


on the activating or repressive action of the TF.
Lastly, one motif (motif 5) corresponds to a
feedback loop of a downstream TF targeting an
upstream TF through a miRNA, which is also
observed as a means for feedback in the hie-
rarchical network layout (17).

Data set integration predicts a functional
regulatory network. We integrated the physical
network with patterns of coordinated activity of
regulators and targets to derive a functional reg-
ulatory network (fig. S14A). Although TF bind-
ing is strongly associated with the true regulatory
targets, binding alone can occurwithout a sequence-
specific TF-motif interaction and does not always
result in changes in gene expression (60). Thus, a
functional regulatory network should consider both
binding and its functional consequences, such as
changes in expression or chromatin, which are cor-
related with gene function (fig. S15). Neither net-
work is a strict subset of the other, as some physical
connections may not lead to functional changes,
and functional connections may be indirect or
simply missing in the physical regulatory map.

We integrated multiple types of evidence in-
cluding conserved sequence motifs of 104 TFs in
promoter regions across the genome (table S5),
ChIP-based TF binding for 76 factors, and the
correlation between chromatin marks and gene
expression patterns of regulators and their target
genes (fig. S16). We combined these lines of
evidence with unsupervised machine learning to
infer the confidence of each regulatory edge be-
tween 707 proteins classified as TFs (17) and
14,444 targets for which at least one line of
evidence was available (17).

We compared the resulting functional net-
work to the physical network inferred from TF
binding, a predicted physical network constructed
frommotif occurrences, and the REDfly literature-

curated functional network (17). The functional
network included a similar number of target genes
as both the binding and motif physical networks
(~10,000 targets each), but more regulators over-
all (576 versus 104 and 76, respectively) and
more regulators per target (24 versus 7 and 13,
respectively) (fig. S14B). The functional network
showed similarity to both the motif and binding
networks, which were both used as input evi-
dence; connections of the functional network
showed more than fourfold enrichment in both
networks, even though the two only showed a
1.6-fold enrichment to each other’s connections
(fig. S14C). Compared with either the motif or
the binding network, the functional network
showed the strongest connectivity similarity to
the REDfly network, even though it was not
specifically trained to match known edges.

The functional regulatory network showed
increased biological relevance compared with
both the motif and binding networks, including
increased functional similarity, increased expres-
sion correlation, and increased protein-protein in-
teractions of cotargeted genes (fig. S14D) (17).
The REDfly network slightly outperformed the
functional network, confirming the relevance of
themetrics. However, the functional network con-
tains 100 times more targets (9436 versus 88) and
1000 times more connections (231,181 versus
233) than the REDfly network, suggesting it will
be more valuable for predicting gene function and
gene expression at the genome scale.

Predicting gene function from the functional
regulatory network. We provided candidate
functional annotations for genes that lack Gene
Ontology (GO) terms on the basis that targets of
similar regulators and with similar expression are
likely to share similar functions. We probabilis-
tically assigned genes to 34 expression clusters

(fig. S15) (17) and predicted likely functional
GO terms for every gene with a guilt-by-
association approach that uses GO terms of anno-
tatedgenes to predict likely functions of unannotated
genes, allowing for multiple annotation predic-
tions for each gene (17). This resulted in a higher
predictive power than the use of expression or
regulators alone (Fig. 8). At FDR < 0.25, we
predicted GO terms for 1286 previously unan-
notated genes and additional terms for 1586 pre-
viously annotated genes (fig. S17, table S6, data
set S15). In general, tissue-specific enrichments of
new GO predictions matched those of known
genes in the same GO terms (fig. S18), providing
an independent validation of our approach.

Predicting stage-specific regulators of gene
expression. We predicted stage-specific regula-
tors of gene expression on the basis of tran-
scriptional changes during development. With
the Dynamic Regulatory Events Miner (DREM)
(67), we searched for splits (a point at which pre-
viously coexpressed genes begin to exhibit diver-
gence into two or three distinct expression
patterns) among a set of more than 6000 genes
with the largest expression changes occurring
during the developmental time course (Fig. 9A
and fig. S19). We mined the physical and
functional regulatory networks to predict stage-
specific regulators from the over-representation
of regulator targets along specific trajectories or
“paths” from each split (17). Several predictions
agreed with literature support. For example, TIN,
a known regulator of organ development (68),
was a predicted regulator of genes with an early
increase in expression and enriched for organ de-
velopment (P < 10–53), and E2F2, a known cell-
cycle regulator (69), was a predicted regulator of
genes with an early decrease in expression and
enriched for cell-cycle function (P < 10–100).

