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ABSTRACT Correlations between protein
structures and amino acid sequences are widely
used for protein structure prediction. For example,
secondary structure predictors generally use corre-
lations between a secondary structure sequence
and corresponding primary structure sequence,
whereas threading algorithms and similar tertiary
structure predictors typically incorporate interresi-
due contact potentials. To investigate the relative
importance of these sequence–structure interac-
tions, we measured the mutual information among
the primary structure, secondary structure and side-
chain surface exposure, both for adjacent residues
along the amino acid sequence and for tertiary
structure contacts between residues distantly sepa-
rated along the backbone. We found that local inter-
actions along the amino acid chain are far more
important than non-local contacts and that correla-
tions between proximate amino acids are essen-
tially uninformative. This suggests that knowledge-
based contact potentials may be less important for
structure predication than is generally believed.
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INTRODUCTION

The three-dimensional structure of a protein is deter-
mined by its amino acid sequence via the process of protein
folding. Conversely, the amino acid sequence is selected by
evolution to fold into the required structure. At present, we
are incapable of elucidating this protein sequence–
structure mapping in detail. However, many coarse-
grained structural features are directly correlated with the
amino acid sequence. For example, hydrophobic valines
tend to be buried in the protein core, alanines are over-
represented in helices and cysteines are often located close
to one another in space so that they may form disulfide
bonds.

Correlations between sequence and many different sim-
plified structural features, such as burial, secondary struc-
ture and inter-residue proximity, have been extensively
studied and used in a wide range of protein structure
prediction algorithms and protein folding studies. Among
these are secondary structure prediction,1,2 disorder predic-
tion,3,4 various tertiary prediction methods5 such as struc-
ture profiles6,7 and threading,8–10 and simplified models of
protein folding.11–13 Unfortunately, it is often difficult to
determine the relative importance of different interactions

to the reported algorithmic performance. The selection and
definition of potentials varies greatly, and the choices
made are not always carefully cross-validated. Indeed,
many of the more sophisticated methodologies are compu-
tationally expensive, rendering a detailed study or compre-
hensive comparison14 problematic. Often the actual inter-
actions are hidden beneath a neural network or other
training layer, and very frequently structure–sequence
interactions are intermingled with homology information,
masking the relative effect of structure versus evolution-
ary history on the amino acid sequence.

Direct, quantitative measurements of sequence–struc-
ture correlations can elucidate the relative importance of
different interactions to protein structure15 and facilitate
the rational design of structure prediction algorithms. For
example, the frequency with which a particular amino acid
is located in the center of proteins is directly related to the
hydrophobicity of the amino acid side chain.16,17 Recently,
Cline and coworkers18 investigated the strength of correla-
tions between residues close in space but distant along the
chain and found them to be surprisingly weak. These
correlations are the essential interaction encoded by con-
tact potentials, which are commonly used by protein
threading and allied structure prediction algorithms and
also in many idealized models of protein folding.12,13

Similarly, we have recently examined the correlations
between secondary structure and local amino acid se-
quence, with the objective of better understanding second-
ary structure formation and secondary structure predic-
tion algorithms.2

In this study, we examined the strength, organization
and relative importance of correlations among amino acid
identity, secondary structure and fractional side chain
burial, both for neighboring residues along the amino acid
chain and for residues proximate in space but distantly
located along the chain. These interactions were quanti-
fied using mutual information and similar measures. To
ensure reliable results, we employed a large, non-redun-
dant and diverse collection of protein structures contain-
ing 2,853 sequences. We found that local sequence–
structure correlations along the chain are far stronger
than tertiary structure interactions. Moreover, once local
structural interactions were accounted for, we found very
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little correlation between the side chain identities of
spatially proximate residues.

MATERIALS AND METHODS
Correlations and Mutual Information

The correlation between two events can be quantified as
the log likelihood ratio, the log ratio of observing the joint
event p(x, y), against the expected probability of observing
the joint event if the events were uncorrelated p(x)p(y):

L�x,y� � log2

p�x,y�

p�x�p�y�
. (1)

The base of the logarithm is arbitrary, but base 2 is
conventional and convenient, resulting in bits as the unit
of measurement.

