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Supplemental Methods 
 

Tissue Collection and RNA Isolation 

 

Liver, kidney, and heart tissue samples come from frozen tissue samples (post-

mortem or from surgical resection) from tissue banks as previously described1-3 

(Supplemental Table 2).  Where tissues were collected from surgical resection 

for tumor biopsy, normal tissues adjacent to the tumor were isolated. Kidney 

samples come from a mix of normal tissue extracted during biopsy for diagnosis 

of renal carcinoma or taken post-mortem from individuals with no known renal 

dysfunction; samples were flash frozen (except 1 which was formalin fixed and 

paraffin embedded). Heart samples come from patients with no known cardiac 

disorder. Disease states of the patients who donated the liver samples are not 

known, but the organs themselves were healthy. Heart and liver samples were all 

flash frozen. 

 

Adipose tissues and LCLs were collected from subjects who participated in 

clinical trials  (Cholesterol and Pharmacogenetic Study, NCT00451828 and 

Dietary Protein and Insulin Sensitivity Study, NCT00508937) as previously 

described 1, 4. All participants in the trials provided written informed consent, and 

protocols were reviewed by the appropriate institutional review boards at the 

University of California, Los Angeles, School of Medicine (Los Angeles, CA) or 

San Francisco General Hospital (San Francisco, CA) (Cholesterol and 

Pharmacogenetic Study) and Children's Hospital & Research Center 

(Oakland,CA) (Dietary Protein and Insulin Sensitivity Study). Adipose tissue 

biopsy specimens were collected from human participants in a dietary 

intervention clinical trial (NCT00508937) (unpublished) during the control diet 

(55% carbohydrate, 30% fat). Participants were non-smoking and overweight to 

obese with BMI between 25 and 40 kg/m2 but otherwise healthy. Adipose tissue 

was collected by needle biopsy from the subcutaneous flanking region after 

injection of 1% lidocaine hydrochloride with adrenaline and sodium bicarbonate. 
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Biopsy samples were washed with phosphate-buffered saline, flash frozen in 

liquid nitrogen, and stored at -80°C. 

 

Immortalized lymphoblastoid cell lines (LCLs) were derived from blood samples 

isolated from participants of the Cholesterol and Pharmacogenetics (CAP) 

clinical trial (NCT00451828), and grown at 37°C with 5% CO2 in RPMI 1640 

media supplemented with 10% FBS, 500 U/ml penicillin/streptomycin, and 2 

nmol/L GlutaMAX (Life Technologies). All participants had elevated baseline total 

serum cholesterol levels (160 to 400 mg/dl) who were not taking any lipid 

lowering medication, corticosteroids, immunosuppressive drugs, or any drugs 

known to affect the CYP3A4 system or had known liver disease or dysfunction, 

uncontrolled hypertriglyceridemia, blood pressure, or diabetes mellitus, abnormal 

renal or thyroid function, any other recent major illness, or known alcohol or drug 

abuse. 

 

Methods for RNA isolation from heart, liver, kidney tissue, and lymphoblastoid 

cell lines were previously described 1-3, 5-7; any changes from published methods 

are noted below.  

 

RNA isolation from human adipose tissue 

 

Total RNA was isolated from 0.5-1.0g frozen adipose tissue using the TRIzol 

Plus RNA Purification System (Ambion). Tissue disruption was performed using 

the Thermo Savant FastPrep FP120 Homogenizer with each sample run twice at 

5 m/s for 40 seconds and stored on ice between homogenizations. An on-column 

digestion of DNA during RNA purification was performed using the RNase-Free 

DNase Set (Qiagen). Total RNA was quantified by spectroscopy by using an ND-

1000 NanoDrop spectrophotometer (NanoDrop Technologies). Total RNA quality 

was assessed by using the RNA 6000 Nano Kit on a 2100 Bioanalyzer (Agilent).  

All samples recovered >6μg of total RNA and achieved an RNA Integrity Number 

(RIN) of at least 6.5 or higher. 
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RNA isolation from human lymphoblastoid cell lines 

 

Total RNA was isolated from LCLs using the PureLink RNA Mini Kit (Life 

Technologies). An on-column digestion of DNA during RNA purification was 

performed using the RNase-Free DNase Set (Qiagen). Quantification and quality 

control of total RNA was performed as described above.  

