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Supplementary Figure 1. Distribution of depths of the leaf annotations over all targets in (A) 
Molecular Function ontology and (B) Biological Process ontology. A leaf term for a target is 
defined as any term whose descendent nodes (more specific nodes) are not among the 
experimentally determined terms for that protein. 

 

Supplementary Figure 1A: 

 

 

Supplementary Figure 1B: 
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Supplementary Figure 2. Precision-recall curves for the top-performing methods for (A) 
Molecular Function ontology, excluding proteins annotated with “protein binding” leaf term 
only, (B) Molecular Function ontology, (C) Biological Process ontology, (D) Biological Process 
ontology including only GOslim terms. All panels show the top ten participating methods in each 
category, as well as the BLAST and Naïve baseline methods. The legend provides the maximum 
F-measure (F) for all methods and coverage (C) for all methods that did not make predictions on 
all targets. In cases where a Principal Investigator (PI) participated with multiple teams, only the 
results of the best scoring method are presented. Previously unpublished methods are denoted as 
experimental. Methods: Jones-UCL54 (PI: David Jones, University College London), Argot255 
(PI: Stefano Toppo, University of Padova), PANNZER (PI: Liisa Holm, University of Helsinki; 
experimental method), ESG56 (PI: Daisuke Kihara, Purdue University), BAR+57, 58 (PI: Rita 
Casadio, University of Bologna), PDCN59 (PI: Jianlin Cheng, University of Missouri), Team 
Orengo60 (PI: Christine Orengo, University College London), Lichtarge Lab61 (PI: Olivier 
Lichtarge, Baylor College of Medicine), SIFTER20, 62 (PI: Steven Brenner, University of 
California, Berkeley), dcGO63, 64 (PI: Julian Gough, University of Bristol), MS-kNN65 (PI: 
Slobodan Vucetic, Temple University), GOstruct34 (PI: Asa Ben-Hur, Colorado State 
University), BMRF33 (PI: Cajo J. F. ter Braak, Wageningen University), Rost Lab66 (PI: 
Burkhard Rost, Technische Universität München), Tian Lab (PI: Weidong Tian, Fudan 
University; experimental method). 
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Supplementary Figure 2A: 
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Supplementary Figure 2B: 
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Supplementary Figure 2C: 
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Supplementary Figure 2D: 
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Supplementary Figure 3. Performance evaluation based on the maximum F-measure for the top 
performing methods for the Molecular Function ontology in cases where all proteins were 
included in evaluation (Fig. 2 in the manuscript shows equivalent evaluation when proteins 
characterized with “protein binding” as their only leaf term were excluded). Bars show the top 10 
participating methods as well as the BLAST and Naïve baseline methods. A perfect predictor 
would be characterized with the Fmax of 1. Confidence intervals (95%) were determined using 
bootstrapping with 10,000 iterations on the set of target sequences. In cases where a Principal 
Investigator (PI) participated with multiple teams, only the results of the best-scoring method are 
presented. Previously unpublished methods are denoted as “experimental”. Methods: MS-kNN65 
(PI: Slobodan Vucetic, Temple University), GOstruct34 (PI: Asa Ben-Hur, Colorado State 
University), Jones-UCL54 (PI: David Jones, University College London), Argot255 (PI: Stefano 
Toppo, University of Padova), PANNZER (PI: Liisa Holm, University of Helsinki; experimental 
method), BMRF33 (PI: Cajo J. F. ter Braak, Wageningen University), ESG56 (PI: Daisuke Kihara, 
Purdue University), Team Orengo60 (PI: Christine Orengo, University College London), PDCN59 
(PI: Jianlin Cheng, University of Missouri), Rost Lab66 (PI: Burkhard Rost, Technische 
Universität München). 
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Supplementary Figure 4. The histogram of pairwise sequence identities between each target 
and the experimentally annotated template most similar to it: (A) Molecular Function ontology, 
and (B) Biological Process ontology. The histograms roughly determine two groups of targets: 
easy – with maximum sequence identity greater than or equal to 60%, and difficult – with 
maximum sequence identity below 60%.  

 

Supplementary Figure 4A: 

 

Supplementary Figure 4B: 
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Supplementary Figure 5. Precision-recall curves for the top-performing methods for: (A) easy 
targets and Molecular Function ontology without “protein binding”; (B) easy targets and 
Molecular Function ontology; (C) difficult targets and Molecular Function ontology, without 
“protein binding”; (D) difficult targets and Molecular Function ontology; (E) easy targets and 
Biological Process ontology; (F) difficult targets and Biological Process ontology. All panels 
show the top ten participating methods in each category, as well as the BLAST and Naïve 
baseline methods. The legend provides the maximum F-measure (F) for all methods and 
coverage (C) for all methods that did not make predictions on all targets. In cases where a 
Principal Investigator (PI) participated with multiple teams, only the results of the best-scoring 
method are presented. Previously unpublished methods are denoted as “experimental”. Methods: 
GOstruct34 (PI: Asa Ben-Hur, Colorado State University), Argot255 (PI: Stefano Toppo, 
University of Padova), Jones-UCL54 (PI: David Jones, University College London), MS-kNN65 
(PI: Slobodan Vucetic, Temple University), PANNZER (PI: Liisa Holm, University of Helsinki; 
experimental method), ConFunc13 (PI: Michael Sternberg,  Imperial College; experimental 
method), ESG56 (PI: Daisuke Kihara, Purdue University), Tian Lab (PI: Weidong Tian, Fudan 
University; experimental method), FASS (PI: Rajendra Joshi, Centre for Development of 
Advanced Computing; experimental method), Team Orengo60 (PI: Christine Orengo, University 
College London), BMRF33 (PI: Cajo J. F. ter Braak, Wageningen University), BAR+57, 58 (PI: 
Rita Casadio, University of Bologna), PDCN59 (PI: Jianlin Cheng, University of Missouri), 
SIFTER20, 62 (PI: Steven Brenner, University of California, Berkeley), Lichtarge Lab61 (PI: 
Olivier Lichtarge, Baylor College of Medicine), dcGO63, 64 (PI: Julian Gough, University of 
Bristol), Rost Lab66 (PI: Burkhard Rost, Technische Universität München). 
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Supplementary Figure 5A: 
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Supplementary Figure 5B: 
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Supplementary Figure 5C: 
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Supplementary Figure 5D: 
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Supplementary Figure 5E: 
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Supplementary Figure 5F: 
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Supplementary Figure 6: Precision-recall curves for the top-performing methods for (A) 
eukaryotic targets and Molecular Function ontology without “protein binding”; (B) eukaryotic 
targets and Molecular Function ontology; (C) prokaryotic targets and Molecular Function 
ontology without “protein binding”; (D) prokaryotic targets and Molecular Function ontology; 
(E) eukaryotic targets and Biological Process ontology; (F) prokaryotic targets and Biological 
Process ontology. All panels show the top ten participating methods in each category, as well as 
the BLAST and Naïve baseline methods. The legend provides the maximum F-measure (F) for 
all methods and coverage (C) for all methods that did not make predictions on all targets. In 
cases where a Principal Investigator (PI) participated with multiple teams, only the results of the 
best scoring method are presented. Previously unpublished methods are denoted as experimental. 
Methods: Jones-UCL54 (PI: David Jones, University College London), GOstruct34 (PI: Asa Ben-
Hur, Colorado State University), Argot255 (PI: Stefano Toppo, University of Padova), ConFunc13 
(PI: Michael Sternberg,  Imperial College; experimental method), PANNZER (PI: Liisa Holm, 
University of Helsinki; experimental method), Tian Lab (PI: Weidong Tian, Fudan University; 
experimental method), MS-kNN65 (PI: Slobodan Vucetic, Temple University), FASS (PI: 
Rajendra Joshi, Centre for Development of Advanced Computing; experimental method), ESG56 
(PI: Daisuke Kihara, Purdue University), dcGO63, 64 (PI: Julian Gough, University of Bristol), 
BMRF33 (PI: Cajo J. F. ter Braak, Wageningen University), Rost Lab66 (PI: Burkhard Rost, 
Technische Universität München), Team Orengo60 (PI: Christine Orengo, University College 
London), BAR+57, 58 (PI: Rita Casadio, University of Bologna), PDCN59 (PI: Jianlin Cheng, 
University of Missouri), Lichtarge Lab61 (PI: Olivier Lichtarge, Baylor College of Medicine), 
SIFTER20, 62 (PI: Steven Brenner, University of California, Berkeley), GORBI (PI: Tomislav 
Šmuc, Ruđer Bošković Institute). 
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Supplementary Figure 6A: 
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Supplementary Figure 6B: 
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Supplementary Figure 6C: 
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Supplementary Figure 6D: 

 

 

21 
 

Nature Methods: doi:10.1038/nmeth.2340



 

Supplementary Figure 6E: 
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Supplementary Figure 6F: 
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Supplementary Figure 7. Performance evaluation based on the maximum F-measure for the 
top-performing methods for the Molecular Function ontology (A-E) and Biological Process 
Ontology (F-J). Targets with Molecular Function annotation “protein binding”, as their only leaf 
term were excluded. Only the species with 30 targets or more are included. All bars show the top 
ten participating methods as well as the BLAST and Naïve baseline methods. A perfect predictor 
would be characterized with Fmax of 1. Confidence intervals (95%) were determined using 
bootstrapping with 10,000 iterations on the set of target sequences.  
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Supplementary Figure 7A: Molecular Function – A. thaliana. 

