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Abstract

The NAGLU challenge of the fourth edition of the Critical Assessment of Genome Interpretation 

experiment (CAGI4) in 2016, invited participants to predict the impact of variants of unknown 

significance (VUS) on the enzymatic activity of the lysosomal hydrolase α-N-

acetylglucosaminidase (NAGLU). Deficiencies in NAGLU activity lead to a rare, monogenic, 

recessive lysosomal storage disorder, Sanfilippo syndrome type B (MPS type IIIB). This challenge 

attracted 17 submissions from 10 groups. We observed that top models were able to predict the 

impact of missense mutations on enzymatic activity with Pearson’s correlation coefficients of up 

to 0.61. We also observed that top methods were significantly more correlated with each other than 

they were with observed enzymatic activity values, which we believe speaks to the importance of 

sequence conservation across the different methods. Improved functional predictions on the VUS 

will help population scale analysis of disease epidemiology and rare variant association analysis.
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Introduction

The exponential increase in genetic data over the past decade has confronted researchers 

with an unprecedented number of rare variants of unknown disease significance (VUS) 

detected in the human population. Such data present both a challenge and an opportunity. In 

the context of newborn screening, a clinician might be asked to interpret only a handful of 

mutations in a specific gene of relevance, but that given gene might have hundreds of 

missense VUS in databases such as gnomAD (Karczewski et al., 2019). Although the sheer 

number of VUS may be high, having a-priori knowledge of their likely disease relevance can 

facilitate the pre-screening of such mutations. Next to observing a mutation in a confidently 

diagnosed patient, experimental characterization remains a valuable method for validating 

the impact of detected variants. However, this process can be time-consuming, costly, and 

impractical. In an attempt to bridge this gap, many computational methods have been 

developed to predict the impact of missense variants on protein function (Gallion et al., 

2017; Tang & Thomas, 2016). As part of the effort to test and independently evaluate such 

algorithms, the Critical Assessment of Genome Interpretation (CAGI) creates challenges 

using unpublished experimental data to evaluate the performance of blinded phenotype 

prediction algorithms (Hoskins et al., 2017).
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Sanfilippo syndrome, also known as Mucopolysaccharidosis type III (MPS III), is a rare 

autosomal recessive inherited metabolic disease caused by a deficiency in one of four 

lysosomal enzymes catalyzing distinct steps in the sequential degradation of heparan sulfate 

(Coutinho, Lacerda, & Alves, 2012). Each enzyme deficiency defines a separate subtype: 

IIIA, IIIB, IIIC, IIID, although symptoms and disease progression are largely 

indistinguishable between types. The resultant accumulation of heparan sulfate within 

lysosomes, particularly in the brain and liver, leads to a severe neurological phenotype and 

death in the second decade. Mutations leading to type IIIB (MIM# 252920), one of the more 

commonly diagnosed types, are located in the gene encoding the lysosomal hydrolase, α-N-

acetylglucosaminidase (NAGLU; MIM# 609701).

The accumulation of heparan sulfate due to partial or complete loss of NAGLU enzyme 

activity occurs in various tissues and cells; however, the clinical signs are mostly associated 

with the central nervous system (Birrane et al., 2019), causing severe cognitive disabilities, 

behavioral problems and developmental regression, leading to death in adolescence or early 

adulthood. The age of onset of Sanfilippo Type B is 1–4 years (Andrade, Aldamiz-

Echevarria, Llarena, & Couce, 2015) and the estimate for lifetime risk at birth (number of 

patients per 100,000 live births) varies substantially in European populations from 0.05 in 

Sweden to 0.78 in Greece (Zelei, Csetneki, Voko, & Siffel, 2018). To date, no effective 

treatment for Sanfilippo syndrome exists although several promising approaches are being 

developed, including enzyme replacement therapy, gene therapy, bone marrow stem cell 

transplantation and small molecules (Aoyagi-Scharber et al., 2017; Gaffke, Pierzynowska, 

Piotrowska, & Wegrzyn, 2018). Because newborns are asymptomatic at birth, early 

diagnosis is critical for improved management and outcome of therapeutic trials. The 

development of algorithms capable of reliably distinguishing between pathogenic and 

benign NAGLU alleles is an important step in this direction.

