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Abstract 

Whole genome sequencing resolves clinical cases where standard diagnostic methods have 

failed. However, preliminary studies show that at least half of these cases still remain 

unresolved, even after whole genome sequencing. Structural variants (genomic variants larger 

than 50 base pairs) of uncertain significance may be the genetic cause of a portion of these 

unresolved cases. Historically, structural variants (SVs) have been difficult to detect with 

confidence from short-read sequencing. As both detection algorithms and long-read/linked-read 

sequencing methods become more accessible, clinical researchers will have access to 

thousands of reliable SVs of unknown disease relevance. Filtering these SVs by overlap with 

cataloged SVs is an imperfect solution. Innovative methods to predict the pathogenicity of these 

SVs will be needed to realize the full diagnostic potential of long-read sequencing. To address 

this emerging need, we developed StrVCTVRE (Structural Variant Classifier Trained on 

Variants Rare and Exonic), a classifier that can be used to distinguish pathogenic SVs from 

benign SVs that overlap exons. We made use of features that capture gene importance, coding 

region, conservation, expression, and exon structure in a random forest classifier. We found that 

some features, such as expression and conservation, are important but are absent from SV 

classification guidelines. Although databases of SVs reflect size biases from sequencing 

techniques, we leveraged multiple databases to construct a size-matched training set of rare, 

putatively benign and pathogenic SVs. In independent test sets, we found our method performs 

accurately across a wide SV size range, which will allow clinical researchers to eliminate nearly 

60% of SVs from consideration at an elevated sensitivity of 90%. However, our method and its 

assessment are still constrained by a small training dataset and acquisition bias in databases of 

pathogenic variants. StrVCTVRE fills an empty niche in the clinical evaluation of SVs of 

unknown significance. We anticipate researchers will use it to prioritize SVs in patients where no 
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variant is immediately compelling, empowering deeper investigation into novel SVs and disease 

genes to resolve cases.  

Introduction 

Whole genome sequencing (WGS) can identify causative variants in clinical cases that elude 

other diagnostic methods1. As the price of WGS falls and it is used more frequently, researchers 

and clinicians will increasingly observe structural variants (SVs) of unknown significance. SVs 

are a heterogeneous class of genomic variants that include copy number variants such as 

duplications and deletions, rearrangements such as inversions, and mobile element insertions. 

While a typical short-read WGS study finds 5,000–10,000 SVs per human genome, long-read 

WGS is able to identify more than 20,0002. This is two orders of magnitude fewer than the 

~3 million single nucleotide variants (SNVs) identified in a typical WGS study. Still, despite their 

relatively small number, SVs play a disproportionately large role in genetic disease and are of 

great interest to clinical geneticists and researchers. 

Clinically, SVs are of interest because they are causal in many rare diseases. Most SVs 

identified by WGS are benign, but on average, a given SV is more damaging than an SNV due 

to its greater size and ability to disrupt multiple exons, create gene fusions, and change gene 

dosage. In a study of 119 probands who received a molecular diagnosis from short-read WGS, 

13% were due to a causal SV3. This is roughly consistent with an earlier study that found 7% of 

congenital scoliosis cases are caused by compound heterozygotes comprised of at least one 

deletion4. This suggests that in many rare disorders, SVs constitute a minor yet appreciable 

fraction of causal variants. Yet, since SVs continue to be challenging to identify, these figures 

may underestimate the true causal role that SVs play in rare disease. Indeed, in some rare 

diseases, the majority of cases are caused by SVs. For example, deletions cause most cases of 

Smith-Magenis syndrome, and duplications cause most cases of Charcot-Marie-Tooth disease 

type 1A5. 

To continue discovering disease genes in which SVs are causal, researchers face a daunting 

challenge: prioritizing the thousands of SVs found in WGS. Best practices for SV prioritization 

are evolving, and generally mirror steps used to prioritize SNVs, because very few SV-tailored 

impact predictors have been developed. A small number of published studies have focused on 

identifying pathogenic SVs from WGS3, 6, 7 and have identified a handful of important steps. 