Fig. 7. Properties of the physical regulatory network. (A) Hierarchical view of
mixed ChIP-based/miRNA physical regulatory network that combines transcrip-
tional regulation by 76 TFs (green) from ChIP experiments and posttranscriptional
regulation by 52 miRNAs (red). TFs are organized in a five-level hierarchy on the
basis of their relative proportion of TF targets versus TF regulators. miRNAs are
separated into two groups: the ones that are regulated by TFs (left) and the ones
that only regulate TFs (right). The horizontal position of the TFs in each level shows
whether they regulate miRNAs (left), have no regulation to or from miRNAs

(middle), or do not regulate but are targeted by miRNAs (right). Different shades
of green and red represent the total number of target genes for TFs and miRNAs,
respectively (darker nodes indicate more targets). Ninety-two percent of TF reg-
ulatory connections are downstream connections fromhigher levels to lower levels
(green), and only 8% are upstream (blue). miRNA regulatory connections are red.
(B) Highly enriched network motifs in a mixed physical regulatory network in-
cluding TFs (green), miRNAs (red), and target genes (black). For each motif, five
examples are shown. Known activators, blue; known repressors, red; other TFs, black.
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To provide additional support for regulator
predictions made using the physical network, we
examined the time-course expression profiles of
the regulators, whichwere not directly used in the
prediction scheme. Even though several caveats
could hinder this analysis, the time-course ex-
pression of the regulators was often consistent
with DREM’s predictions. For example, a sharp
decline in SU(HW) expression coincides with sharp
expression increase of its targets (Fig. 9A), con-
sistent with a repressive role (70). We generally
observed a notable correspondence among the

stage-specific expression changes of predicted
regulators at developmental stages that correspond
with concomitant expression changes in their tar-
get genes. Regulators predicted to be associated
with a split had, on average, a significantly great-
er absolute expression change than those not
associated with a split (P < 10−10) (fig. S19) (17).

Predicting cell type–specific regulators of
chromatin activity. We computed enrichments
of conserved regulatory motif instances in cell
type–specific annotations for 22 chromatin fac-
tors in both S2 and BG3 cells. We defined signa-

tures of cell-type–specific activators and repressors
probably involved in establishing the chromatin
differences between S2 and BG3 cells (Fig. 9B)
by comparing these enrichments to the expres-
sion patterns of the TFs that recognize these mo-
tifs in the same cell types (17). Activators were
defined as TFs whose cell type–specific expres-
sion coincided with activation of their predicted
targets, and repressors were defined as TFs whose
cell type–specific expression was correlated
with repression of their predicted targets. This
resulted in one to eight predicted regulators for
each cell, including, for example, CREBA as a
predicted S2 activator, H as a predicted BG3
repressor, and factors with the stereotypical homeo-
box binding motif (HOX-like) as a predicted BG3
activator.

For most regulatory motifs, enrichment in ac-
tivating chromatin marks was coupled with
depletion in repressive chromatin marks. This
coupling leads to more robust predictions of ac-
tivators and repressors and also enables a high-
level distinction between active and repressive
chromatinmarks that agrees with previous studies
and with our chromatin-state analysis (Fig. 4)
(18, 19). For a small number of motifs, however,
the chromatin enrichments did not show a con-
sistent picture of opposite enrichments in activat-
ing versus repressive marks. These could be false
positives and not actually associated with chro-
matin regulation, or they could be active in other
cell types and not relevant to the distinction be-
tween S2 and BG3 chromatin marks.

Fig. 8. Gene function prediction from
coexpression and co-regulation patterns. Re-
ceiver operator characteristic curves for GO
terms with predicted new members and
area-under-the-curve statistics. False neg-
atives for each GO term are predictions for
genes previously annotated for “incompatible”
GO terms, defined as pairs of GO terms that
have less than 10% common genes relative
to the union of their gene sets.

