plemodels, such as the Naive Bayesianmethod, may have been insuffi-

cient to capture weak statistical signal embedded in the highly hetero-

geneous data.

The two top performing groups successfully matched six and five

genomes to their phenotypic profiles, although they used distinct

approaches: one used a Bayesian network and the other used trait-

specific models. The relatively accurate results from the submission of

Group8_2 can be significantly attributed to the elimination of unlikely

phenotypic profiles using additional information available frommanual

sleuthing on the Internet, including PGPparticipant discussion forums.

Therefore, a straightforward way to improve the prediction for this

challenge may be to apply the Bayesian network modeling (used by

the top performing group, i.e., Group1) to curated data (which can be

obtained through the similar approach used in the submission from

Group8_2).

4.3 PGP 2015

In our assessment, we also analyzed and compared ancestry, blood

type, and eye color of the 101 participants (Supp. Material). These

features are likely the source of a number of identified matches and

appear to be driving predictive factors when identifying participants.

For instance, the participantwhommost teams correctly identifiedhad

the rare AB+ blood type. This feature could be one of the main factors

in identification for this participant.

5 CONCLUSION

We show that the ability to predict a broad profile of phenotypes

from genotype is improving, and highly statistically significant, but still

lacks the accuracy to be definitive. We also show that several major

factors, including blood type and ancestry, increase the rate of cor-

rectly identifying individuals when comparedwith identificationmeth-

ods using rare traits. Notably, Group1, which performed well through-

out each of the experiments, improved from predicting six out of 50

correctly (12%) in 2013 to five out of 23 (∼21%) in 2015, a more than

twofold improvement in performance. While these results are limited

by small dataset, it is clear that we can still greatly improve our ability

to definitively match an individual’s phenotype with their genotype. In

the future, we would like to include more genomes and trait profiles in

the challenge and hope to see improvement of prediction accuracy.
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