For the NAGLU challenge of the fourth edition of the CAGI experiment (CAGI4) in 2016, 

participants were asked to predict the impact of VUS on the enzymatic activity of NAGLU. 

Variants were selected for testing based on being present in ExAC version v0.3 and not 

being present in HGMD (Lek et al., 2016). The enzymatic activity of these missense 

mutations in NAGLU had been previously measured in transfected cell lysates (Clark, Yu, 

Aoyagi-Scharber, & LeBowitz, 2018). Of the 163 VUS tested, 41 (25%) decreased the 

activity of NAGLU to levels consistent with known Sanfilippo Type B pathogenic alleles. 

Previous analysis of variants that were found to decrease activity to levels consistent with 

disease found that they were more likely to be buried and close to the active site of the 

protein.

This challenge attracted 17 submissions from ten groups (Table 1). Most of the models 

utilized sequence information (n=16), one third of the methods also added structure-based 

features in addition to sequence (n=8). To the best of our knowledge, this is the largest 

assessment of predicted enzyme activity for rare population missense variants in CAGI.
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Methods

Selection and testing of NAGLU variants

For the CAGI challenge we attempted to select missense variants that were both observed in 

the population and which were of unknown disease significance (Clark et al., 2018). In order 

to do this, we relied on the v0.3 release of the Exome Aggregation Consortium’s (ExAC) 

collection of exome sequencing data comprising 60,706 individuals as a source for observed 

missense mutations (Lek et al., 2016). As a source of disease associated variants we relied 

on the 2016 v1 version of the Human Gene Mutation Database (HGMD) (Stenson et al., 

2003). All missense mutations are reported for Ensembl protein ENSP00000225927.1 for 

NAGLU. Supp. Figure S1 shows a schematic of the observed activity of tested variants and 

their amino acid positions.

Predictor performance evaluation

We calculated a number of metrics in order to give a robust view of the performance of each 

team’s submissions. For analysis, percent wild-type (%WT) activity values were converted 

to fraction wild-type (fwt) activity values. Our analysis treated the experiment both as a 

binary classification problem, and as one with a continuous valued target variable.

We calculated the Pearson and Spearman correlation coefficients, root mean squared error 

(RMSE) with observed enzymatic activity values and area under the receiver operating 

characteristic curve (AUC) for each set of predictions (Figure 1, Supp. Figure S2, Supp. 

Table S1). Predictor values submitted through the CAGI challenge were not normalized. 

Although linear transformations of predicted values, like z-score normalization, will not 

impact Pearson’s r or Spearman’s rho they would impact RMSE values. RMSE represents 

the most stringent metric that we used to evaluate predictions as it requires predictions to be 

properly scaled. As a supplement, precision and recall curves were generated (Supp. Figure 

S3).

Some metrics, such as sensitivity, specificity, and AUC, assume a binary target variable. In 

these cases we designated pathogenic variables as true positives, and benign as true 

negatives. We used 0.15 fwt activity as a threshold with which we distinguished pathogenic 

from benign variables. This level of fwt activity is consistent with what we observed from 

previously identified pathogenic mutations as described in Clark et al., 2018. We also 

calculated AUC and F-max values for thresholds ranging from 0.05 to .95 in increments of 

0.05 (Supp. Table S2, Supp Table S3). For each predictor a sliding decision threshold was 

varied from the highest predictor score to its lowest. Because, in this instance, low predictor 

scores designate positives, each predicted mutation with a score below the threshold was 

chosen as a predicted positive. All others were designated as predicted negative, or benign, 

data-points. A simple way to achieve the same impact would be to multiply predictions of 

each model by −1 and proceed as one normally would when calculating binary metrics. We 

also generated ROC curves (Figure 2). Optimal positions on the ROC curve, designated by 

red dots in Figure 2 were determined as the point with the lowest square root of the sum of 

the square of the false positive rate and false negative rate.
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Determining statistical significance of correlation coefficients

We calculated pairwise correlation coefficients for all models (Figure 3, Supp. Table S4, 

Supp. Table S5). For any two models, Xi and Xj, we calculated whether the correlation of 

model Xi with the experimentally observed enzymatic activity values, EA, was statistically 

significantly different than its correlation with model Xj using bootstrap simulation (Supp. 