 

 

Supplementary Figure 7B: Molecular Function – E. coli K-12. 
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Supplementary Figure 7C: Molecular Function – H. sapiens. 

 

 

Supplementary Figure 7D: Molecular Function – M. musculus. 
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Supplementary Figure 7E: Molecular Function – R. norvegicus. 
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Supplementary Figure 7F: Biological Process – A. thaliana. 

 

 

Supplementary Figure 7G: Biological Process – E. coli K-12. 
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Supplementary Figure 7H: Biological Process – H. sapiens. 

 

 

Supplementary Figure 7I: Biological Process – M. musculus. 
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Supplementary Figure 7J: Biological Process – R. norvegicus. 
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Supplementary Figure 8. Weighted precision-recall curves for the top-performing methods for 
(A) Molecular Function ontology and (B) Biological Process ontology. All panels show the top 
ten participating methods in each category, as well as the BLAST and Naïve baseline methods. 
The legend provides the maximum F-measure (F) for all methods and coverage (C) for all 
methods that did not make predictions on all targets. In cases where a Principal Investigator (PI) 
participated with multiple teams, only the results of the best scoring method are presented. 
Previously unpublished methods are denoted as experimental. Methods: MS-kNN65 (PI: 
Slobodan Vucetic, Temple University), GOstruct34 (PI: Asa Ben-Hur, Colorado State 
University), Jones-UCL54 (PI: David Jones, University College London), Argot255 (PI: Stefano 
Toppo, University of Padova), PANNZER (PI: Liisa Holm, University of Helsinki; experimental 
method), BMRF33 (PI: Cajo J. F. ter Braak, Wageningen University), Team Orengo60 (PI: 
Christine Orengo, University College London), ESG56 (PI: Daisuke Kihara, Purdue University), 
PCDN59 (PI: Jianlin Cheng, University of Missouri), BAR+57, 58 (PI: Rita Casadio, University of 
Bologna), Rost Lab66 (PI: Burkhard Rost, Technische Universität München), Tian Lab (PI: 
Weidong Tian, Fudan University; experimental method). 

 

Calculation of the weighted precision-recall curve. Each term f in the ontology was weighted 
according to the information content of that term. The information content of the term f was 
calculated as 
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where Pr(f) is the relative frequency that a randomly selected protein will be associated with term 
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where Pi(t) is the set of predicted terms for protein i with score greater than threshold t and Ti is 
the set of true terms for protein i. For each threshold, the weighted precisions and recalls were 
then averaged over all proteins and a point in the precision-recall space was created. 
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Supplementary Figure 8A: 
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Supplementary Figure 8B: 
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Supplementary Table 3. Participating methods grouped according to Principal Investigators 
(PIs).*  

Principal Investigator Method name Model (keywords) Publications 
Cajo ter Braak BMRF Model 1 (pi, ge, or, lt) 33, 67 
Hagit Shatkay UDelQueens Model 1 (lt) 

Model 2 (lt) 
Model 3 (lt) 

68 

Jianlin Cheng PDCN Model 1 (ppa, spa, dp) 
Model 2 (ppa, spa, dp) 
Model 3 (ppa, spa, dp) 

59 

David Jones Jones-UCL Model 1 (ppa, sp, pi, ge, lt, ml, or) 
Model 2 (lt, ml) 
Model 3 (ppa, ml) 

54 

 FFPred Model 1 (ppa, sp, pi, ge, lt, ml, or) 
Model 2 (sp, ml) 

69, 70 

 FunctionSpace Model 1 (ppa, sp, pi, ge, lt, ml, or) 
Model 2 (sp, pi, ge, ml) 

 

Alberto Paccanaro Paccanaro Lab Model 1 (ml, sa, p, pi, lt, or, gi)  
Liisa Holm Holm Group Model 1 (sa, pa, or, ofi) Suppl. Inf. 
Steven Brenner SIFTER Model 1 (ph, ml) 20, 62 
 SINK Model 1 (ph, ml, ofi)  
Daisuke Kihara PFP Model 1 (sa) 15, 71 
 ESG Model 1 (sa) 56 
 COCO Model 1 (sa)  
Julian Gough Superfamily Model 1 (spa, pps) 

Model 2 (spa, pps) 
72 

 Fang Model 1 (spa, pps) 
Model 2 (spa, pps) 

 

 dcGO Model 1 (spa, pps) 
Model 2 (spa, pps) 

64 

Ingolf Sommer GOdot Model 1 (ppa, spa, ml) 73 
Stefano Toppo Argot2 Model 1 (sa, spa) 55, 74 
Tomislav Šmuc GORBI Model 1 (gc, ml, or, pa) 75 
Michael Sternberg ConFunc Model 1 (spa) 13 
Burkhard Rost Rost Lab Model 1 (sa) 

Model 2 (sa) 
Model 3 (sa) 

66 

Christine Orengo Team Orengo Model 1 (sa, ppa, spa, ml) 
Model 2 (sa, ppa, spa, ml) 

60 

Predrag Radivojac FANN-GO Model 1 (sa, ml); not evaluated 16 
Rita Casadio BAR+ Model 1 (sa) 57, 58, Suppl. Mat. 
Slobodan Vucetic MS-kNN Model 1 (sa, ge, pi) 

Model 2 (sa, ge, pi) 
Model 3 (sa) 

65 

Rajendra Joshi FASS Model 1 (or) 
Model 2 (or) 

 

Tapio Salakoski Turku BioNLP Model 1 (sa, ge, ps, ml) 
Model 2 (sa, ge, ps, ml, lt) 
Model 3 (ml, lt) 

 

Asa Ben-Hur GOstruct Model 1 (sa, sp, pi, ml) 
Model 2 (sa, sp, ml) 

34 

Olivier Lichtarge Lichtarge Lab Model 1 (sa, ml, dp) 
Model 2 (dp, ps, pps) 
Model 3 (sa) 

61 

Weidong Tian Tian Lab Model 1 (dp, sa, ppa, spa, sp, ps, gc, cm, ml, or, ofi) 
Model 2 (dp, sa, ppa, spa, sp, ps, gc, cm, ml, or, ofi) 
Model 3 (dp, sa, ppa, spa, sp, ps, gc, cm, ml, or, ofi) 

Suppl. Inf. 
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*) Each Principal Investigator was allowed to have more than one participating group/team, as 
long as the teams were largely different. Each team was allowed to have up to three variants of 
their method; these are referred to as “Models”. Prediction teams are associated with publications 
(if the work was previously published). Methods ranked in the top ten (see manuscript) are also 
associated with manuscripts or full method descriptions in Supplementary Information. 

 

Keyword table: 

Code Keyword Code Keyword 
sa sequence alignments pi protein interactions 

spa sequence-profile alignments ge gene expression 
ppa profile-profile alignments gi genetic interactions 
ph phylogeny ps protein structure 
or ortholog pps predicted protein structure 
pa paralog cm comparative model 
sp sequence properties ml machine learning-based method 
dp derived/predicted ofi other functional information 

  lt literature 
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Supplementary Note 

Methods:  Short Descriptions 

Note: methods are listed lexicographically based on the PI’s last name. 

 

PI: Asa Ben-Hur. The GOstruct method models GO term prediction in the framework of SVMs 
for structured output spaces, constructing a unified model that takes into account the structure of 
the GO hierarchy.34 Our approach is highly flexible, and supports the integration of diverse 
genomic data, including functional and interaction networks, gene expression data, and is also 
able to leverage sequence and annotations that are made across species. For the CAFA 
submission we used a GOstruct model that combines two structured SVMs, one trained using 
sequence data and GO annotations obtained for a variety of species (sequence was represented as 
BLAST log E-values and additional features), the other trained using species-specific 
information that included protein-protein interactions extracted from the STRING database. 
Additionally, our species-specific classifier for mouse used information extracted from the 
biomedical literature. Following the CAFA submission we improved this component, and it now 
provides accuracy comparable to that of a classifier trained on protein-protein interactions. Full 
details will be provided in the GOstruct manuscript, which is part of the CAFA BMC 
Bioinformatics special issue.76 

PI: Steven Brenner. Statistical Inference of Function Through Evolutionary Relationships 
(SIFTER) is a probabilistic graphical model for inferring molecular function of unannotated 
protein sequences using phylogenomics.20, 62 Based on phylogenomic principles, SIFTER 
predicts molecular function for members of a protein family given a reconciled phylogeny and 
available function annotations. In this model, each molecular function may evolve from any 
other function, and a protein’s function may evolve more rapidly after duplication events than 
after speciation events. The reconciled phylogeny for a protein family, which discriminates 
duplication events and speciation events, specifies the tree-structured graphical model used in 
inference. The major points of the method include the following: (1) given our choice of GO as a 
source of functional labels, functions are not a simple list of mutually exclusive characters, but 
are vertices in a directed acyclic graph (DAG); (2) we require a model akin to Jukes-Cantor but 
appropriate for molecular function; (3) generally only a small subset of the proteins in a family 
are annotated, and the annotations have different degrees of reliability. 