These correlations represent effective interactions that
can be used in prediction algorithms as an objective
function or additive score. Alternatively, we might invoke
a quasi-chemical approximation12 and think of the log
likelihood ratio as a negative interaction energy, or a free
energy, in units of kBT ln 2, where T is the temperature, kB

is Boltzmann’s constant and the factor ln 2 � 0.69 converts
between binary and natural logarithms. (Note that 1 bit �
1.7 kJ/mol or � 0.4 kcal/mol at ambient temperatures.)

The average strength of the effective interaction be-
tween two variables (the mean of the log odds score) is the
mutual information, a measure of the knowledge that each
variable carries about the other.19,20

I�X;Y� � �
x,y

p�x,y�log2

p�x,y�

p�x�p�y�
(2)

The mutual information is related to the entropy, H(X).

I�X;Y� � H�X� � H�Y� � H�X,Y� (3)

H�X� � � �
x�X

p�x�log2p�x� (4)

A high mutual information value is a result of strong
correlation, whereas a mutual information value of zero
indicates uncorrelated variables. Mutual information has
various advantages as a correlation measure: It is firmly
grounded in information theory,19 it is additive for indepen-
dent contributions and it has consistent, intuitive units
(bits), which allow for quantitative comparisons between
different features and problem domains. The main disad-
vantage of information measures is that they are difficult
to calculate accurately, requiring large data sets and
careful error analysis.

The interactions among three variables can be quanti-
fied by the the triplet mutual information, I(3) (X; Y; Z).
This is the average information carried by the three-way
interactions, in excess of the information carried by the
pairwise interactions.21,22

I�3��X;Y;Z� � � H�X� � H�Y� � H�Z� � H�X,Y�

� H�X,Z� � H�Y,Z� � H�X,Y,Z� (5)

Alternatively, we can consider the conditional mutual
information20 I(X; Y�Z), the information that X carries
about Y given Z.

I�X;Y�Z� � � H�Z� � H�X,Z� � H�Y,Z� � H�X,Y,Z�

� I�X;Y� � I�3��X;Y;Z� (6)

The pairwise and conditional mutual information values
are positive. The triplet mutual information can be posi-
tive or negative, and consequently the conditional mutual
information can be greater or less than the unconditioned
mutual information.

Information Bias Correction

Estimating information from limited amounts of data
leads to significant bias,23 resulting in a systematic under-
estimation of the entropy or an overestimation of the
mutual information. We used bootstrap resampling24 to
correct for this bias and to estimate standard statistical
errors. We generated fifty replicas of the original data by
sampling N sequences with replacement from the N avail-
able sequences. This resampling has associated systematic
and random errors that are approximately the same as the
errors introduced by the original finite random sampling of
sequences from the true random distribution. These error
estimates were not significantly improved when the num-
ber of replicas was increased from 50 to 500. The requisite
pseudo-random numbers were drawn from the Mersenne
Twister generator.25 Note that bootstrap resampling can
estimate errors caused by a finite amount of data, but it
cannot correct for errors due to the inherent biases of the
data set. Moreover, the bootstrap tends to underestimate
the magnitude of the bias when provided with insufficient
data. Our experience with limited sampling from known
distributions suggests that whenever the estimated bias is
comparable to or greater than the estimated standard
error the bootstrap results should be treated with skepti-
cism.