 

Preparation for RNA-sequencing Library 

 

RNA integrity number (RIN) was quantified for all extracted RNA by Bioanalyzer 

(Agilent), and only samples with RIN scores ≥ 6.0 were used for library 

preparation. RNA-seq libraries from liver, kidney, adipose, and heart samples 

were prepared and sequenced at the Baylor College of Medicine Human 

Genome Sequencing Center (BCM-HGSC). Libraries were prepared as outlined 

by Zhong and colleagues8 with modifications and added quality checks; library 

preparation was generally conducted for all samples from a given tissue at one 

time but different tissues’ samples were prepared in distinct batches. RNA-seq 

libraries from liver, kidney, adipose, and heart samples were prepared as follows. 

In brief, 0.5-1.0 μg of total RNA was twice selected for mRNA by oligo (dT) and 

then fragmented by heating. First strand cDNA was synthesized using 

Superscript III reverse transcriptase and random hexamer primers. After second 

strand synthesis by DNA polymerase I and with dUTP in place of dTTP, double 

stranded cDNA was end-repaired and A-tailed prior to ligation of Illumina 

adaptors including DNA indices. Libraries were made strand-specific by digestion 

with Uracil-DNA Glycosylase prior to PCR amplification. Bead-based clean-up 

was incorporated after each enzymatic reaction and libraries were checked by 

flash gel and Bioanalyzer analysis prior to pooling, cluster formation and paired 

end sequencing on Illumina HiSeq sequencing instruments at five samples per 

lane.   
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RNA-seq libraries from LCLs were prepared at LabCorp (formerly Covance, 

Seattle, WA) and sequenced at the University of Washington Northwest 

Genomics Center. cDNA libraries were prepared using a similar protocol to the 

tissues using the TruSeq RNA Sample Prep Kit v2. The corresponding vendor 

protocol was used for almost all steps (including polyA selection) with a final PCR 

enrichment using 15 cycles. The protocol was modified to increase fragment size 

and to yield final libraries containing only the first strand-synthesized product by: 

(a) reduction of elute-prime-frag treatment time from 8 minutes to 4 minutes (to 

increase library insert size), (b) second strand synthesis using a mastermix 

containing dUTP (in place of dTTP) and RNAse H (to remove RNA), and (c) 

following the final adapter ligation cleanup, libraries were digested with uracil 

DNA deglycosylase (to remove dUTP-containing second strand product). 

 

 

Quality Control and Alignment 

 

Raw reads were mapped to the human genome sequence (hg19)9 using Tophat 

v2.0.610, allowing for four mismatches per 100bp read, a maximum of 6 edit 

distances per read, and one mismatch in the splice anchor region. Insert sizes 

were estimated using the Picard Tools11 (v1.79) tools SortSam.jar and 

CollectInsertSizeMetrics.jar on Bowtie2(v2.0.0-beta7)12-generated sam files from 

a subset of 500,000 paired-end reads per sample (bowtie2 options -q --very-fast -

-phred33).  

 

Using Picard Tools, the alignment files were sorted by genomic coordinates, 

read-group data was added, and duplicate reads were marked and removed. For 

some samples, where initial quality control suggested low read counts, stored 

libraries were sequenced again, and reads from all runs for a sample were 

merged together. In addition, several quality metrics were calculated using RNA-

SeQC13. Selected metrics are shown in Supplemental Figure S8. All QC metrics 

fall within acceptable ranges, though a one-way analysis of variance F-test 
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indicates significant differences between tissue types for all metrics. Investigating 

all pairwise comparisons by Tukey’s HSD test reveals the largest magnitude 

difference between LCL libraries and other tissues (Supplemental Table S10). 

Given that library preparation for LCLs was conducted at a different site using 

slightly different protocols, this result is not unexpected. Between physiological 

tissues, slight but significant differences were observed between groups in 

intragenic, intergenic, and rRNA rates (difference of means < 0.01), coverage, 

and mismatch rates (difference of means < 0.01). These subtle differences may 

be caused by differences in RNA extraction and library preparation stages. While 

these steps were conducted using the same protocols for the four physiological 

tissues, technicians and dates for preparation varied. The upper-quartile 

normalization and subsampling procedures applied correct for such differences 

between samples. 