PI: Rita Casadio. BAR, the Bologna Annotation Resource57 was updated (BAR+58; available at 
http://bar.biocomp.unibo.it/bar2.0). The method relies on the concept that sequences can inherit 
the same function/s and structure from their counterparts, provided that they fall into a cluster 
endowed with validated annotations. BAR+ is based on a clustering procedure with the 
constraint that sequence identity (SI) should be ≥40% on at least 90% of the pairwise alignment 
overlapping (Coverage, Cov). Depending on the annotation types of the sequences within the 
cluster, all new targets that fall into a cluster can inherit validated annotations by transfer. For 
generating BAR+ clusters we analyzed a total of over 13 million protein sequences from 988 
genomes and UniProtKB release 2010_05. The BAR+ cluster-building pipeline starts with an all-
against-all sequence comparison with BLAST in a GRID environment. The alignment results are 
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then regarded as an undirected graph where nodes are proteins and links are allowed only among 
chains that are 40% identical over at least 90% of the alignment length. All the connected nodes 
fall within the same cluster; when a cluster incorporates a UniProtKB entry it inherits its 
annotations (GO and Pfam terms, PDB structures, SCOP classifications). Within a cluster GO 
and Pfam terms are statistically validated as previously described;57 validated terms are those 
endowed with P-values below 0.01.57 Clusters can contain distantly related proteins that 
therefore can be annotated with high confidence and eventually can also inherit a structural 
template, if present. Structural alignments are provided by a cluster HMM.58  Following CAFA 
rules, predictions are carried out only for the Molecular Function (MFO) and Biological Process 
(BPO) Ontologies. We aligned all the target sequences against BAR+ clusters that, according to 
our constraints, contain validated GO terms. When a sequence did not match any cluster, 
singletons (standalone sequences in BAR+) were used to transfer annotation, provided that the 
criteria were also met. Out of a total of 48,298 sequences, about 63% inherited validated MFO 
and BPO GO terms (with score 1). Sequences in BAR+ can inherit many other annotation types. 
In the eukaryotic set 16,428 sequences were also annotated with Cellular Component (CCO) 
terms. Only for CAFA prediction we tried a coverage constraint ≥70% (SI ≥ 40%) but the 
number of annotated targets increased only by 3%. These last annotations were, however, 
submitted with score 0.50 instead of 1. 

PI: Jianlin Cheng. PDCN integrated sequence-profile and profile-profile alignment methods 
(PSI-BLAST and HHSearch) with several protein function databases (Gene Ontology, Swiss-
Prot, and Pfam) to predict the functions of target proteins having detectable homology with 
proteins of known function. For the hard cases where no homologous proteins could be 
identified, it applied domain co-occurrence networks (DCNs) to make predictions by transferring 
function annotations between neighboring domains on DCNs. 

PI: Julian Gough. Proteins are inherently of modular design, with domains not only as 
structural and evolutionary units but also as functional units. In spite of the conceptual 
importance of domains as functional carriers, conventionally we are accustomed to considering 
whole proteins instead. In multi-domain proteins, two or more domains can be combined 
together as larger evolutionary units (termed “supradomains”). Functional annotations for 
supradomains, although essential for genome annotations in higher organisms, remain a 
challenging obstacle for manual curation that involves looking at the functions of multi-domain 
proteins they reside in. To meet this challenge, we employ the concept of reverse engineering to 
make an automatic inference of domain- and supradomain-level annotations from protein-level 
annotations and protein domain assignments. This approach is specifically tailored to the 
hierarchical structure of the ontology itself and aims to capture those ontologies/annotations 
statistically significant for domains (and supradomains). It has been successfully tested on Gene 
Ontology (GO) for SCOP domain-centric annotations72 and has been extended here to SCOP 
supradomain-level GO annotations, to another functional ontology Enzyme Commission, and to 
species-specific phenotype/anatomy ontologies for human, mouse, worm, fly, zebrafish, yeast 
and arabidopsis (unpublished). These domain-centric, functional, and phenotypic ontologies and 
annotations are available at http://supfam.org, which provides a basis for comparative functional 
and phenotypic genomics involving SCOP domains and supra-domains. In additional to SCOP, a 
version for InterPro domains is also generated. In all, our method represents a domain-centric 
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solution towards genome annotations, regardless of whether proteins are multi-domain or single-
domain, or whether they are of functional or phenotypic relevance. 

PI: Liisa Holm. PANNZER methodology (http://ekhidna.biocenter.helsinki.fi/pannzer) starts 
with a BLAST or HMMer output result (hit list). The list is filtered using thresholds on 
alignment coverages and sequence similarity. In the CAFA experiment, we applied an additional 
filter that only retained sequences that have non-IEA GO annotations. The retained hits are re-
scored using query and target sequence coverage, sequence identity percentages and the distance 
in the NCBI taxonomic tree between the query and target species. Scores are weighted using a 
regression model that was designed to maximize the correlation from sequence search scores to 
description line text similarities. In the next step, hits are clustered based on the similarities of 
their description lines. We used Term Frequency-Inverse Document Frequency and cosine 
similarity for DE similarity. The best cluster is then selected using a Gene Set Z-score (GSZ)77 
which favors clusters enriched at the top of the re-scored hit list. We then predict the significance 
of each GO class that occurs within the best cluster. We calculate the hypergeometric P-value, 
GSZ, and an asymptotic P-value for GSZ for each GO class and combine them into a single 
score using a regression model. This regression model predicts the Jaccard similarity between the 
candidate GO class and the correct GO class. The score from the regression model is used to sort 
the reported GO classes. In addition, a significance weight is generated for score values by 
monitoring the behavior of correct and incorrect GO classes in a training dataset. 

PI: David Jones. The Jones-UCL approach combines a wide variety of tools and biological 
information sources, encompassing sequence, gene expression, and protein-protein interaction 
data into a single framework. Each component method was separately calibrated to produce 
precision estimates using a benchmark set of 1546 well-annotated Swiss-Prot entries. For the 
particular CAFA targets that were evaluated, we found that the high-throughput data-integration-
based predictions (FunctionSpace), including analyses of gene expression and protein-protein 
interaction data, contributed least to the final predictions. The largest contribution to correct 
predictions came from homology-based function prediction, e.g., from PSI-BLAST sequence 
similarity, orthologous groups and profile-profile comparisons. Other useful predictions were 
obtained from a novel Swiss-Prot text mining and trigram residue analysis. Information from all 
these methods were combined in a probabilistic manner taking into account the GO ontology 
structure to produce final GO results for molecular function and biological process. 

PI: Rajendra Joshi. Functional Annotation using Similarity Search (FASS) employs at the first 
instance BLASTP11 search against the UniProt database.36 Significant matches are filtered using 
criteria such as %overlap, %identity and E-value. The GO terms of the significant matches thus 
obtained were assigned to the target dataset. BLAST2GO78 was also run simultaneously against 
the nr database in an iterative manner starting from very stringent to relaxed cutoffs. A first run 
yielded GO terms for a set of sequences with stringent cutoffs. Subsequent reruns were 
performed for the remaining data with relaxed cutoffs. This ensured optimal coverage of dataset 
for GO term assignment. Concurrently, E.C. numbers were obtained using the tool EFICAz2 79 
and the GO terms for the same were retrieved using EC2GO.80 A consensus approach was then 
used to infer GO terms from all the three outputs using in-house developed Perl scripts. 

PI: Daisuke Kihara. The PFP algorithm15, 71 uses PSI-BLAST to obtain sequence hits for a 
target sequence and computes the score to GO term   as follows: af
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where  is the number of sequence hits considered in the PSI-BLAST output,  is the 
number of GO annotations for the sequence hit ,  is the PSI-BLAST E-value for the 
sequence hit , j   is the j-th annotation of the sequence hit  i , and constant b  takes value 2 (i.e. 

) to keep the score positive when retrieved sequences up to E-value of 100 are used. 
The conditional probabilities  are to consider co-occurrence of GO terms in single 
sequence annotation, which are computed as the ratio of number of proteins co-annotated with 
GO terms a   and j   as compared with ones annotated only with the term j . To take into 
account the hierarchical structure of the GO, PFP transfers the raw score to the parental terms by 
computing the proportion of proteins annotated with a  relative to all proteins that belong to the 
parental GO term in the database. The score of a GO term computed as the sum of the directly 
computed score by the equation above and the ones from the parental propagation is called the 
raw score.  
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ESG56 recursively performs PSI-BLAST searches from sequence hits obtained in the initial 
search from the target sequence, thereby performing multi-level exploration of the sequence 
similarity space around the target protein. Each sequence hit in a search is assigned a weight that 
is computed as the proportion of the log(E-value) of the sequence relative to the sum of log(E-
value) from all the sequence hits considered in the search of the same level, and this weight is 
assigned for GO terms annotating the sequence hit. The weights for GO terms found in the 
second level search are computed in the same fashion. Ultimately, the score for a GO term is 
computed as the total weight from the two levels of the searches. The score for each GO term 
ranges from 0 to 1.0. 