Protein Structure Library

Our structure library is based on a representative,
high-quality, non-redundant subset of available protein
structures. Although we have attempted to minimize
sampling errors, this collection is still inevitably biased,
since structures that are interesting and tractable are
over-represented in the public data, and unordered protein
regions are excluded from crystallographic data. The Pro-
tein Data Bank (PDB)26 currently contains over 20,000
publicly accessible structures, but many of these are very
similar, and many are of relatively low quality. The
Structural Classification Of Proteins (SCOP)27,28 database
provides a convenient decomposition of PDB structures
into 44,000 protein domains. The ASTRAL compendium29

provides representative subsets of SCOP domains, filtered
so that no two domains share more than a given percent-
age level of sequence identity. This filtering reduces the
redundancy of the PDB while preferentially retaining
higher quality structures, as judged by AEROSPACI
scores,29 an agglomeration of several structure quality
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measures. We selected the ASTRAL 40% sequence identity
subset of SCOP release 1.61, which was further filtered to
remove multi-sequence domains, SCOP classes f (mem-
brane and cell surface proteins) and g (small proteins), and
to retain only those structures determined by X-ray diffrac-
tion at better than 2.5 Å resolution. The protein sequences
were taken from the ASTRAL Rapid Access Format (RAF)
sequence mappings,29 which provides a more reliable and
convenient representation of the true sequence than the
PDB ATOM or SEQRES records alone. The tertiary struc-
ture of each protein was simplified to just one coordinate
for each residue, the location of the �-carbon. For glycine,
the location of an imaginary �-carbon was estimated from
the backbone coordinates. The secondary structure and
surface accessibility of each residue were determined
using the program STRIDE.30 STRIDE was unable to
process a small number of SCOP domains, which were
consequently removed from further consideration. The
resulting structure template library contains 2,853 pro-
tein domains and 553,370 residues, and can be obtained
from our website at http://compbio.berkeley.edu/.

Secondary Structure

Secondary structure is a concise description of a resi-
due’s backbone torsional angles and pattern of hydrogen
bonding. STRIDE30 assigns each residue to one of eight
classes: �-helix (H), 310 helix (G), �-helix (I), �-strand (E),
�-bridge (B or b), coil (C, L or space), turn (T) or bend (S).
Unstructured or poorly resolved regions of the protein are
unassigned (X). These eight classes were reduced to the
three letter alphabet, E (extended strand), H (helix) and L
(loop/other) using the common mapping2 E3E, H3H, all
others3L. This substantial reduction of the state space
only reduces the singlet amino acid to secondary structure
mutual information by 0.008 bits.

bits std. err. (bias corr.)
I�R;S��8 states� 0.0893 � 0.0007� � 0.00014�
I�R;S��3 states� 0.0812 � 0.0007� � 0.00007�

Here, R is the amino acid identity of a single residue and S
the secondary structure assignment of that residue.

Burial/Surface Accessibility

STRIDE also calculates the exposed surface area of each
residue. These areas are converted to percentages using
the nominal maximum solvent accessibility of a residue in
the tripeptide G-X-G.16 We aggregate these surface expo-
sures into a finite number of burial bins (B) and use
dynamic programming to determine the exposure thresh-
olds that maximize the mutual information I(R; B) be-
tween amino acid identity and burial. The algorithm
utilizes the fact that once a single partition has been
chosen, the optimal partitionings of its left and right sides
(into some specified numbers of bins) are independent of
one-another. Thus, a simple recursive algorithm suffices
(which can be memorized or “unrolled” for speed), which
finds the optimal n partitions by choosing the leftmost
optimal partition given the optimal (n � 1) partitions for
the remaining space to the right. We settled on four burial

bins as a reasonable compromise between cardinality and
information gain.

bits std.err.(bias corr.)
I�R;B��100 bins� 0.214 � 0.001� � 0.0001�
I�R;B��8 bins� 0.205 � 0.001� � 0.0002�
I�R;B��4 bins� 0.190 � 0.001� � 0.0003�
I�R;B��2 bins� 0.150 � 0.001� � 0.0001�

The optimal partitions are 0.0–1.5%, 1.5–17.5%, 17.5–
40.0% and 40.0–100%. Due to algorithmic differences and
post-translational chemical modification, a small number
of residues are assigned an erroneously high surface
accessibility of greater than 100%. These residues are
conglomerated into the largest surface exposure bin.