 

While others have attempted to use statistical methods to correct for any hidden 

biases in the data14, 15, in this study any potential technical confounders (sample 

source, extraction method, technician, etc.) are conflated with sample type and 

any attempt to correct for such biases in our data would also remove biologically 

meaningful tissue-specific effects. However, to ensure there were no systematic 

biases in our samples due to sample preparation or sample source, we checked 

variability of expression values and absolute expression values for a set of seven 

genes that have previously been determined to show consistent expression 

patterns across tissues using the same metrics for variability of expression 

employed by the original study 16. In our dataset, these seven genes showed low 

variability in expression values across individuals (standard deviation of 

log2(FPKM) across all samples in a given tissue type < 0.5) and consistent 

expression levels between the physiological tissues (fold change of tissue-

specific expression relative to overall geometric mean of expression < 2) 

(Supplemental Table S11). The overall distribution of protein coding gene 

expression levels was also similar between the four physiological tissues 

(Supplemental Figure S4A,C). Further, as expected, principal components 
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analysis on protein coding gene FPKMs (FPKM>1) by sample showed clear 

separation between the sample types (Supplemental Figure S5A). Finally, while 

most of the physiological tissue samples were flash frozen, one kidney tissue 

sample was formalin fixed and paraffin embedded (FFPE) for storage. A principal 

components analysis on PGRN pharmacogene FPKMs in kidney samples 

suggested that the tissue storage method (flash frozen vs FFPE) did not explain 

a significant portion of variability in pharmacogene expression. 

 

Transcriptome Analyses  

 

Transcript structure assembly was performed with Cufflinks (v.2.0.2)17 on each 

sample for each tissue type. The Gencode v12 annotation18 was used as a 

reference to guide assembly (--GTF-guide). Additional parameters included 

upper-quartile normalization (--upper-quartile-norm), library type (--library-type fr-

firststrand), and maximum bundle length (--max-bundle-length 7500000). 

Cuffmerge (v2.0.2) was then used to merge all the cufflinks assemblies and the 

reference annotation into one large set of transcript structures including those 

both known and novel. For pharmacogenes, to increase confidence in the 

discovery of transcript structures not previously annotated, splice junctions not 

present in the reference annotation were required to pass a Shannon entropy 

score 19 threshold of 2 (Supplemental Figure S9). The entropy score is 

 where p(xi) is the proportion of junction reads starting at 

position i and n is the total number of different starting positions (offsets) for 

reads crossing this junction. Our scores were calculated using all the reads in 

this study and an entropy score of 2 means that the reads crossing the junction 

start at four different positions.  

 

The mapped reads for each sample were subsampled down to 20 million using 

multiple runs of the Picard tool DownsampleSam. Only 18 kidney samples had 

enough reads, thus 18 samples were chosen from the other four tissue types at 

− p(xi )log2
i=1

n

 p(xi )
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random (except adipose tissue, where instead samples from the African-

American and Asian patients were excluded, leaving just samples from 

Caucasian patients and those with unknown ethnicity because the individuals for 

the other tissues were all Caucasian). 

 

To calculate the expression level of each gene in each tissue type, Cuffdiff 

(v2.2.1)17 was run with default parameters and the option --library-type fr-

firststrand on the subsampled read files with 18 samples per tissue type used as 

‘replicates’ and the merged set of transcript structures used as the reference 

annotation. Gene expression for each tissue was calculated by summing all 

isoforms for a given gene in a given tissue from the isoforms.fpkm_tracking file 

generated by Cuffdiff. This file combines all individuals to give one value per 

isoform per tissue reported for each gene. Genes with any isoform with a status 

of “HIDATA” do not have a calculated FPKM value. Two pharmacogenes, 

ALB (albumin) and SERPINA1 (serpin peptidase inhibitor, clade A), in the liver 

had HIDATA values. Gene expression for each individual was calculated by 

summing all isoforms for a given gene for each individual from the 

isoforms.read_group_tracking file generated by Cuffdiff. This file has, for each 

individual, one value per isoform reported for each gene. 