PI: Olivier Lichtarge. In protein structures, we begin by mapping key functional residues by 
Evolutionary Tracing (ET).81, 82 ET ranks residues by correlating their sequence variations with 
phylogenetic divergences. Top-ranked residues cluster in the structure to reveal functional 
surfaces. To predict function, we then: (a) pick 3D templates of 5 or 6 top-ranked surface ET 
residues; (b) identify matches in other protein structures in which identical residues have similar 
functional importance and geometry; and (c) transfer function annotations from known to 
unknown proteins based on these hits.83-85 This ET annotation (ETA) approach scales to the 
structural genome and is specific; it enables substrate-level predictions of enzyme function (at 
the 4th level of the Enzyme Commission (EC) classification) with 90% accuracy at 66% 
coverage. At the 3rd EC level accuracy and coverage rise to 96% and 70%. Finally, we note that 
template matches create a structural proteomic network of ETA hits (the edges) between proteins 
(the nodes). Having posed function annotation as a graph-based semi-supervised learning 
problem, it then becomes possible to exploit global rather than local network analysis. Starting 
with functional labels concentrated initially at nodes that carry these functions, Graph 
Information Diffusion (GID) redistributes the information in these labels over the entire network 
to suggest putative function(s) at any node to which a label significantly flows. GID specifically 
redistributes labels by solving a sparse linear diffusion equation, and its predictions of function 
were recently experimentally validated.86 
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To annotate protein sequences, we sought to generalize GID to networks with millions rather 
than thousands of nodes so as to include sequence-based information. We introduce a 
compression technique that eliminates the mostly redundant edges of fully connected subgraphs. 
This dramatically reduces the number of network links, but not accuracy, allowing GID to 
analyze otherwise computationally prohibitive amounts of experimental data, such as those in the 
very large STRING database network,87 which covers 373 full genomes (version 7.1). GID was 
more sensitive than other non-local methods over a compressed STRING network and more 
sensitive than local methods over the full network. 

PI: Christine Orengo. The Orengo group used libraries of HMMs that model functional 
families of protein domains below the CATH88 superfamily level. These families were produced 
using a novel pipeline for domain family identification. In brief, this uses the sequence clustering 
protocol described by Lee et al.89 in conjunction with high-quality GO annotation data. The 
workflow for each CAFA target is as follows. The protein is first assigned a set of CATH 
domains, using the Gene3D90 superfamily models. At least one domain was found in ~60% of all 
targets. Each domain is then assigned to one of the families within its superfamily, using the 
family models. Finally, GO terms are assigned to the target protein as a whole in a probabilistic 
manner. This is based on the detected domain families, each of which is associated with different 
GO terms via its seed sequences with varying strength (frequency of sequence-term 
associations). The term scoring procedure further takes into account the GO DAG structure and 
the quality of the different domain family assignments (HMM hit scores). 

PI: Alberto Paccanaro. Our method combined known GO annotations together with functional 
information derived from experiments. This was done by diffusing the known GO labels over 
functional graphs spanning the entire genomes from which the CAFA targets had been selected. 
First, for each genome, proteins with known GO annotation were assigned their functional labels. 
Then, functional information derived from experiments (protein-protein interaction, co-
expression) was assembled into graphs where each node represented a protein and each link was 
labeled with the strength of the functional association. These graphs were then averaged into one 
single functional graph. Finally, the known GO labels were diffused on this graph using the label 
diffusion method proposed by Zhou et al.91  

PI: Predrag Radivojac. We apply our model FANN-GO16 to the target sequences provided for 
the assessment. FANN-GO stands for Functional ANNotator of GO terms and is an ensemble of 
multi-output feed-forward artificial neural networks (ANNs). For a given input sequence, we 
first apply the GOtcha method14 to generate i-scores for each term in GO. These scores present 
the input to each neural network. Because of the large number of functional terms in GO, each 
ensemble member was trained on 100 randomly selected outputs, and the final prediction for a 
term is provided as an average of scores over all networks that contained an output associated 
with the term. Two separate models were provided, one for the Molecular Function ontology and 
the other for the Biological Process ontology. The model was trained on all GO terms associated 
with at least 50 experimentally annotated proteins in the January 2010 version of the Swiss-Prot 
database. FANN-GO was not evaluated in CAFA to avoid a potential conflict of interest with the 
organizers of the experiment. 

PI: Burkhard Rost. All three methods exclusively use sequences with existing functional 
annotations as input. They do so by BLASTing a given target against the GO annotated part of 
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Swiss-Prot and looking at the first k hits returned. Methods only differ in the amount and quality 
of hits they consider and how they assign a probability to each GO term found. 

PI: Tapio Salakoski. Our system uses an SVM classifier92  to predict whether each of the 385 
most common GO terms applies for a given protein. We train the classifiers using as features 
UniProt protein structures and families, precalculated predictions from the Blast2GO tool78 
provided by SIMAP (http://boincsimap.org/boincsimap/), known tissues of expression from 
UniGene (http://www.ncbi.nlm.nih.gov/unigene) and information on whether the protein belongs 
to one of the seven CAFA target species. We also evaluate the suitability of text mining for 
function prediction, by using PubMed-wide text mining events, descriptions of molecular 
interactions.93 Our results indicate the SVM classification can improve on the Blast2GO 
baseline, and that event type text mining provides information usable for function classification 
but is still unable to outperform other sources of data. Our method constitutes our first work on 
protein function prediction, and is to be considered experimental. We conclude that while the 
approach of multiple SVM classifiers is a valid tool for function prediction, more work is 
required to improve performance, especially the recall of the system. 

PI: Hagit Shatkay. We developed a text-based classifier for predicting protein function, using 
principles similar to those we have used in an earlier work to predict protein subcellular 
location.94 To train our classifier, we first compiled a dataset of proteins for which a reliable 
functional annotation was available from UniProtKB/Swiss-Prot. For each of these proteins, we 
retrieved the PubMed abstracts referenced from the respective UniProtKB entry. These abstracts 
formed the source of text features, namely, we extracted from the abstracts characteristic terms 
for each functional category. Those are terms whose occurrence probability is statistically 
significantly different in abstracts associated with proteins from one functional class than those 
associated with all other classes. The set of all characteristic terms was used as text features to 
represent each protein as a weighted bag-of-words vector. The proteins, represented as text-based 
vectors, were used to train and test a k-nearest neighbour classifier. We applied the resulting 
classifier to the proteins from the eukaryotic and prokaryotic track of the CAFA Challenge. 
CAFA proteins that had PubMed abstracts referenced from their respective UnitProtKB entry 
were represented as described above. CAFA proteins that had no PubMed references associated 
with their UniProtKB entries were represented as a weighted combination of the feature vectors 
of homologous proteins in our dataset. 

PI: Tomislav Šmuc. The GORBI method combines the available annotations for groups of 
inferred cliques of orthologs (OMA groups: http://omabrowser.org/) with the pattern of presence 
or absence – phylogenetic profiles – of various classes of orthologs and inferred paralogs and 
presents the data to a decision-tree classifier implemented in the Random Forest (RF) setting 
(CLUS: http://dtai.cs.kuleuven.be/clus/). We focus on the prokaryotic annotations only, as the 
phylogenetic profiling method is more powerful on prokaryotic than on eukaryotic data. 

PI: Ingolf Sommer. Based on the GOdot method73 for function prediction from a given protein 
structure, we transferred the concepts to protein sequences. An input protein sequence is 
compared to a reference set of proteins. The most similar sequences are identified and their GO 
molecular function terms are obtained. Local function conservation in sequence space is 
analyzed for these GO terms. These models return function conservation scores that indicate how 
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conserved the function in the region surrounding the protein is and denote the confidence in the 
predicted term. 

Here, the UniRef90, a compressed version of the UniProtKB, was used as the reference protein 
set. Profile Hidden Markov Models are employed to compare protein sequences.  The iterative 
search jackhmmer from the HMMer 3 package95 was used for the detection of homologs in the 
reference set.  

For a query sequence, GO terms from the ten most similar sequences are considered. For each 
GO term the sequence distances to the nearest 200 proteins according to jackhmmer are related 
to known annotations of that GO term. Logistic regression is used to model the local function 
conservation in the sequence neighborhood, following the approach in GOdot. The logistic 
regression models are then used to compute function conservation scores for the individual GO 
terms. 

PI: Michael Sternberg. Predictions by ConFunc were based on the ConFunc method.13 
ConFunc is a protein-sequence-based method, which identifies homologues of a query sequence 
and groups them into subalignments according to their GO annotations.  Predictions are made by 
comparing the query sequence to conserved residues present in each of the subalignments. 
CAFA predictions were supplemented by using other computationally derived annotations based 
primarily on mappings from other annotation sources (UniProt-GOA). 