Interresidue Contacts

We define two residues to be in non-local contact if they
are separated by at least six residues in the chain, and the
distance between the side chain �-carbons is less than 8 Å.
The number of contacts per residue ranges from 0 to 15,
but more than a few contacts is uncommon. The average is
2.1 pairings per residue. We are reluctant to heavily
optimize our definition of inter-residue contact, or to
employ finely partitioned contact distances, lest we inad-
vertently directly encode information about the side chain
volume or amino acid identity into the contact potential in

Fig. 1. Summary of inter- and intra-residue mutual information. Corre-
lations between neighboring structural features are relatively strong, but
sequence–structure and sequence–sequence interactions are weak. R:
amino acid identity (20 canonical types); S: secondary structure (helix,
strand or loop); B: surface exposure (four side chain burial states). For
clarity, we only show one numerical value of each asymmetric interaction
pair [e.g. I(R; B�) but not I(R�; B)], since the asymmetry is small, as can be
seen in Figure 2.

TABLE I. Single Residue Mutual Information

Bits Std. Err. (Bias Corr.)

I(R; S, B) 0.257 	0.0014 (
0.0006)
I(R; S) (3 states) 0.0812 	0.0007 (
0.0001)
I(R; B) 0.1900 	0.0013 (
0.0002)
I(B; S) 0.0633 	0.0010 (�0.0001)
I(3)(R; S; B) �0.014 	0.0021 (
0.0010)
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addition to generic properties of the local structural envi-
ronment.

Summary

To recapitulate, our data set consists of 2,853 diverse
protein domains containing more than one half million
residues. Each residue is identified with one of the 20
canonical amino acids, one of 3 secondary structure classes
(helix, strand or loop), and one of 4 side chain burial states,
ranging from almost entirely buried to mostly exposed.
Residues are non-local neighbors in the tertiary structure
if their side chain �-carbons are separated by less than 8 Å,
provided that they are separated by at least 6 other
residues in the sequence.

RESULTS AND DISCUSSION

Figure 1 summarizes the mutual information among
amino acid identity (R), burial (B) and secondary structure
(S), both for single residues and for pairs of neighboring
residues that are either adjacent along the chain or
proximate in space but distantly separated along the
chain. Tables I and II show the same data in more detail.
The correlations between features of the same residue and
structural features on neighboring residues are relatively
strong, but inter-residue sequence–structure and sequenc-
e–sequence interactions are surprisingly weak.

Figure 2 shows correlations for residues separated by
varying distances along the chain. It is notable that
neighboring amino acids are almost entirely uncorrelated,
and therefore the primary structure of proteins in the PDB
is random at the level of linear amino acid sequences. In
contrast, secondary structure is strongly correlated along
the chain and exhibits significant delocalized correlations
with both primary structure and surface exposure. Second-
ary structure features also tend to cluster in space, as is
evident in Figure 1: �-sheets are hydrogen bonded across
strands, and many protein domains are built from mostly
strands or mostly helixes.36

The total, single-residue sequence–structure mutual
information is I(R; B, S) � 0.26 bits (Table I), indicating
significant correlation between local structure and amino
acid identity. This information is approximately additive
across burial and secondary structure, I(R; S, B) � I(R;
S) 
 I(R; B). The discrepancy is the information carried by
the three-body amino acid–secondary structure–burial
interaction, I(3)(R; S; B) � I(R; S, B) � I(R; S) � I(R; B) �
�0.014 bits [eq. (5)], which is small compared to the
pair-wise interactions. This suggests that our definitions

of secondary structure and burial are non-redundant, and
that the interactions between these different structural
features and the amino acid sequence are approximately
independent. Figures 3, 4 and 5 explore these single-site
correlations in more detail.