Table S6). In order to do this 10,000 random samples of 163 data-points were generated 

using sampling with replacement of the original data. For each pair of predictors, each 

sample, sk, was used to calculate the correlation coefficient of Xi with and Xj and EA; r(Xi, 

Xj)k and r(Xi, EA)k respectively. We then calculated the percentage of times r(Xi, Xj)k was 

greater than r(Xi, EA)k; and deemed the correlation of model Xi with EA to be significantly 

greater than the correlation with model Xj if this value was less than 5%. Supp. Figure S4 

shows a heatmap of pairwise correlation coefficients for all models, including off-the-shelf 

methods.

Determining the uniqueness of predictions using a linear regression model

To estimate the specific contribution of each prediction model to the variance with 

experimental results (R2), a multiple linear regression model was applied (Figure 4). First, a 

linear regression model was built for every single model. The top model from each group 

was chosen based on the highest adjusted R2 values (Supp. Table S7). Next, models were 

combined with the best performing model, and the linear regression equation was 

recalculated to evaluate the contributions of each model to the variance (Supp. Table S8).

Additional predictions used for evaluation

We compared the predictions submitted to the NAGLU challenge to several off-the-shelf 

methods. As a simple method we considered Grantham scores (Grantham, 1974). 

Quantitative scores for PolyPhen and SIFT were obtained from the ExAC VCF file and were 

generated using VEP v81 (Adzhubei et al., 2010; Kumar et al., 2009). We previously 

analyzed categorical predictions produced by SIFT and PolyPhen. Here we only considered 

quantitative scores for both predictors. CADD annotations were obtained from CADD v1.4 

(Rentzsch, Witten, Cooper, Shendure, & Kircher, 2019). REVEL predictions were taken 

from the June 3, 2016 release of predictions (Ioannidis et al., 2016). Because quantitative 

scores produced by Grantham, PolyPhen, REVEL, and CADD are negatively correlated with 

enzymatic activity (a higher score indicated a higher likelihood of being pathogenic) scores 

were inverted by subtracting them from 1. This is a linear transformation that will only 

impact the sign of correlation values, but will allow a fair comparison of RMSE value 

produced by these predictors to other models. In the case of CADD raw and phred scores, 

this was done after normalizing those scores to the range [0–1] by subtracting the minimum 

value raw or phred score from a prediction then dividing by the maximum value minus the 

minimum. Again, this is only a linear transformation that will not impact correlation or AUC 

values, but will facilitate a fair comparison of RMSE values between models. Grantham 

scores were normalized in a similar fashion as CADD scores, but a minimum value of 0 was 

assumed.

Relative solvent accessibility was calculated by first calculating the solvent accessibility of 

each amino acid in monomer of PDB structure 4XWH using DSSP. Raw solvent 
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accessibility values were then normalized by dividing by maximum solvent accessibility 

values (Rost & Sander, 1994). Because residues 1 through 23 are a signaling peptide and are 

proteolytically cleaved, they are not present in the PDB structure for NAGLU. This means 

there is no solvent accessibility value for the p.Arg16Val missense mutation. We replaced 

this missing value with the average relative solvent accessibility value for the remaining 162 

amino acids in the evaluation set. A final, ad-hoc model was generated by taking the average 

of normalized Grantham scores and relative solvent accessibility.

All results for such methods are included along with all submitted models in Supp. Table S9.