PI: Cajo ter Braak. We developed a probabilistic method for protein function prediction that is 
based on Bayesian Markov Random Field (BMRF) analysis. BMRF propagates the annotations 
of proteins through one or multiple networks of protein associations, using an adaptive Markov 
Chain Monte Carlo algorithm. Our method is able to integrate diverse types of data such as 
sequences and networks and in previous studies we have shown that integration of diverse 
information can lead to improvement of prediction performance.33 For CAFA, we predicted 
functions for the proteins coming from the eukaryotes by integrating protein interaction and 
orthology information. Regarding orthology, we first constructed profiles of memberships in 
clusters of orthologous groups for all the proteins of the target species, using information from 
ProGMap.96 We then used penalized regression to build classifiers for GO terms, using the 
annotated proteins as a training set and their membership profiles as predictors. GO term 
predictions for the target proteins were obtained using those classifiers and further integrated 
with protein interaction information. In particular we constructed a network of protein 
interactions using data from STRING.  In our BMRF model the total probability of a target 
protein to perform a particular function (GO term) depends on the functions of the direct 
neighbors of the protein according to the network topology and also on the predictions based on 
the orthology information. Our workflow is described in further detail in the original 
publications.33, 67 

PI: Weidong Tian. In CAFA we employ a combined approach for protein function prediction 
(CAPFP). There are two major component algorithms in CAPFP: one that predicts protein 
function solely based on protein sequence (sequence-based), and the other that predicts protein 
function by integrating omics features associated with that protein (feature-based). In the 
sequence-based algorithm, we first apply PSI-BLAST to search for homologous sequences 
associated with a given protein sequence. Then, we prepare a multiple-sequence alignment 

42 
 

Nature Methods: doi:10.1038/nmeth.2340



(MSA) based on PSI-BLAST output, from which we identify functionally discriminating 
residues (FDRs) specific to a given function. Finally, we predict the function of the protein based 
on the absence or presence of those FDRs. In feature-based algorithms, we first collect genomic 
features associated with the proteins for each organism, including protein domains, TFs, 
orthologs, etc. Then, we use the random forest (RF) algorithm to integrate genomic features and 
build a prediction model for each GO term. Finally, we predict the functions of a given protein 
using the RF models. Both the sequence-based and the feature-based algorithms are trained 
independently. The prediction scores from both models are normalized to 0-1, with higher score 
indicating higher confidence. For a given function, the final prediction score of a given protein is 
the higher score from the two models. 

PI: Stefano Toppo. Efficient functional annotation of entire genomes is an important step to 
understand the gene product functions and to provide support for the interpretation of 
experimental results. The Gene Ontology (GO) has provided the means to standardize annotation 
classification with a structured vocabulary, which can be easily exploited by computational 
methods. Argot2 is a web-based distributed function prediction tool able to annotate nucleic or 
protein sequences on a genomic scale. It accepts as input a list of sequences in FASTA format 
that are enriched using the results of BLAST and HMMer searches. These sequences are then 
annotated with GO terms retrieved from the UniProtKB-GOA database and terms are then 
weighted using the e-values from BLAST and HMMer. The weighted GO terms, which can also 
be provided directly, are processed according to both their semantic similarity relations described 
by the Gene Ontology and their associated score. The algorithm has been employed and heavily 
tested already during in-house genome projects of grape and apple and has proven to have a high 
precision and recall in our benchmark conditions. The server is freely accessible at 
http://www.medcomp.medicina.unipd.it/Argot2. 

PI: Slobodan Vucetic. We used a weighted variant of the k-nearest neighbor (k-NN) algorithm 
to calculate a likelihood that protein p has function f. The prediction score of a protein p having 
function f is calculated as 
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data source, the similarity score was calculated as percent identity divided by 100. For a 
microarray data source, we used Pearson correlation between normalized gene expressions to 
measure the similarity score between two proteins. In protein-protein interaction (PPI) data 
source, the similarity score was set to 1 if the two proteins interacted and 0 otherwise. For each 
pair (p, f), we obtained several scores: in particular, one score for sequence data, , 
and one using PPI, . For J microarray datasets, we obtained J gene expression 
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significantly better than the simple averaging integration. So, in the CAFA challenge, we use the 
average integration approach shown below 
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Methods: Detailed Descriptions 

Note: methods are listed lexicographically based on the PI’s last name. 

 

Holm Group: PANNZER method in CAFA challenge 

Background 

Reasons for using descriptions in PANNZER in CAFA challenge 

PANNZER is a sequence analysis package that was originally designed for the prediction of 
gene names or free-text descriptions. The method was modified for the CAFA competition so 
that it generates Gene Ontology (GO) predictions. The outline of the original PANNZER method 
is described in Sections A and B with only slight modifications made for CAFA competition. 
Section C describes the added part that was used to generate GO predictions. 

 

Motivation 

PANNZER is a weighted K-nearest neighbor classifier, which uses BLAST to search a protein 
sequence database and generate a list of neighbors of the query sequence. The central task in 
functional annotation is the selection of the relevant annotation features from all annotation 
features that occur in the sequence search list. Annotation features include features such as free-
text functional descriptions, gene names, GO classes, Enzyme Commission (EC) classifications 
etc., but here we focus on GO classes for simplicity. The sequence search list analysis task is 
similar to the K-nearest neighbor type analysis from data mining, where we have a 
multidimensional ball with radius R that is drawn around the query sequence (Fig. S1). Next, all 
the sequences, that are found within the ball (sequences that are closer to query than R), will be 
further analyzed. Problems for such analysis are caused by: (i) variations in the GO class sizes; 
(ii) variations in the number of sequences found in sequence search list; (iii) variations in the 
strength of sequence similarities between the query sequence and the sequences accepted to the 
analysis; and (iv) occasional misannotated hits with strong similarity contained in the result list. 
Furthermore, the weighting scheme used should take into account: (v) the number of GO class 
members in the sequence search result list, and (vi) the sequence similarity of GO class members 
to the query sequence. Typical sequence query annotation is based on the best matching hit, 
which is very sensitive to problem (iv) above. If problem (i) is not taken into consideration, then 
the prediction will automatically report the largest, but not necessarily closest GO classes, an 
artifact often seen in functional annotation. If problem (ii) is not taken into consideration, then 
the sequences with larger sequence search lists will have higher risk of false positive GO 
annotations. If problem (iii) is not taken into account, then the sequences at the end of the 
sequence search list will have the same impact as those near the top of list. This can again 
generate false positive GO annotations. Previous solutions based on the hypergeometric P-value, 
the Jaccard similarity coefficient, the sum of sequence similarity scores for GO class members, 
or the mean of sequence similarity scores for GO class members have addressed some but not all 
of the above problems.   
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Figure S1. Toy example of similarity search results with query sequence (star). Family 1 
(surrounded by red dotted line) has small ratio of family members in similarity search results 
(blue line). Family 2 (green dotted line) and Family 3 (purple dotted line) have all the family 
members in search results. Small fraction of found results in Family 1 could indicate that 
members in results could in reality be members of different families. Query in this case adopts 
annotation from Family 2, because Family 1 annotations in results are uncertain and because 
Family 2 is highly represented in query neighbourhood by distance and number. 

 

We propose the PANNZER method that solves all of the problems described (i-vi). PANNZER 
is a weighted K-nearest approach where the weights are given by the Gene Set Z-score (GSZ).77 
Fig. S1 depicts a case where a simple K-nearest method would pick Family 3 since it is the 
largest family in the sample. However, it dominates the result list only by size. Family 2 is closer 
to the query than Family 3, but is smaller in size. When using weighted K-nearest method (using 
distance as weight), Family 2 will be chosen with the appropriate weighting parameters. A 
statistical method that also takes account of the background (e.g. hypergeometric P-value, 
Fisher’s exact test, Binomial distribution, Jaccard coefficient of similarity, GSZ) will be needed 
in order to avoid Family 1 kind of cases to be adopted as a predicted annotation. To our 
knowledge, GSZ is the only score for weighted K-nearest neighbor analysis that is founded in 
rigorous probability calculus rather than heuristics. 

 

The PANNZER method 

An overall outline of the PANNZER analysis pipeline is shown in Fig. S2. The pipeline has three 
sections: A, B and C. Section A focuses on the selection of sequences that are relevant for the 
annotation of query sequence. Section B creates clusters from the selected sequences using 
similarity of the description lines of the sequences and chooses the best cluster for annotation. 
Section C collects the GO classes from the chosen cluster and gives them weight scores to 
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estimate the probability that gene has the GO class in question. These steps are described more in 
detail below. 

 

 

Figure S2. PANNZER dataflow. The unique features of the PANNZER pipeline are weighted 
K-NN analysis, re-scoring of sequence matches by using query and target coverage, usage of 
taxonomic distance to weight the sequence matches and usage of descriptions to cluster the 
selected sequences. 

 

Section A: Sequence level analysis  

Sequence search  

The first step of a PANNZER analysis is a similarity search against sequence databases. The 
obtained BLAST result lists can vary a lot in size, from a few to several hundreds of hits. We 
observed that a very large size of result list was sometimes misdirected to a large neighbouring 
sequence cluster. Therefore, we limit the number of sequences taken to the analysis and focus 
only on the sequences that obtained the strongest results from the sequence scoring. The number 
of sequences selected for analysis was limited to 50. This counting monitored only the sequences 
with informative descriptions and sequences and with no skipped GO classes. Note that the 
uninformative sequences are still included in the later analysis steps. The selection of informative 

47 
 

Nature Methods: doi:10.1038/nmeth.2340



descriptions is based on Information Density Score (IDS) with an empirically selected threshold 
value of IDS = 10: 
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where  is the total number of descriptions in the corpus (i.e. database), and || D |}:{| dtDd   
is the number of descriptions (d) where the term t occurs. In order to avoid illegal division by 
zero, we add one to the equation. 