The additional sequence–structure information that can
be obtained from neighboring residues, given the local
structural context, is the conditional mutual information
I(R; S�, B��S, B). Unfortunately, a direct calculation of this
mutual information is impractical due to the large dimen-
sion of the underlying probability distribution (20 � 32 �

TABLE II. Mutual Information Between Neighboring Residues

Adjacent in Primary Structure Proximate in Tertiary Structure

Bits Std. Err. (Bias Corr.) Bits Std. Err. (Bias Corr.)

I(R; R�) 0.0058 	0.0002 (
0.0005) 0.0268 	0.0003 (
0.0002)
I(R; B�) 0.0066 	0.0002 (
0.00009) 0.0183 	0.0003 (
0.00005)
I(R; S�) 0.0468 	0.0004 (
0.00006) 0.0203 	0.0003 (
0.00006)
I(B; B�) 0.0755 	0.0011 (
0.0001) 0.0822 	0.0009 (
0.00001)
I(S; S�) 0.898 	0.0017 (�0.0001) 0.1443 	0.0028 (�0.00015)
I(S; B�) 0.0511 	0.0007 (
0.00009) 0.0117 	0.0003 (
0.00006)

Fig. 2. Intra-feature (top) and inter-feature (bottom) mutual informa-
tion for residues at various separations along the amino acid chain. Note
that the self information for the same feature on the same residue is the
entropy, I(X; X) � H(X). Interestingly, neighboring amino acids are
approximately independent, and the correlations between more distantly
separated residues are also very small. This implies that, to a good
approximation, amino acid sequences of ordered protein structures are
essentially random and uncorrelated.2,31 This is in spite of the fact that
such sequences have been selected by evolution to fold into compact and
functional shapes. Apparently these special sequences are randomly
scattered throughout sequence space.32 Secondary structure is strongly
correlated over extended distances, both to itself and to the amino acid
sequence. This is to be expected, since secondary structure consists of
long helices and stands interspersed with loop regions. We have previ-
ously determined that these non-local interactions increase the effective
sequence–secondary structure mutual information from about 0.08 bits
(Table I) to about 0.16 bits per residue.2
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42), and the finite size of our data set. This results in a
large mutual information bias that is beyond the ability of
our bootstrap error analysis to correct. A more effective
bias correction can be obtained by performing a full
Bayesian analysis,38 but this requires the determination
of a reasonable prior distribution. To avoid this additional
complication, we take a more direct approach and approxi-
mate the full conditional information as the sum of (ap-
proximately) independent parts, as suggested by the re-
sults for the single-site sequence–structure mutual
information, I(R; S, B) � I(R; S) 
 I(R; B). Thus, the
additional information obtained from considering the struc-
ture of a neighboring residue given the local structural
context can be split into approximately independent burial
and secondary structure contributions

I�R; S�, B��S, B� � I�R; S��S� � I�R; B��B�

These quantities are tabulated in Table III. Therefore, the
additional sequence–structure information is about 0.030
bits per residue for local neighbors and 0.015 bits for
contacts, in excess of the previously determined single site
mutual information of 0.26 bits. Note that almost every
residue has two nearest neighbors along the chain and an
average of about two neighbors through space. Thus the
total information content of these sequence–structure
interactions is about 0.35 bits per residue.

Having dealt with structure–structure and sequence–
structure correlations, the remaining pairwise interac-
tions to consider are those between amino acid identity at
neighboring sites. The use of contact sequence correlations
for structure template matching is the central idea under-
lying protein threading, yet it is clear from Figure 1 that
the direct mutual information is small: I(R; R�) � 0.006

Fig. 3. Log likelihood ratio for amino acid side chain burial. The most hydrophobic and hydrophilic residues strongly segregate between the surface
and interior of the protein, the most extreme case being lysine (K), which is 10 times more likely to be exposed than buried. However, most amino acids
have only a weak preference for burial or surface exposure, resulting in a net burial-sequence mutual information of only 0.19 bits. Interestingly,
tryptophan (W), histidine (H) and tyrosine (Y) have a preference for being partially exposed rather than totally buried or totally exposed. These residues
all have large side chains containing both hydrophobic and hydrophilic moieties. Residues are ordered by 
Gtransfer/(RT ln 2), the experimental free
energy for transferring the amino acid between water and octanol33,34 (converted to bits), a conventional measure of hydrophobicity. (See also Fig. 5.)