Results

Participation in the NAGLU CAGI Challenge

There were 17 submitted sets of predictions from 10 individual teams for the CAGI NAGLU 

Challenge (Table 1, model descriptions available in supplemental data). Of these 17 

submissions, six models (Moult Consensus, iFish, HHBlits w/ real contacts, INPS3D, 

SNP&GP, and Dunbrack-SVM) utilized one of the NAGLU protein structures. Nine models 

utilized the output of commonly used predictors of variant functional effect such as 

PolyPhen, SIFT, or PROVEAN (Adzhubei et al., 2010; Choi & Chan, 2015; Kumar, 

Henikoff, & Ng, 2009). All but one model (n=16) utilized information from multiple 

sequence alignments (MSAs) or position specific scoring matrices (PSSMs). Three models 

utilized HGMD as a source of training data.

Analysis of predicted enzymatic activities

We utilized several metrics when assessing performance in the CAGI4 challenge. Averages 

and standard deviations for each metric were obtained by randomly sampling the 163 

variants with replacement 104 times. When calculating (AUC) we utilized 0.15 fwt activity 

thresholds at which variants were designated as either neutral or disease-causing for our 

primary analysis. This threshold was based on the upper limit of fwt activity measured in 

previously observed pathogenic mutations (Clark et al., 2018). We also calculated AUC and 

F-Max for thresholds ranging from 0.05 to .95 in increments of 0.05 (Supp. Table S2, Supp. 

Table S3). Although AUC and F-Max values were generated by sampling mutations, ROC 

and precision-recall curves were generated from unsampled data. In cases where more than 

one model for a team ranked highly according to a particular metric, we only mention the 

top performing model, although all results for all models are shown in Supp. Table 1. 

Precision and recall curves were generated as a supplemental figure (Supp. Figure S3).

Figure 1 shows several metrics (Pearson’s r, Spearman’s ⍴, AUC, RMSE) used to evaluate 

the performance of each predictor. We found that the MutPred w/ homology model 

performed the best in terms of Pearson’s r (r=0.60), followed by the Evolutionary Action 

model (r=0.56), and Moult Consensus (r=0.55) respectively. The same three teams 

performed the best in terms of Spearman’s ⍴ as well (MutPred w/ homology (⍴=0.61), 

Moult Consensus (⍴=0.57), and Evolutionary Action (⍴=0.55)). It should be noted that 

Spearman and Pearson correlation coefficients were very correlated for all models. RMSE 

represents the most stringent measure of model performance that we utilized. MutPred 
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obtained the lowest RMSE (0.30), followed by Moult Consensus (0.30) and Dunbrack-SVM 

(0.32). Figure 2 shows ROC curves for the top 10 performing submissions according to 

AUC, and Figure 1 shows the obtained AUC values for these models. We found that 

MutPred2 w/ homology performed the best in terms of AUC (AUC=0.85), followed by 

Evolutionary Action (AUC=0.85) and HHblits w/ real contacts (AUC=0.84).

Although each of these metrics measure a different aspect of a predictor’s performance, we 

found a large amount of agreement between metrics in the overall ranking of models. For 

example, MutPred2 w/ homology performed the best according to Pearson’s r, Spearman’s 

⍴, and AUC. In terms of RMSE the MutPred2 w/ homology only slightly underperformed 

compared to the MutPred model.

Easy and difficult to predict mutations

We determined whether any mutations were easy or difficult to predict (Supp. Table S10). 

This was done by measuring the average RMSE 1) across all predictors, and 2) for the top 5 

models (Mutpred, MutPred2 w/o homology, Moult consensus, Dunbrack-SVM, and 

Evolutionary Action). We found several mutations for which experimentally observed 

activities were both easy and difficult for models to predict.

The majority of easiest to predict deleterious mutations involved non-conservative 

substitutions of buried residues. Within the NAGLU structure, these variants are predicted to 

affect protein stability via disruption of aromatic clusters or stacking, salt bridges and 

hydrogen bonding networks, as well as through proximity to the active site or interference 

with the binding site pocket.