 

Differential expression between tissues was calculated using Cuffdiff (v2.1.1)17 

and DESeq (v2.13)20. Differential expression was extracted from the 

gene_exp.diff file generated by Cuffdiff.  To prepare read files for DESeq, read 

counts were generated with HTSeq (v0.5.4p3)20 using reverse stranded 

orientation (-s reverse) and counting mode “intersection-strict” on subsampled 

bam files. The Cuffmerge GTF described above for Cuffdiff analysis was used as 

reference GTF.  For the DESeq analysis, all commands were run with defaults on 

all arguments, except for estimateDispersions, which was run with method="per-

condition" and fitType="local". Differentially expressed genes were defined as 

those with qvalue less than 0.1 in both DESeq and Cuffdiff and greater than or 

equal to 2-fold change in expression between tissues. 
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Clustering of gene expression values across samples was conducted using K-

means clustering as implemented in BiCAT21 based on the Euclidean distance 

between log2 transformed FPKM values (FPKM<1 set to 1) with up to 1000 

iterations and 23 clusters. Euclidean distance was chosen as the goal was to 

group genes by overall expression level across samples. The number of clusters 

(k) was selected by studying the within group sum of squares at increasing 

numbers of clusters. Because cluster assignment can be sensitive to choice of k, 

cluster assignment of genes highlighted in Figure 2B-2F was also evaluated with 

alternate choice of k (selected values between 6 and 20). For clusters highlighted 

in 2 B, C, E, and F, all genes that clustered together at k=23 also clustered 

together with smaller numbers of clusters. For the cluster highlighted in 2D 

(genes expressed at higher levels in liver than the other 4 tissues), in some 

cases genes were split between two different clusters representing genes very 

highly expressed in liver and those more moderately expressed in liver (but still 

higher than in the other four tissues). 

 

To evaluate variability in gene expression values, the coefficient of variation (CV) 

by tissue for all genes with median FPKM>1 was calculated. Enrichment of 

variability in gene expression in gene sets was calculated using the Gene Set 

Enrichment Analysis (GSEA v.2.1.0)22, 23 PreRanked tool (classic algorithm), with 

CV of each gene in a particular tissue type used as gene ranking. Gene ontology 

biological process sets (from the Molecular Signatures Database v4.0 provided 

along with the GSEA tool) with set size between 15 and 500 genes and 

pharmacogenes were tested. Significance of enrichment was calculated by 

permuting gene-rank associations 1000 times.   

 

Splice junctions were identified using the JuncBASE package19 on reads that 

overlapped protein-coding genes. Only splice junctions with a Shannon entropy 

score greater than 2 using all subsampled reads were used. Junctions were 

called non-annotated if they were not present in the Gencode v12 annotation nor 
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in the Ensemble annotation. Using additional code generated by the authors, the 

reported JuncBASE results were transformed into groups of mutually exclusive 

junction sets, each with defined length-normalized read counts (reads/100bp) 

and ‘percent spliced in’ (PSI) values. Complex events (e.g. cassette exon + 

alternate 3’ splice site) with ambiguously mapped reads were filtered out. Intron 

retention events made up a large fraction of the reported splice events but are 

difficult to confidently annotate as alternative splicing as opposed to pre-mRNA 

contamination or other technical artifacts and so were also filtered out. The novel 

last exon event of SLC22A7 was not reported by JuncBASE. The PSI values 

were calculated using only the junction read counts for the novel junction and the 

known junction. 

 

Code availability 

 

Scripts used to process the output from JuncBASE are deposited at 

https://github.com/cefrnch/PGRN_JuncBASE_postprocessing. 