Fig. 4. Residue propensity for secondary structure elements. Some residues clearly favor particular secondary structure features: glycine (G) and
proline (P) are over-represented in loops,35 valine (V) and isoleucine (I) in strands and alanine (A) in helices. However, these preferences are not
particularly strong, resulting in a net single-site secondary structure to amino acid identity mutual information of only 0.08 bits. This lack of information is
responsible for the poor performance of algorithms that attempt to directly predict secondary structure from primary structure alone.2 Residues are
ordered by their nominal hydrophobicity, as in Figure 3. This reveals a slight preference for hydrophilic residues in helices and loops and for hydrophobic
residues in strands.

TABLE III. Additional Mutual Information from Neighboring Residues, Conditioned Upon Local Structure

Adjacent in Primary Structure Proximate in Tertiary Structure

Bits Std. Err. (Bias Corr.) Bits Std. Err. (Bias Corr.)

I(R; S��S) 0.0153 	0.00098 (�0.00001) 0.0120 	0.0014 (
0.00083)
I(R; B��B) 0.0148 	0.00190 (
0.00002) 0.0032 	0.0022 (
0.00115)
I(R; S�, B��S, B) 0.0301 	0.00214 (
0.00001) 0.0152 	0.0027 (
0.00198)
I(R; R��S, S�) 0.0160 	0.0037 (
0.0037) 0.0189 	0.0003 (
0.0021)
I(R; R��B, B�) 0.0100 	0.0004 (
0.0077) 0.0207 	0.0003 (
0.0037)
I(R; R��S, S�, B, B�) 0.0112 	0.0038 (
0.0109) 0.0202 	0.0005 (
0.0056)
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bits for primary structure neighbors and 0.027 bits for
contacts. As with structural features, we should consider
the inter-amino acid correlations given the local structure,
I(R; R��S�, B�, S, B). This is an estimate of the information
contained in inter-residue contact potentials. As above, we
can approximate this mutual information by a collection of
simpler, approximately independent contributions:

I�R�R��S�,B�,S,B� � I�R;R�� � �I�R;R��S�,S� � I�R;R���

� �I�R;R��B,B�� � I�R;R���.

From Table III, this inter-sequence information value is
about 0.01 bits for local neighbors and 0.02 bits for
contacts. The correlation between amino acid identity at
neighboring sites is very small, whether or not those
correlations are conditioned on the local structure.

In a previous investigation, Cline and coworkers18 mea-
sured an inter-amino acid contact correlation, given that
neither residue is located in a loop, of 0.04 bits per contact.
As a comparison we have measured this same correlation
on our data set, using Cline’s parameters. We agree
qualitatively but we found that this inter-residue correla-
tion in our data is only 0.02 bits per contact, about half as
strong as in the Cline data set. This degree of difference is
not unexpected, since our data set is more recent, contains
an order of magnitude more sequence data and is more
structurally diverse. However, this comparison suggests
that partitioning the protein data into structural classes
may marginally increase the apparent inter-residue mu-
tual information.

In summary, the mutual information between the amino
acid sequence and the local protein structure is a few
tenths of a bit per residue, whereas the information
content of amino acid correlations is only a few hundredths
of a bit per proximate pair. The strongest observed determi-
nant of local protein structure is hydrophobicity. The
precise numerical values of these measurements will
obviously depend on the exact procedure for coarse-
graining the protein structure, the choice of local structure
features and the selection of protein structures to study.
However, it is implausible that any reasonable change in
our methodology, such as adjusting the definition of amino
acid contacts, could substantially alter the relative magni-
tudes of sequence–structure and sequence–sequence inter-
actions.