The majority of hardest to predict mutations involved moderate or conservative substitutions 

of partially or fully solvent-exposed residues. Interpretation of their effects within the 

NAGLU structure was not immediately obvious. One possibility involves an effect on 

protein solubility, especially in the context of the enzyme’s trimerization. The hardest to 

predict mutation (p.Pro283Leu) was predicted to have low activity by most predictors but 

was shown to actually increase activity. Both this variant and p.Gly596Cys, another benign 

variant predicted to have low activity, involve non-conservative substitutions and are buried 

in the NAGLU structure.

Correlation between predictive models

While it may be easy to focus on which model performed the best in terms of a particular 

measure, we observed that top models from each team were significantly more correlated 

with at least one other model from another team than they were with fwt values (Figure 3). 

Furthermore, we observed that the 6 top performing models as measured by Pearson’s 

correlation coefficients were all more correlated with each other than with fwt activity 

values, and that these correlations were found to be statistically significant through 

bootstrapping simulation (Methods).

For example, although the MutPred2 w/ homology and Evolutionary Action models were 

correlated with observed activity values with coefficients of 0.60 and 0.56 respectively, they 

were correlated with each other with a Pearson’s r of 0.82. For none of the 104 bootstrap 
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samples generated did we observe that two models were more correlated with fwt activity 

values than they were with each other. This suggests that these models perform reasonably 

well at predicting fwt activities for NAGLU, they are better at recapitulating each other’s 

behavior although they are presumably based on distinct, and rather different, methodology.

In light of the high correlation between models, we did not observe that combining the best 

performing model with any other tool improved correlation with fwt activity values. In order 

to determine this, all models were fit to a linear regression model and the best tool out of all 

submissions from the same group was chosen based on the adjusted R2 values (shown in 

black in Figure 4). As R2 values in this case should be equivalent to squared Pearson’s 

correlation coefficients, MutPred2 w/o homology was found to explain the highest 

proportion of variance (36%). The best combination (MutPred2 w/o homology and HHblits 

w/ real contacts) increased the adjusted R2 value only by 0.02%. This implies that MutPred2 

w/o homology itself can represent all of the other tools.

Comparison to Supplemental Models

We also evaluated the performance of several commonly used off the shelf tools as 

supplemental models including REVEL, Polyphen, SIFT and CADD (Supp. Figure S2, 

Methods, Supp. Table S9). REVEL performed the best out of all off the shelf methods 

(Pearson’s r = 0.56) although it was not as correlated with observed fwt activity values as 

MutPred 2 w/ homology (Pearson’s r = 0.60) and the two models were highly correlated 

with each other (Pearson’s r = 0.89) (Supp. Table S4). We observed that for both models, 

prediction scores were statistically significantly more correlated with each other than they 

were with observed fwt activity values; for none of 104 bootstrap simulations did we 

observe higher correlation between either model and fwt activity value than with each model 

(Methods). It is important to point out that REVEL uses predictions from the previous 

version of MutPred as features. Furthermore, MutPred2 w/ homology was trained using an 

older version of HGMD (June 2013) than REVEL (2015.2 version of HGMD).

While we observed that top methods performed better than PolyPhen scores, in the case of 

MutPred w/ homology, we did not find the difference to be significant in terms of Pearson’s 

correlation coefficients. Solvent accessibility and Grantham scores performed the poorest in 

terms of Pearson’s and Spearman’s correlation coefficients, but Grantham scores had lower 

RMSE than PolyPhen scores.

Out of all supplemental models, the proportion of variance explained based on a linear 

regression model was the highest for REVEL (adjusted R2=30.1%), and there was no 

improvement when additional models were added (Supp. Figure S5). This indicates that 

REVEL itself can be a good representative of all commonly used models that were selected.