 

Re-scoring sequence hits 

Every remaining result from the sequence similarity search is re-scored using query coverage of 
alignment in query sequence, coverage of alignment in target sequence and identity percentage 
from the aligning area. Re-scoring was done since values given by the BLAST (E-value, bit 
score) gave too significant scores for cases with little significance for annotation transfer. In 
addition, we included a weight score obtained from the taxonomic distance (see: Non-linear 
scoring for Taxonomic Distance). All these values are weighted by a regression model and then 
summed into a single score.  

The weights for the combination of the scores were obtained with sparse regression. Besides the 
original scores, we also included variables multiplied with each other for the combined effects. 
Furthermore, we included each variable with three different pre-processings: (a) raw variable, (b) 
square root, and (c) log of the variable. These modifications also allow the modelling of the non-
linear behaviour in the regression. Regression was done against the Description Distance 
Measure (DDM) (see: Clustering of results using TF-IDF and Cosine Similarity) using LASSO 
and Leaps packages for R language. Here, Leaps performed better. Leaps searches the optimal 
sparse regression model, where only K variables can obtain non-zero weights. K was allowed to 
vary from 1 to 10 and an optimal K was selected by monitoring the average performance across 
10 replications of seven-fold cross-validation (CV). The quality of the models was assessed with 
the correlation between the predicted and correct DDM distance and by looking the stability of 
the model parameters across CV runs (details omitted).   

 

Non-linear scoring for Taxonomic Distance 

During the development of PANNZER, we observed that sometimes a larger group of sequences 
from evolutionally far-away species was informative, for the purposes of function transfer, than a 
smaller group of sequences from evolutionarily closer species. Therefore, we decided to include 
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inter-species evolutionary distance to our analysis. Unfortunately such measures have weak 
coverage over species and we decided to use the distance in the NCBI taxonomic tree as an 
approximation of evolutionary distance. Distance in the NCBI taxonomy tree was calculated by 
backtracking from query and target species leaf nodes towards the root node until a common 
ancestor found such that each edge adds one to the distance. 

Raw taxonomic distance had very weak correlation with DDM and we speculated that this is 
caused by non-linear correlation between two variables. This was later confirmed by scatter plots 
of two variables (data not shown). Therefore we decided to create a non-linear scoring for 
taxonomic distance. We used the sparse regression (explained below) to learn the weights (a, b, 
c, d) of the equation: 

)1log(32  DistdDistcDistbDistaScore  

where Dist refers to taxonomic distance in NCBI taxonomic tree. 

Learning was done against DDM. As a result, we obtained a profile of weights for every 
taxonomic distance. The obtained profile behaved in the desired fashion by giving a weak weight 
to taxonomic distance 0 (same species, paralogs), then rising up for nearest species and finally 
dropping close to minimum at further distance (around distance 30). Unfortunately the weight 
went up for very large taxonomic distances. This was corrected by fixing the weight to be 
constant minimum for all taxonomic distances larger than 35. Figure S3 shows the final weight 
profile. This weight was used in regression to emphasize the sequence matches at the close 
taxonomic distance. 

 

Figure S3. The truncated weight profile for taxonomic distance. Profile was obtained using 
sparse regression. The only manual correction was fixing of the weight values to minimum for 
large taxonomic distances. 
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Section B: Clustering using descriptions 

Clustering of results using TF-IDF and Cosine Similarity 

Term Frequency – Inverse Document Frequency (TF-IDF) is one of the most widely used 
weighting schemes in information retrieval and text mining. In TF-IDF, the importance of a word 
increases in relation to the number of times a word appears in the document but also inversely to 
the frequency of the word in the corpus, i.e., count of descriptions where word appears in 
database. The rarer the word is in the corpus, the higher is the information value. This weight is a 
statistical measure used to evaluate how important a word is to a document in a database or 
corpus: 

),(),(),,( DtidfdttfDdttfidf   

where  is the frequency of a term t in document d. ),( dttf

Descriptions are turned into TF-IDF vectors where each element in the vector corresponds to a 
TF-IDF score of a term. The similarity of two descriptions is calculated by using cosine 
similarity measure with TF-IDF vectors. Cosine similarity is a dot product of TF-IDF scores of 
common terms between two descriptions. Cosine similarity is calculated with following formula: 
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where A and B are given vectors. Cosine similarity in this article is called Description Distance 
Measure (DDM). 

Sequences with similar descriptions (with empirical DDM threshold 0.8) were clustered together 
with hierarchical clustering using average linkage. 

 

Selection of best cluster with GSZ 

The next task in the PANNZER pipeline is to select one of the created description clusters as a 
best representative for the query sequence. This is the central task in the sequence feature 
annotation that occurs while selecting relevant descriptions, GO classes, cellular localizations 
etc. from sequence search result list (SSRL). We define a relevance score that is used to separate 
good representative clusters from the randomly occurring clusters. Inputs from the earlier steps 
to this analysis step are: Size of the description cluster, size of the SSRL, number of sequences 
that have one of the descriptions that formed a description cluster in the whole database and sum 
of sequence similarity score (SSS) values for sequences that formed the cluster. 

The selection of the best cluster is based on the use of the Gene Set Z-score (GSZ). It was earlier 
used to analyze GO classes in Gene Set Enrichment Analysis, where it outperformed many 
competing methods. GSZ is an equation that calculates the sum of the sequence similarity scores 
for description cluster members and next normalizes the sum score using mean and standard 
deviation (STD) estimates obtained for the sum under assumption that all the descriptions are 
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randomly distributed A) between SSRL and whole database and B) also within the SSRL. This is 
our Null Model that defines the situation where there is no signal (description cluster has no 
connection to the gene in question). Analytically the mean and STD could be obtained with 
following steps: 

1. Repeat the following permutation steps, for example, 1000 times: 
 Distribute all the sequences with the same description as in description cluster 

randomly between the SSRL and the remaining database. This gives us a random 
size (K) for description cluster. 

 Select K cluster members randomly from the SSRL list 
 Calculate the sum of SSS values for the selected cluster members 
 Store the obtained sum into permutation result vector 

2. Calculate the average value and standard deviation from the permutation result vector 

 

Asymptotic equations, used in GSZ, represent a shortcut that removes the need of CPU 
consuming permutation runs. The permutation run was presented here to clarify the null model. 

GSZ has many useful features: It takes into consideration the frequency of the descriptions in the 
database and the size of SSRL similarly to the hypergeometric P-value. However, GSZ differs 
from the hypergeometric P-value by taking the actual SSS values into account. It has also 
performed well in comparisons with other methods in this context (unpublished research).  
PANNZER selects the description cluster with highest GSZ score to further analysis 

 

Section C: GO data analysis 

GO term mapping to cluster members 

GO terms with evidence codes, other than IEA (Inferred from Electronic Annotation), where 
associated with all the proteins in the GOA database. This gives us the information on both the 
frequency of GO class in the selected best description cluster and the frequency of GO class in 
the whole database. Aim is to find GO classes that are detailed enough to show useful biological 
information but not too detailed as that increases the risk of false positive annotations. 
Furthermore, this should depend on the information content of the analyzed data. 

 

Scoring of GO terms with a combination of statistical scores 

Next, we generated a scoring for the GO classes that occur in the best description cluster. Here 
we again aim to separate the randomly occurring and frequent clusters from truly informative 
GO classes. The analysis task was already discussed in chapters Motivation and Selection of best 
cluster with GSZ. Again the analysis challenges are same. 

There is an added complexity level with GO classes, caused by sparseness of curated GO data. 
The sparseness causes varying numbers of genes without any GO annotation. These genes can be 
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considered as unclear cases and they can be omitted from the analysis. Or they can be included to 
the pool of negative cases (GO class non-members) in the result list. The latter option gives 
weaker results as the number of unknown sequences grows in the SSRL, whereas the first option 
gives exactly the same result. 

We decided not to select a single score for GO class scoring, as there are several alternative 
scores, like the hypergeometric P-values and GSZ for the scoring of GO classes, and each of the 
scores can be calculated either by including un-annotated genes to the analysis or not. Instead, 
we used again a sparse regression method to find an optimal weighted combination of different 
statistical scores.  

The following statistical scores were used as an input in this regression: GSZ without prior in the 
variance, GSZ with a prior in the variance (see Toronen et al.77 for details on prior), log10(P-
value) from hypergeometric distribution for over-representation (upper tail P-value), log10(P-
value) from hypergeometric distribution for under-representation (lower tail P-value) and 
asymptotic P-value for GSZ (see: Asymptotic P-value for GSZ score). All these scores were run 
with and without the inclusion of unknown sequences to the analysis.  