 

Validation of exon junctions and PSI estimates 

 

For PCR validation of exon junctions, primers were designed to detect the 

junctions and cloned into TOPO TA vector (pCR™2.1-TOPO vector) 

(Invitrogen, CA) to confirm the sequence.  Commercially available purified total 

RNA from normal human tissues (Ambion, CA) were used for cDNA synthesis 

by Superscript III cDNA synthesis kit using Oligo(dT) (Invitrogen, CA) and 

GoTaq DNA polymerase (Promega, MI) for PCR amplification. For qPCR 

validation of PSI values, cDNA was synthesized using the ABI cDNA Archive kit 

and HMGCR13(-), HMGCR13(+), LDLR4(-) and LDLR4(+) were quantified by 

TaqMan assay in triplicate as previously described24. PSI values were calculated 

from the qPCR and RNA-seq measurements as the ratio of HMGCR13(-)/13(+) 

and LDLR4(-)/4(+), quantile normalized, and tested for correlation using a 

general linear model in JMP 9.0 (SAS Institute). 
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Comparison with Additional RNA-Seq Studies  

 
To validate the patterns of pharmacogene expression and splicing identified in 

this study, we analyzed data from the Genotype Tissue Expression (GTEx) 

Project25.  

 

Expression (RPKM, mapped reads per kilobase per million mapped reads) 

values per individual, per gene for the GTEx analysis v4 were downloaded from 

the GTEx portal (http://gtexportal.org). Tissue types were matched to those used 

in the PGRN RNASeq analysis - adipose (subcutaneous, 128 samples), cells 

(ebv transformed lymphocytes, 54 samples), heart (left ventricle, 95 samples), 

liver (34 samples), and kidney (cortex, 8 samples). Both datasets used Tophat 

for alignment with Gencode(v12) as a transcript model. Downstream processing 

steps differed between the two datasets. 

 

For each tissue type, mean, median, and coefficient of variance of RPKMs were 

calculated for each pharmacogene. Variability of gene expression in gene sets 

(using coefficient of variation as a gene ranking metric in a gene set enrichment 

analysis as described for the PGRN dataset) was evaluated for each tissue type. 

Correlation between pharmacogene expression values and coefficient of 

variation in the PGRN and GTEx sets was calculated using spearman’s rank 

correlation. 

 

For each of ‘Adipose - Subcutaneous’, ‘Heart - Left Ventricle’, ‘Liver’, and ‘Cells - 

EBV-transformed lymphocytes’, 18 samples were chosen at random from the set 

of samples included in the GTEx release phs000424.v4.p1. For ‘Kidney - Cortex’, 

only 8 samples were available and all were used. The aligned reads were 

downloaded from SRA/dbGaP, subsampled down to 20 million reads per sample, 

and the 80 samples were run through the JuncBASE pipeline in the same way as 

was done for the PGRN data.  
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Supplemental Results  
 
Global transcriptome analysis 

 

Across the samples, 56% of all genes were expressed with FPKM ≥1 in at least 

one individual (Supplemental Table S3B). Of these expressed genes, 70% 

(7,845) were expressed with FPKM ≥1 in all 90 individuals. A small number 

(~2%) of protein coding genes were completely undetectable in our dataset (no 

FPKM reported).  

 

We saw evidence for alternative splicing for 35,722 events in 13,833 genes (i.e., 

for each potential alternative splice event, multiple mutually exclusive junctions 

had a PSI value ≥5 and had ≥1 read/100bp). We also observed 4,192 previously 

not annotated splice events supported by the more restrictive read coverage 

threshold of 5 reads/100bp and present with PSI ≥5 in at least one sample 

(Supplementary Figure S7A); less conservatively, 20,128 non-annotated junction 

sets have read coverage of at least 1 read/100bp (Supplemental Figure S7B). 

 

The total number of splice events observed in at least one individual with at least 

5 reads/100bp depends on the number of samples considered, especially when 

considering fewer than 10 samples (Supplementary Figure S6C), due to the 

variability of gene expression and alternative splicing amongst individuals. With 

only one sample, we would see as few as 60% of the splice events found in at 

least one sample of 18 samples. However, with 18 samples per tissue type we 

are able to see around 95% of the splice events we would see if we used all the 

samples for a given tissue type in this study.  As expected, the ability to detect 

splice events also depends on read depth. We tested four subsampling depths 

(10, 20, 30, and 40 million reads) and find an additional 22-34% of junction sets 

for a given sample (e.g. LCLs and kidney in Supplementary Figure S6A, B) at 40 

million reads compared to 20 million reads.  
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Association of gene expression with age and gender 
 