Conclusions/Discussion

For the CAGI NAGLU challenge, we asked participants to predict the impact of missense 

mutations on the enzymatic activity of NAGLU. This task is different than predicting 

whether a mutation is pathogenic. A model could perform poorly if it is not able to 

distinguish between a benign mutation that has 60% wild-type activity and one that has 
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90%, or a pathogenic mutation with 0% activity and one with 10%. Although this is a 

different task than predicting pathogenicity, we found that participants in the 2016 NAGLU 

CAGI challenge performed well. This performance was obtained contrary to the fact that 

many models were not explicitly trained for the task of predicting enzymatic activity, instead 

being designed for the slightly different task of distinguishing pathogenic from benign 

variants.

Although models performed well, we did observe that the top methods were significantly 

more correlated with each other than they were with observed activity values. In many cases, 

such as with MutPred2 and Evolutionary Action, methods were highly correlated in spite of 

having relatively distinctive methodologies; one being a supervised machine learning model, 

the second being one based on a calculus of evolutionary variations. The starkly different 

methodologies of these two models suggest that a common feature type is the primary driver 

behind the high level of correlation between methods. Of all the feature types employed by 

participating models, sequence conservation was the most common. While we observed that 

sequence conservation was a unifying feature across almost all methods, we were unable to 

observe any relationship between the training data used for supervised methods and their 

performance. In fact, one of the top methods, Evolutionary Action, was a method that did 

not use a training dataset of known mutations at all, instead focusing of evolutionary 

conservation. There are technical details, such as the phylogenetic depth at which one should 

measure conservation and the choice of alignment algorithm, that must be considered when 

using homology to infer the impact of mutations (Katsonis et al., 2014).

The high level of correlation between in-silico models also has implications for the 

interpretation of variants in a clinical setting. As noted by the ACMG guidelines for variant 

interpretation, many tools rely on the same underlying data to make predictions, and single 

predictors should not be counted individually as evidence that a variant is pathogenic 

(Richards et al., 2015). Considering predictions from multiple tools will not necessarily add 

additional information regarding a particular mutation.

Our current in vitro enzyme activity assay is limited to testing missense coding variants, and 

as shown by Clark et al., there is very good agreement with observed activity and 

pathogenicity of known and well annotated disease variants. However, the in vitro assay may 

not always correlate with enzyme activities tested directly from patient samples. Mutations 

were introduced into a vector containing the NAGLU cDNA. Splicing, promoter/enhancer, 

and epigenetic mutations will be missed. Also, protein is being expressed at super-

physiological levels. Some mutations may result in protein aggregation at high 

concentrations, but not at endogenous levels. Furthermore, proteins being expressed in cell 

lines from different organisms, or even different tissues, can exhibit variability in activity 

(Meijer et al., 2017). We can point to at least one mutation, p.Arg464Gln, whose activity we 

were surprised by. p.Arg464Gln was generated in multiple, sequence confirmed independent 

constructs, and its activity was checked by several independent transfections and was 

consistently found to have 3% wild-type activity. This particular mutation has a Non-Finnish 

European allele frequency in gnomAD v2.1 of 1.74 × 10−4, whereas the most common 

known disease causing mutation, p.Ser612Gly, has an allele frequency of 1.23 × 10−4. Given 
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the high frequency of this variant compared to known pathogenic mutations, it is surprising 

it has not yet appeared in a patient.

Functional data from genes with clear functional readouts are important. While genes such 

as BRCA1 are important in the context of cancer, determining the impact of a missense 

mutation on its function is not a simple task (Carvalho, Couch, & Monteiro, 2007). 

Functional screening data on more genes like NAGLU can help train better models, which, 

in turn, can produce better predictions on genes that are more difficult to assay. More data 

will also allow researchers to determine trends amongst mutations that are easy and difficult 

to predict, as well as those that might not produce accurate activity read-outs in similar over-

expression based cell line systems.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Resulting evaluation metrics for the top model for each team (A: Pearson’s r, B: Spearman’s 

rho, C: RMSE, D: AUC). Error bars represent empirical 95% confidence intervals for each 

metric generated through 104 iterations of bootstrap sampling of data-points. Only the top 

performing model for each team is shown for each metric. AUC was calculated by 

designating missense mutations with less than 0.15 observed fwt activity as positives 

(Predictor Performance Evaluation). Resulting metrics for all models are available in Supp. 