Fig. 9. Predictive models of regulator, region, and gene activity. (A) Dynamic
regulatory map produced by DREM predicts stage-specific regulators
associated with expression changes (y axis, log space relative to first time
point) across developmental stages (x axis) (17). Each path (colored lines)
indicates the average expression of a group of genes (solid circles) and its
standard deviation (size of circle). Predicted bifurcation events, or splits, (open
circles) are numbered 1 through 19. The colored insets show the expression
level of each individual gene going through the split and ranked regulators
from the physical (black) or functional (blue) regulatory network associated
with the higher (H), lower (L), or middle (M) path. The uncolored inset shows
the expression of repressor SU(HW), whose expression decrease coincides with
an expression increase of its targets (red asterisk). (B) Predicted S2 activators

(top group) or repressors (bottom group), based on the coherence between
relative expression of the TF in S2 (yellow) versus BG3 (green) and the relative
motif enrichment (red) or depletion (blue) in S2 versus BG3 for activating (left
columns) or repressive marks (right columns). (C) True (top of shaded area)
and predicted (dotted blue line) expression levels for target genes, from the
expression levels of inferred activators (red) and repressors (green). Only the
top five positive and negative regulators are shown, ranked by their
contribution to the expression prediction (weight of linear-regression model).
Examples are shown from 8 of 1487 predictable genes, ranked by prediction
quality scores (rank in upper right corner), evaluated as the averaged squared
error between predicted and true expression levels across the time course. An
expanded set of examples is shown in fig S23.
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Predicting target gene expression from
regulator expression. Developmental regulatory
programs are defined by multiple interacting reg-
ulators contributing to observed changes in gene
or region activity (71). We sought to predict the
specific expression levels of target genes across
numerous stages and cell lines on the basis of the
expression levels of their regulators. With the 30
distinct measurements of expression levels ob-
tained by RNA-seq across development (14), we
represented the expression level of each target
gene as a linear combination of its regulators, as
defined by the functional regulatory network (Fig.
9C). We split the time course into 10 intervals of
three samples each and learned stable coefficients
for linear combinations of TFs across 9 intervals
to predict expression in the tenth (17).

We predicted the expression levels of 1991
genes better than random control networks (23.6%
of genes), a 2.5-fold enrichment (control net-
works perform better on 9.5% of genes) (figs.
S20 andS21). In contrast, physical networks showed
almost no predictive value over the randomized
networks (table S7), suggesting that they are best
used when combined with additional information
for inferring functional regulatory networks.

Genes whose expression levels are predicta-
ble from the expression levels of their regulators
(those with consistently lower errors than ran-
dom) may be more precisely regulated and, thus,
associated with less noisy expression patterns.
Indeed, the expression correlation between the
30–time-point data set used for expression pre-
diction (14) and an independently generated 12–
time-point data set sampled at longer intervals
(19) was significantly higher for predictable genes
compared with unpredictable genes (Kolmogorov-
Smirnov test P value < 1E–7) (fig. S22). These
results validate our methodology for gene ex-
pression prediction and suggest that unpredict-
able genes may be due to intrinsic variability in
gene expression levels.

We also tested whether the regulatory models
obtained with whole-embryo time-course data
sets can predict gene expression under novel con-
ditions: specifically the Cl.8+, Kc167, BG3, and
S2-DRSC cell lines. For each “predictable” gene,
the expression levels of its regulators were
combined, as dictated by the weights learned in
the time-course experiment, and used to predict
target gene expression. The expression of 932
predictable genes also showed better-than-random
predictions (compared with 296 genes for the
binding network and 214 genes for the motif
network). Overall, 62% of embryo-defined pre-
dictable genes were also predictable in cell lines,
compared with only 10 to 15% for embryo-based
unpredictable genes, providing further validation
of our methodology.

Our results suggest that the primary data sets
are highly relevant for inferring functional reg-
ulatory relations that are predictive of expression
(Fig. 9C and figs. S20 and S23). However, genome-
scale gene expression prediction remains an enor-
mously difficult problem, as only one-quarter of

all genes was predictable, a fraction that we ex-
pect to improve with additional data sets gen-
erated frommore andmore genome-scale projects.

Discussion. This first phase of the mod-
ENCODE project has provided the foundation
for integrative studies of metazoan biology, en-
hancing existing genome annotations; broadening
the number and diversity of small RNAgenes and
pathways; revealing chromatin domains and sig-
natures; and elucidating the interplay between
replication, chromatin, and TF binding in high-
occupancy regions. Together, our resulting anno-
tations cover 82%of the genome, a nearly fourfold
increase comparedwith previously annotated protein-
coding exons, and have important implications
for interpreting the molecular basis of genetically
linked phenotypes.