The predicted output for regression was the Jaccard coefficient of similarity between the 
predicted GO class and the correct GO class nearest to the predicted GO class. The Jaccard 
coefficient of similarity was calculated by comparing the paths to the go classes via parental 
node paths until root. If the GO classes are identical, then the parental node paths will match 
perfectly, whereas if we compare different GO classes then the Jaccard coefficient of similarity 
depends on the proportion of common parental GO terms. Sparse regression was done using R 
packages Least Angle Regression (LARS) and Leaps as before (see chapter re-scoring sequence 
hits) using BLAST results for randomly selected 2,902 sequences with manually curated MF GO 
annotations. This time LARS provided more useful models. The selected variables were (1) GSZ 
with prior, (2) log of asymptotic GSZ P-value omitting unannotated sequences, and 3) log of 
hypergeometric P-value for under-representation. All were calculated by omitting the 
unannotated sequences from the analysis. The regression score (prediction for Jaccard coefficient 
of similarity) was used as input to the steps described below. 

 

Generation of probability weights from GO class regression scores 

The outcome from the earlier step should order the irrelevant GO classes and relevant GO 
classes. However, it does not provide any information on how reliable the obtained predictions 
are. Probability or reliability weights were a major requirement from the CAFA consortium. We 
solved this by using decision theory. The training set was identical to that used before. The steps 
were: 

1. We define GOpos = positive cases as GO class pairs with Jaccard coefficient of similarity 
> 0.9, and Xpos as corresponding regression scores; 

2. We define GOneg = negative cases as GO class pairs with Jaccard coefficient of similarity 
< 0.1, and Xneg as corresponding regression scores; 

3. For every reported GO term we take its score as threshold, T; 
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4. We define )(}cases positivesmaller { TXPP pos  , the probability that a GO class from 
positive set has a smaller value than T; 

5. We define )(}cases positivelarger { TXPP neg  , the probability that a GO class from 
the negative set has a larger value than T; 

6. We define probability weight ))()(/()( TXPTXPTXPP negposposw  . 

Pw was used to give an estimate on the significance of the observed result. 

 

Asymptotic P-value for GSZ score 

For simplicity, the following text describes the case where the GSZ P-value is used to test the 
signal related to GO classes. It can be used more generally to monitor the signal related to any 
categories. Although GSZ has shown good performance, it has one weakness; it assumes similar 
Gaussian distribution in all cases. However, the sum of score values that GSZ monitors will 
depend on the number of GO class members observed in the SSRL. This number follows the 
hypergeometric distribution and its shape can be more similar to an exponential distribution for 
small GO classes.  

One way to solve this problem is to generate a P-value estimating model that includes the 
hypergeometric probabilities. This model gives the probability for similar or larger sums at 
random. The generated model first uses the hypergeometric distribution to obtain the probability 
for every possible number of GO class members (N) and next it calculates P(Z > Sum), the 
probability that the sum of regression scores X for N class members selected from the Sequence 
Search Result List (SSRL) is larger than the observed sum. 





max

min

),|(),,|(value-P
N

NN
ZZSumZPKLMNP   

where M is the size of the class in the database, L is the size of the whole database, and K is the 
size of the SSRL. These represent the parameters required by the hypergeometric distribution. 
Next, the P-value for the sum is derived using cumulative normal distribution. We used for mean 
and standard deviation estimates represented in the GSZ article: 

)(XENZ   

and 
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1
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XVar

K
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Z 


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where X defines the regression scores collected for the sequences in the  is the expectation 
value (mean) of the regression scores of sequences in the SSRL and Var  defines the variance 
of regression scores. Note that these estimates depend on N (number of GO class members in 
SSRL). Overall, this P-value is a sum of combined weights, where the first weight comes from 
the hypergeometric distribution and the second weight from the cumulative normal distribution. 
A drawback of this method was a significantly larger running time than with GSZ. The 

)(XE
)(X
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asymptotic P-values were used as input variables to the regression model used to select relevant 
GO classes. 
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Tian Lab: A combined framework to annotate human gene functions using diverse 
types of omics data 

 

Method 

Overview of the prediction pipeline 

In general, the data used to predict gene functions can be classified into the following three 
categories: the protein sequence encoded by the gene, the features associated with the gene (such 
as the phenotype of the gene knockout strain, the transcription factors regulating the gene, etc.), 
and the relationships between the gene and other genes in the genome (such as protein-protein 
interaction, gene expression correlation, genetic interaction, etc.). Because of the very different 
nature of these three categories of data, it is difficult to design a single model that uses all the 
data to predict the functions of the gene. In practice, it is often the case that only one type of data 
is used for the prediction. We have developed three independent algorithms in this study in order 
to use as much information as available about the gene, for the three categories of data in 
question: a protein sequence-based algorithm that uses PSI-BLAST output alignment to predict 
gene function (named psi-FSP), a gene feature-based algorithm that implements Random Forest 
to integrate diverse types of gene features to predict gene function (named GFP-RF), and a 
network-based algorithm that predicts gene function based on the topology of protein-protein 
interaction network (GFP-iPPI). These three algorithms are trained and applied independently to 
predict gene functions; a simple probabilistic model is used to combine their prediction results 
into the final prediction. Below we first describe these three algorithms separately. Then, we 
describe how to combine their prediction results. 

 

Sequence-based function prediction algorithm – PSI-BLAST-based functional subtype 
prediction (psi-FSP) 

Method description 

To predict the function of a gene from its protein sequence, we first run a PSI-BLAST search 
with the protein sequence against the UniProtKB database to collect homologous sequences and 
prepare a PSI-BLAST-based multiple sequence alignment (MSA). PSI-BLAST is run with three 
iterations with default parameters. A query sequence-anchored multiple sequence alignment 
(MSA) with a maximal number of 20,000 sequence hits is obtained from the PSI-BLAST output. 
For sequences with more than one hit to the query sequence, only the most significant hit is 
included in the MSA. The pairwise sequence identity between all pairs of sequences in the MSA 
is computed, and the sequence hits with less than 15% sequence identity with the query sequence 
are removed from the MSA. In addition, for redundant sequences with above 90% sequence 
identity, the one with the smaller number or no GO annotations is removed from the MSA. The 
resultant filtered MSA is then used for predicting the functions of the query gene. 

The GO annotations of all hit sequences in the PSI-BLAST-based MSA form a set of candidate 
functions for the query gene. To predict whether a gene is likely to have the function denoted by 
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a given GO term F, we identify all hit sequences annotated with F in the PSI-BLAST-based 
MSA, and define the corresponding alignment as homo-functional MSA. 

The whole PSI-BLAST-based MSA is considered as hetero-functional MSA, as it may include 
diverse types of functions. Then the goal is to compare the similarity of the query gene to the two 
MSAs. Rather than directly measuring the similarity using the whole MSA, we first identity the 
conserved positions in the MSA that can distinguish the homo-functional MSA from the hetero-
functional MSA, and prepare a position-specific scoring matrix (PSSM) for F. Then, we compare 
the query sequence to the PSSM, and assign it a log-odds score, with a higher score indicating a 
higher probability for the query gene to have function F. 

To determine the conserved positions, for every position i in the homo-functional MSA, we 
calculate the Shannon entropy as the follows: 





}Y ..., C, A,{

homo ),(log),()(
AA

AAipAAipiH  

in which AA is one of 20 amino acids, and  is the frequency of the amino acid AA at site 
i among the whole homo-functional group, defined as NAA/N, where NAA is the total number of 
AA at site i, and N is the total number of sequences in the homo-functional MSA. Particularly, 
when a gap (“-”) is encountered when counting NAA, then 1/20 will be added to NAA. The entropy 
score is converted to a conservation score as the follows: 

),( AAip

)(
homo

homo)( iHeiC   

with  indicating complete conservation. For hetero-functional MSA, we calculate two 
types of entropy at each AA site:  and , and convert them into 
conservation scores  and C , respectively.  is calculated using the 
same formula as , while 

 
is calculated in a similar way except that 10 

classes of AAs instead of 20 kinds of AA are used. The classification of AA is based on the amino 
acid’s substitution rate table: Group 1: Ala; Group 2: Cys; Group 3: Asp and Glu; Group 4: Phe, 
Trp and Tyr; Group 5: Gly; Group 6: His and Asn; Group 7: Ile, Leu, Meu, and Val; Group 8: 
Pro; Group 9: Lys, Gln, and Arg; Group 10: Ser and Thr. Then, the conservation score for each 
site i is calculated as the follows: 

1)(homo iC
)(hetero iH
)(rouphetero_AAg i
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)(rouphetero_AAg iH

heteroH)(hetero iC
)(homo i

)(i
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)(5.0)()()( rouphetero_AAgheterohomo iCiCiCiC   

Higher  implies that site i is more conserved at amino acid level in the homo-functional 
MSA, and more conserved at amino acid group level while relatively less conserved at amino 
acid level in the hetero-functional MSA. Thus, it conveys more functional sub-type specificity 
information, and makes it easier to distinguish function F from other functions in the hetero-
functional MSA. 

)(iC

We perform a Z-transformation for the final conservation score and select sites with normalized 
scores greater than 1 to prepare the PSSM for function F. The PSSM consists of log-odds of the 
observed frequency to the background frequency of each amino acid AA at every selected 
conserved site. The log-odds of an amino acid AA at site i is calculated as follows: 
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where  and  are the frequency of AA at site i in the homo-
functional and hetero-functional MSA, respectively,  is the background frequency 
of AA in the whole MSA, and homo  and hetero

 
are the number of sequences in the homo-

functional MSA and hetero-functional MSA, respectively.  is used to avoid an 
infinite log-odds score. Finally, the prediction score of a query gene for GO term F is the sum of 
all log-odds scores over the selected sites: 
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where n is the total number of conserved sites, and AA is the amino acid of query gene at the i-th 
conserved site. The higher the score, the more likely the query gene is to have function F. 