Table S1 and Supp. Figure S2.
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Figure 2. 
ROC curves for each team’s top performing model when using 0.15 observed fwt activity as 

the threshold at which pathogenic and benign mutations are distinguished (Predictor 

Performance Evaluation). Red dots represent the positions in each ROC curve closest to the 

upper left-hand side of the plot and were calculated by finding the point with the lowest 

square root of the sum of the square of the false positive rate and false negative rate.
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Figure 3. 
Pairwise Pearson’s correlation coefficients between each team’s top model as well as 

observed enzymatic activity values. A bold/starred value for row i, column j indicates that 

method i is statistically significantly more correlated with model j than with fwt values at 

the 0.05 level. Statistical significance was calculated as described in Methods. Pairwise 

Pearson’s correlation coefficients, standard deviations and p-values for all methods, 

including supplemental methods are shown in Supp. Tables S4–S6 and Supp. Figure S4.
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Figure 4. 
Percentage of variance in predictions explained by each model. Adjusted R2 values from the 

linear model with (A) a single method and (B) a combination of the best performing method 

(MutPred2 w/o Homology) and any other tool.
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Table 1.

A list of participating teams and submitted predictive models. Detailed model descriptions provided by 

participants are available as supplemental data. PSSM, position specific scoring matrices; MSA, multiple 

sequence alignments; ML, machine learning; SVM, support-vector machine; PMD, Protein Mutation 

Database; HGMD, Human Gene Mutation Database.

PI Model Name PubMed PolyPhen/
SIFT/
Provean 
Based 
Features

Structure 
Based 
Features

PSSM/MS
A Based 
Features

ML Method Training 
Database

Bromberg SNAP-1 Bromberg & Rost, 
2007

Yes Yes Yes Neural 
Network

PMD

Bromberg SNAP-2 Bromberg & Rost, 
2007

Yes Yes Yes Neural 
Network

PMD

Moult Moult Consensus Yin, Kundu, Pal, & 
Moult, 2017

Yes Yes Yes Support Vector 
Regression

Lichtarge Evolutionary 
Action

Katsonis & 
Lichtarge, 2014

No No Yes None

Wei iFish Wang & Wei, 2016 Yes Yes Yes SVM

Mooney MutPred Li et al., 2009 Yes No Yes Random Forest HGMD

Mooney MutPred2 w/o 
homology

Pejaver et al., 2017 Yes No Yes Neural 
Network 
Ensemble

HGMD 2013

Mooney MutPred2 w 
homology

Pejaver et al., 2017 Yes No Yes Neural 
Network 
Ensemble

HGMD 2013

Jones HHblits w/ real 
contacts

Remmert, Biegert, 
Hauser, & Soding, 

2011

No Yes Yes Logistic 
regression

Jones HHblits w/ 
predicted contacts

Remmert et al., 
2011

No No Yes Logistic 
regression

Jones HHblits w/o 
contacts

Remmert et al., 
2011

No No No Logistic 
regression

Jones PAM250 PSSM No No Yes Logistic 
regression

Ford PolyPhen2 
Random Forest

Ford, Uppal, 
Nodzak, & Shi, 

2019

Yes No Yes Random Forest 1000 
Genomes, 
NCBI, 
wANNOVAR

Casadio INPS3D Savojardo, Fariselli, 
Martelli, & Casadio, 

2016

No Yes Yes SVM

Casadio SNPs&GO Capriotti et al., 
2013

No Yes Yes SVM

Zhou EASE-MM Folkman, Stantic, 
Sattar, & Zhou, 

2016

No No Yes Support Vector 
Regression

ProTherm

Dunbrack Dunbrack-SVM Wei, Xu, & 
Dunbrack, 2013

Yes Yes Yes SVM
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