Discussion

Amino acid contact potentials have been widely used in
many simplified protein structure prediction algorithms,
as well as in simplified models of proteins folding.8–18

However, the signal from these tertiary contact correla-
tions is far weaker than signals embedded in burial,
secondary structure and other local structural features.
We might reasonably question whether contact potentials
materially contribute to the performance of these struc-
ture prediction algorithms in practice. One alternative to
contact potentials is to embrace greater molecular detail in
protein structure prediction, while still keeping the model
simple enough to be computationally tractable.5 On the

other hand, if we disregard direct amino acid contact
correlations altogether, then threading and many similar
structure prediction methods can be recast in term of
protein structure profiles,6 which are computationally
efficient and conceptually very similar to the sequence
profile methods used for homology detection.39

Many effective structure prediction methods incorporate
evolutionary information, as well as structure– sequence
correlations. For detectable remote pairwise similarity,
the mutual information for aligned amino acids is about 2⁄3
bit per residue (entropy of BLOSUM62 substitution ma-
trix40), whereas multiple sequence alignments typically
provide 1–3 bits per position.41 It appears that amino acid
correlations due to evolutionary constraints are stronger
than those imposed by structural constraints alone. Thus,
many structure prediction methods that incorporate homol-
ogy might be more accurately thought of as complex
homology detection algorithms that are enhanced by lim-
ited amounts of structural information.

In principle, direct interactions between amino acids
determine the native structure of a protein. Therefore, it is
somewhat puzzling that these interactions do not lead to
strong inter-residue amino acid correlations. It is possible
that the important details of the molecular interactions
are overlooked when we use a fixed template structure or

Fig. 5. The segregation of residues between the interior and surface
of a protein is principally due to hydrophobic effects.16,17 The vertical axis
is the free energy change for transferring N-acetyl-amino-acid amides
from water to octanol.33,34 The transfer free energy of glycine (G) has
been set to zero, and we have converted from units of kcal/mol to free
entropies measured in bits. The horizontal axis (also measured in bits) is
the log odds difference between buried and exposed residues, 
C �
log2p(r, b0)/[p(r)p(b0)] � log2p(r, b3)/[p(r)p(b3)], where, b0 is a surface
exposure of less than 1.5%, and b3 is a surface exposure of greater than
40%. This is essentially the free entropy for transferring a residue from the
interior to the exterior of a protein. The transfer free entropy between
octanol and water measures the hydrophobicity of the residue. The log
odds difference includes hydrophobic effects, but it is also influenced by
protein structure and evolution. Nonetheless, there is a near quantitative
agreement between these two measures, indicating that hydrophobicity is
the primary determinate of the frequency with which different residues
segregate to the interiors of proteins. The trend line has a slope of 0.70. It
has been suggested that proline is frequently exposed due to steric
effects and that cysteine is often buried due to disulfide bonding.37,34

However, this figure indicates that the burial frequency of both residues
can be adequately explained by hydrophobicity alone.
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otherwise coarse-grain the protein structure. However, it
is interesting to ask how strong we should expect any
primary-to-tertiary structure interaction to be. One avail-
able datapoint is the free energy of protein folding, an
approximate measure of tertiary structure stability. The
stability of small, single domain proteins is typically
about42 
G � 20–60 kJ/mol. At ambient temperatures,
this corresponds to a free entropy change of 
� � 600
kJ/mol�1 K�1. The conversion factor between traditional
thermodynamic entropy units and bits is Rln 2, where R �
kBNA is the gas constant, and ln 2 converts between
natural and base 2 logarithms. Thus, the typical free
entropy difference between native and denatured protein
is about 
�folding � 10–30 bits per macromolecule, or a few
tenths of a bit per residue. This entropy of folding repre-
sents the cumulative effect of many molecular interactions
and does not directly correspond to any of the coarse-
grained structural entropies studied in this work. How-
ever, it does provide a pertinent sense of scale and
reaffirms that protein structure determination is difficult
because the interactions between amino acid sequence and
macro-molecular structure are subtle.
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