 

Benchmark of psi-FSP 

We download the GO terms and the UniProtKB97 gene annotations on 2012-2-1. GO annotations 
with evidence code “IEA” or “RCA” are excluded from our analysis. Then, we randomly select 
10,000 proteins that have been annotated with at least one GO term in UniRef5098 (released in 
Dec 2010), which have less than 50% sequence identity to each other. We then apply the psi-FSP 
method to predict the functions for each of the selected proteins, and compare the prediction 
results with the original annotations using a Precision-Recall curve. To further evaluate the 
performance of psi-FSP, we use the E-value and the sequence identity of the PSI-Blast output to 
predict the functions of the selected proteins. The E-value-based method is applied as follows: 
the smallest E-value among the sequences in the homo-functional MSA of GO term F is used as 
the prediction score of F for the query protein. The sequence-identity-based method is similar to 
the E-value-based method, except that the maximal sequence identity of the proteins to the query 
protein in the homo-functional MSA is reported as the prediction score. 

 

Application of psi-FSP to predict human gene function 

The gene annotations for 19,937 protein-coding-genes in the human genome are obtained from 
the Ensembl Gene version 59.99 Each gene is searched with PSI-BLAST against the UniProtKB 
database with three iterations and default parameters. After filtering the query-anchored PSI-
BLAST output MSA, the psi-FSP method is applied to predict the functions of human genes. 
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Feature-based function prediction algorithms – Gene Function Prediction using Random 
Forest (GFP-RF) 

Data collection and feature construction 

The gene annotations for 19,937 protein-coding-genes are obtained from the Ensembl Gene 
database, version 59. Protein domain features of the human genes are obtained from the UniProt 
database,100 which includes protein domain information from ten protein domain databases 
(InterPro,101 Pfam,102 TIGRFAMs,103 SUPFAM,104 SMART,105 PROSITE,106 PRINTS,107 
PANTHER,108 HAMAP109 and Gene3D110) and DrugBank.111 As for regulatory related 
information, we download histone modifications, histone variants, chromatin structures, repeat 
elements (aligned from sequence given by RepBase112) and predicted miRNA targets (originally 
from the miRanda database113) from Ensembl, while the transcription factor binding sites (TFBS) 
are acquired from the UCSC genome browser114 with two tracks: experimentally confirmed 
TFBS by ChIP-Seq experiments from track wgEncodeRegTfbsClustered (generate by 
ENCODE115) and the predicted TFBS from track tfbsConsSites (alignment from position 
weighted matrix from TRANSFAC 7.0116). 

From the downloaded data, we construct seven types of gene features: protein domain, drug 
target, experimental TFBS, predicted TFBS, histone modifications, miRNA binding sites and 
repeat elements. The histone modifications feature also combines open chromatin feature DNase 
I hypersensitive sites, (DHS). In the construction of features, protein domain and drug target 
features are treated as binary attributes, where the attribute equals 1 if the protein is annotated 
with the feature and 0 otherwise. For the features that are annotated by chromosome positions, a 
gene is annotated with the feature if it is located within a given region of a gene. Our regions-of-
interests include the promoter region (defined as 1500bp on both sides of the TSS in this paper) 
for experimental TFBS, predicted TFBS and histone modifications features and the 3’ region 
(defined as 1500bp upstream of 3’ end to the 3’ end of the gene) for miRNA binding feature. 
Because the regulatory features may have cell type specificity, for the experimental regulatory 
features, namely the experimental TFBS and histone modification, the feature together with its 
cell line of the experiment is considered as one attribute. 

 

Gene Function Prediction using Random Forest (GFP-RF) 

A slightly modified random forest (RF) algorithm, described by Tian et al.117, is used to annotate 
the GO terms of unknown genes from the constructed gene features. Briefly, for every GO term, 
we construct a RF model that includes an ensemble of decision trees. Each decision tree uses a 
bootstrapped sample set to train the decision tree model and gives a prediction score for genes 
that are not used in training the model. At every branch node of the decision tree, only a small 
subset of attributes (gene features) are randomly selected from the attribute pool, and are 
evaluated to find the best attributes. A probability score is then given at a leaf node by dividing 
the number of true positives (genes annotated with the GO term) to the total number of genes. 
The final prediction score of a given gene is the averaged probability score of the gene across the 
decision trees in which the gene is not used in training the model. Different from the traditional 
RF in which every decision tree is fully grown, in the modified RF, after the bootstrapping step 
we conduct feature selection before constructing the decision trees by evaluating the 
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hypergeometric distribution probability of a feature, and remove features with the probability 
above 0.01. In addition, we implement the early-stopping criteria when constructing the decision 
tree, and similarly use the hypergeometric distribution probability of 0.01 to determine whether 
to stop growing the tree. For each RF model, we generate 200 decision trees. To evaluate the 
performance of the RF in predicting gene functions, a precision/recall curve is plotted using the 
prediction scores of all genes. To compare the prediction power of each of the seven types of 
gene features, we also run the RF model with each type of gene features independently to 1 
predict gene functions. 

 

Network-based function prediction – Gene Function Prediction using an Integrated 
Protein-Protein Interaction Network (GFP-iPPI) 

We construct a human protein-protein interaction (PPI) network from the union of downloaded 
protein-protein interaction data obtained from Biogrid,118 MINT119 and IntAct120 databases. The 
PPI network is used to integrate the gene features for predicting gene functions. Our network-
based algorithm relies on a modified neighborhood counting algorithm, which calculates a 2 
like score following the formula: 
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Here, p stands for a protein, f stands for a function to predict, nf is the summed weighted degree 
of p with proteins in the direct neighbors of p that have the function f and ef is the expected 
weighted degree of proteins with function f in the network. In the calculation of nf, the xi is 1 if 
the neighbor is annotated with the given GO term and otherwise 0; wi is the weight of the link 
between protein p and protein xi. For the raw PPI network, wi is equal to 1. Additionally, we 
apply the information of gene features to assign weights to the edge of PPI network using 
Jaccard Similarity Coefficient (JSC) between the connected two nodes. Here, wi is defined as the 
ratio of the number of common sharing features to the total number of features from the two 
genes, which ranges from 0 to 1. To evaluate the prediction performance, a precision/recall curve 
is plotted using the prediction scores. To compare the usefulness of each type of gene features, 
JSC is calculated based on each type of gene features and apply to the modified neighborhood 
counting algorithm independently. 

 

 

 

 

59 
 

Nature Methods: doi:10.1038/nmeth.2340



Combining the predictions results from psi-FSP, GFP-RF, and GFP-iPPI 

Conversion of prediction scores to precision scores 

Each of the three above-described algorithms gives prediction scores in different ranges and 
different distributions. For example, the prediction scores by psi-FSP are log-odds scores ranging 
from minus to plus large scores; the prediction scores by GFP-RF are probability scores, ranging 
from 0 to 1; the prediction scores by GFP-iPPI are chi-square scores, ranging from 0 to plus 
infinity. Thus, it is difficult to directly combine the prediction scores from the three algorithms 
using a single model. To solve this problem we plot a precision/recall curve for the prediction 
scores given by each algorithm and use the precision/recall curve to convert prediction scores 
into precision scores that range from 0 to 1. As each point of the precision/recall curve 
corresponds to the precision and recall computed from a prediction score cut-off, this prediction 
score cut-off is assigned the corresponding precision as the converted score, termed “precision 
score” here. Because of the lack of enough data points to calculate the precision and recall, 
sometimes the precision score corresponding to a higher prediction score may be smaller than 
that corresponding to a lower prediction score. In that case, we update the precision score 
corresponding to the higher prediction score with the precision score corresponding to the lower 
prediction score. For the prediction scores of psi-FSP, we use all the prediction scores to plot the 
precision/recall curve and transform them into precision scores. Because the 1 prediction scores 
are largely dependent on the number of genes associated with the GO term in the human genome 
for GFP-RF and GFP-iPPI, we divide the GO terms into different categories according to the 
number of associated genes (from 3 to 500 genes), and plot a precision/recall curve for each 
category of GO predictions in order to obtain the precision scores. By converting the prediction 
scores into precision scores, the precision scores given by each algorithm are now comparable 
and can be combined to generate the final prediction scores.  

 

A simple probabilistic model to combine the precision scores made by the three algorithms 

Because different types of gene features are used independently in GFP-RF and GFP-iPPI to 
predict gene functions, we first combine the precision scores generated by different types of gene 
features with these two algorithms separately. To do so, for a given gene-GO pair, we use the 
joint probability to combine the precision scores (a gene-GO pair), given by 

)1(1 



Ci

ipP  

in which i represents the type of data, C represents all types of data that have an precision score 
greater than 0.1, and i  is the precision score obtained from data type i. Thus, we obtain a 
precision score for a given gene-GO pair from each of the three algorithms. Then, in a similar 
way, the three precision scores are combined to generate the final prediction score. 

p
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