Association of pharmacogene expression values with age and gender in each 

tissue type were calculated by linear regression and Mann-Whitney test, 

respectively, and are reported where the false discovery rate adjusted p-value is 

less than or equal to 0.05.  Age of patient was associated with pharmacogene 

expression for two genes, albeit at very low levels of expression – CACNA1S in 

the liver and CYP2B7P1 in the kidney. CACNA1S expression was under FPKM 

0.025 in all samples, but slightly and significantly higher in liver samples from two 

patients under age 20 (15 and 16 years) compared to liver samples from 

remaining patients (≥ age 45). Similarly, CYP2B7P1 expression was under 

FPKM 0.025 in all samples, but slightly and significantly higher in kidney samples 

from two patients under age 10 compared to kidney samples from remaining 

patients (≥ age 38). No association between expression and sex of patients was 

identified. 

 
Comparison with Additional RNA-Seq Studies  
 
To validate the patterns of expression and splicing observed in this dataset with 

those identified in a second RNA-Seq study, expression values (RPKM) per 

gene/individual and junction counts per individual were extracted from the 

Genotype Tissue Expression (GTEx) Project for EBV transformed lymphocytes 

(LCLs) and kidney (cortex), liver, adipose (subcutaneous), heart (left ventricle) 

tissues.  

 

For the subset of pharmacogenes highlighted in Figure 3, we examined variability 

in expression across individuals in the GTEx dataset (Supplemental Figure S10), 

and observe broadly similar trends in variability across individuals. For example, 

in the GTEx dataset, as in the PGRN dataset, we observe high variability in 

expression of the cytochrome P-450 enzymes in the liver, and consistent levels 

of expression across individuals in all tissues for glutathione S-transferase 

enzymes. In fact, our data seem more tightly clustered for these more consistent 
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genes, suggesting the heterogeneity from live biopsies may be less significant 

than post-mortem issues. Across all pharmacogenes, the Spearman correlation 

(Spearman rho) between coefficient of variation for PGRN and GTEx datasets 

was greater than 0.5 (Kidney, 0.68; Heart, 0.88; Liver, 0.51; Adipose, 0.80; LCLs, 

0.52). 

 

Further, in this secondary dataset, as in the PGRN dataset, pharmacogenes are 

among the 10 most variably expressed gene sets (compared to Gene Ontology 

biological process sets) in kidney, liver, adipose, heart, and LCLs. As in the 

PGRN dataset, as a group, pharmacogenes were expressed at higher levels in 

liver and lower levels in LCLs. Further, 107 of 133 of the set of pharmacogenes 

identified as having tissue-specific expression patterns (defined as ten times 

higher or lower expression in one of the tissues relative to all others in the PGRN 

dataset) (Supplemental Table S5) also showed the same tissue specific 

expression patterns in the GTEx dataset. Finally, for all tissue types, the 

correlation between pharmacogene expression values in the PGRN and GTEx 

datasets was greater than 90% (Spearman rho: Kidney, 0.91; Liver, 0.92; 

Adipose,0.92; Heart, 0.96; LCLs,0.91). 

 

We downloaded the aligned reads for 18 GTEx samples per tissue (except 

kidney where there is only 8 samples total), subsampled to 20 million reads per 

sample, and performed the same JuncBASE splicing analysis as was done for 

the PGRN data. Of the 278 pharmacogenes reported as producing multiple 

isoforms in our data, 206 were also clearly alternatively spliced in the GTEx data 

(multiple mutually exclusive junctions each with at least 1 read/100bp and PSI>5 

in at least one sample). Of the other 72, most were inconclusive in the GTEx 

data.  Only 11 pharmacogenes were alternatively spliced in the GTEx samples, 

but were inconclusive (6) or had no evidence of alternative splicing (5) in the 

PGRN data. Many pharmacogenes that are significantly differentially spliced 

between tissues in the PGRN data are also differentially spliced in the GTEx data 

(Supplemental Table S12), though for the comparisons involving kidney or LCLs, 
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the overlap is low. For kidney, this likely is partly due to there only being 8 GTEx 

samples, limiting power for detecting significant splicing. 

 

We also evaluated whether the splice events that we observed in only one tissue 

in the PGRN data (Figure 4A) were found in the other tissues’ GTEx samples. 