Our integrative analysis revealed connections
between elements in physical and functional reg-
ulatory networks, enabling the prediction of gene
function, tissue- and stage-specific regulators, and
gene expression levels. Though our initial results
are promising, only one-quarter of all genes showed
predictable expression, suggesting the need for
continued mapping of regulatory interconnec-
tions and functional data sets, as well as new
predictive models.

It remains to be seen how the general reg-
ulatory principles elucidated here will be con-
served across the animal kingdom and especially
in humans, through comparison across the
ENCODE and modENCODE projects. Toward
this end, we are expanding our exploration of
functional elements, cell types, and developmen-
tal stages and prioritizing orthologous assays and
conditions across species. Given the extensive
conservation of biological molecules and pro-
cesses between flies and vertebrates (72), these
will not only improve our understanding of fly
biology, but can also serve as a template for
understanding of human biology and disease.
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High-Flux Solar-Driven Thermochemical
Dissociation of CO2 and H2O Using
Nonstoichiometric Ceria
William C. Chueh,1 Christoph Falter,2 Mandy Abbott,1 Danien Scipio,1 Philipp Furler,2

Sossina M. Haile,1* Aldo Steinfeld2,3*

Because solar energy is available in large excess relative to current rates of energy consumption,
effective conversion of this renewable yet intermittent resource into a transportable and
dispatchable chemical fuel may ensure the goal of a sustainable energy future. However, low
conversion efficiencies, particularly with CO2 reduction, as well as utilization of precious
materials have limited the practical generation of solar fuels. By using a solar cavity-receiver
reactor, we combined the oxygen uptake and release capacity of cerium oxide and facile catalysis
at elevated temperatures to thermochemically dissociate CO2 and H2O, yielding CO and H2,
respectively. Stable and rapid generation of fuel was demonstrated over 500 cycles. Solar-to-fuel
efficiencies of 0.7 to 0.8% were achieved and shown to be largely limited by the system scale
and design rather than by chemistry.

Long-term storage and long-range transport
of the vast, yet intermittent and unevenly
distributed, solar energy resource is essen-

tial for a transition away from fossil energy (1).

Chemical fuels, derived from CO2 and/or H2O,
offer exceptional energy density and convenience
for transportation, but their production using solar
energy input has remained a grand challenge (2–9).
Solar-driven thermochemical approaches to CO2

and H2O dissociation inherently operate at high
temperatures and use the entire solar spectrum; as
such, they provide an attractive path to solar fuel
production at high rates and efficiencies in the ab-
sence of preciousmetal catalysts (10). In contrast to
direct thermolysis of CO2 and H2O, two-step ther-

mochemical cycles using metal oxide redox
reactions further bypass the CO-O2 or H2-O2

separation problem (11). Among candidate redox
materials, ferrite-based oxides exhibit relatively
slow reaction rates, degradation in rates because
of sintering, and losses because of uncontrolled
volatilization, whereas ZnO, SnO2, and analo-
gous volatile oxides that sublime during de-
composition require rapid quenching of gaseous
products to avoid recombination (10–18). Ceri-
um oxide (ceria) has emerged as a highly
attractive redox active material choice for two-
step thermochemical cycling because it displays
rapid fuel production kinetics and high selectiv-
ity (17, 19–24), where such features result, in
part, from the absence of distinct oxidized and
reduced phases. However, ceria-based thermo-
chemical studies to date have largely been limited
to bench-top demonstrations of components or
individual steps of the solar fuel production cy-
cle; assessment of cyclability has been limited,
and the energy conversion efficiency has re-
mained uncertain because of the relatively low
gravimetric fuel productivity inherent to the
nonstoichiometric process. Here, we demonstrate
high-rate solar fuel production from both CO2

and H2O using a solar reactor subjected directly
to concentrated radiation under realistic operating
conditions relevant to large-scale industrial im-
plementation, without the need for complex ma-
terial microstructures and/or system design (e.g.,
additional quench or separation steps). The re-
sults provide compelling evidence for the viabil-
ity of thermochemical approaches to solar fuel
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