For each tissue, 64-100% of the events that we checked were also not found in 

the other four tissues in the GTEx samples (Supplemental Table S13). The novel 

alternative last exon in SLC22A7 (Figure 4C) was also observed in the GTEx 

samples, with junction coverage >40 reads/100bp in 16 samples. Additionally, of 

the 183 novel splice events we report in pharmacogenes, 54 were picked up by 

the JuncBASE analysis of GTEx data. 

 

  



 16

Supplemental Figure Legends 
 
Supplementary Figure S1. Validation of non-annotated junctions. PCR and 
sequencing were performed to validate the non-annotated junctions in SLC22A7 
(Lane 1) and APOA2 (Lane 3 and 5). Pooled liver cDNA (20 ng) was used in the 
PCR reactions.  Samples in Lane 2, 4 and 6 are PCR reactions with primers 
alone and without cDNA.  Sample in Lane 7 is PCR reaction without primers and 
cDNA.  
 
Supplementary Figure S2. Validation of PSI values obtained by RNA-seq. 
Percent spliced in (PSI) values were quantified by RNA-seq and qPCR for 
HMGCR exon 13 skipping (A) and LDLR exon 4 skipping (B) from RNA derived 
from 39 LCLs. Both RNA-seq and qPCR PSI values were calculated as the 
quantile normalized ratio of the alternatively spliced/canonical transcript ratio. 
 
Supplemental Figure S3. Gene expression (FPKM) by sample across each 
tissue type and LCLs for 389 PGRN pharmacogenes from subsampled data (18 
samples per tissue type, 20 million reads per sample). The black dot indicates 
median FPKM per gene and tissue type. Plots drawn using R package ggplot2. 26  
 
Supplemental Figure S4.  Distribution of FPKM values for (A) protein coding 
genes in each individual, (B) PGRN pharmacogenes in each individual, (C) 
protein coding genes in each tissue, (D) PGRN pharmacogenes in each tissue. 
Gene FPKM values are calculated as the sum of FPKM values for all isoforms of 
the gene. Tissue gene expression in (C) and (D) is reported by Cuffdiff when all 
samples for that tissue are used as replicates. 
 
Supplemental Figure S5. Principal components analysis on gene expression 
(log2(FPKM)) across individuals for (A) protein coding genes and (B) 
pharmacogenes. The first four principal components are shown here. Principal 
components analysis conducted using function prcomp in R package Stats. 27 
 
Supplemental Figure S6. The number of splice events observed in (A) LCLs or 
(B) kidney with increasing read depth and number of samples used. The x-axis is 
the number of samples considered (subsampled down from the total number of 
samples for the tissue). Each point is the number of splice events observed with 
read coverage greater than 5 reads/100bp in at least one of the samples used, 
averaged after 100 permutations of subsampling. The error bars are standard 
deviations for the permutations. (C) The number of splice events observed with 
20 million reads with increasing number of samples studied, by tissue.  
 
Supplemental Figure S7. (A) The distribution of the number of previously non-
annotated splice events observed in at least one sample (of 90 samples) with 
PSI greater than the threshold. All events also have read coverage of at least 5 
reads/100bp. (B) The distribution of the number of non-annotated splice events 
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observed in at least one sample (of 90 samples) with read coverage greater than 
the threshold. 
 
Supplemental Figure S8. Post-alignment QC metrics by tissue generated by 
RNAseqQC. 
 
Supplemental Figure S9. Distribution of Shannon entropy scores for splice 
junctions found in the Gencode or Ensembl annotations ('known') and those that 
are not ('novel'). Entropy scores take into account read coverage and number of 
offsets (read start positions, Supplementary Methods), and were calculated after 
merging all reads for all samples in our data set. An entropy score cutoff of 2 was 
used to define 'confident' non-annotated junctions. 
 
Supplemental Figure S10. Gene expression (RPKM) by sample across each 
tissue type (adipose, n=128; heart, n=95; liver, n=34;kidney, n=8) and LCLs 
(n=54) for selected cytochrome P450 (CYP) enzymes, solute carrier family (SLC) 
transporters, and other pharmacogenes discussed in this article from the 
Genotype-Tissue Expression project25 (GTEx, v4). The black dot indicates 
median FPKM per gene and tissue type. Plots drawn using R package ggplot2.26  
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