Removing low-quality SV calls is essential, as short-read SV callers rarely achieve precision 

above 80% for deletions and 50% for duplications, even at low recall8. Most studies remove SVs 
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seen at high frequency in population databases or internal controls9, 10. Moreover, many studies 

only investigate variants that overlap an exonic region, as non-coding SVs remain difficult to 

interpret. Depending on its sensitivity, a pathogenic SV discovery pipeline may produce tens to 

hundreds of rare exonic variants per proband to be investigated. These values are consistent 

with a recent population-level study that estimates SVs comprise at least 25% of all rare 

predicted Loss of Function (pLoF) events per genome11. Prioritizing SVs will be necessary for 

the majority of probands, as shown by a study of nearly 500 unresolved cases that found one or 

more SVs that warranted further investigation in 60% of cases3. Clinically validating all SVs of 

uncertain significance is currently infeasible, and cohort size for rare diseases will likely never 

reach a scale sufficient to statistically associate these variants with disease. Therefore, 

computational tools are needed to prioritize and predict the pathogenicity of rare SVs. 

Methods are needed to prioritize SVs for manual investigation, but most tools instead annotate 

SVs with customized features. General-purpose annotation frameworks such as Ensembl’s 

Variant Effect Predictor (VEP)12 and SnpEff13 both annotate SVs with broad consequences 

based on sequence ontology terms (e.g., transcript_ablation), which we show are not sufficient 

for prioritization. One standalone annotator, SURVIVOR_ant, annotates SVs with genes, 

repetitive regions, SVs from population databases, and user defined features. This and similar 

tools put the onus on researchers to provide informative features and determine how to consider 

these features in combination, a difficult challenge. A complementary approach is to annotate 

SVs using cataloged SVs known to be pathogenic or benign. One such SV annotator, AnnotSV, 

ranks SVs into five classes based on their overlap with known pathogenic or benign SVs and 

genes known to be associated with disease or predicted to be intolerant to variation. This 

approach can be successful when the causal SV has previously been seen in another proband 

and was cataloged as pathogenic, but we show it has significant limitations when the causal SV 

is novel. To effectively prioritize every SV, a method must summarize diverse annotations to 

provide a quantitative score of SV deleteriousness.  

Few methods score SVs by deleteriousness. One standalone impact predictor, SVScore, 

calculates a pathogenicity score for all possible SNVs within each SV (using CADD scores by 

default), while considering variant type and gene truncation. SVScore then applies an 

aggregating operation across the CADD scores (the default is the mean of the top 10%), and 

this approach has shown promise in identifying SVs under purifying selection14. Another stand-

alone predictor, SVFX, integrates multiple features, but focuses on somatic SVs in cancer and 

germline SVs in common diseases15. The majority of SVs identified by sequencing are rare (AF 
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< 1%), so the salient challenge in resolving undiagnosed cases is to distinguish rare pathogenic 

variants from rare benign variants11. Since these existing SV predictors have been trained and 

assessed on common benign variants14, 15, they may rely on features that separate common 

from rare SVs and be less clinically useful16. In this manuscript, we introduce StrVCTVRE, the 

first method to provide a score based on a machine learning approach trained on sets of rare 

germline SVs from disease cases. 

Results 

StrVCTVRE implementation 

StrVCTVRE is implemented as a random forest, in which many decision trees ‘vote’ for whether 

a given SV is pathogenic. The score reflects the fraction of decision trees that ‘voted’ that the 

SV is pathogenic. The decision trees are shaped by a learning algorithm, in which each tree 

sees thousands of examples of pathogenic and benign SVs, and the decision nodes are 

optimized for accuracy. To promote diverse trees, each node of the decision tree uses only a 

random subset of the features. Finally, the algorithm is assessed on a held-out test dataset and 

independent test datasets.  

Characterization of StrVCTVRE features 

To accurately classify SVs, StrVCTVRE has 17 features that capture gene importance, 

conservation, coding sequence, expression, and exon structure of the disrupted region (see 

Methods for detailed descriptions of the features). We assessed gene importance using two 

features that summarize the depletion of predicted loss-of-function (pLoF) variants in healthy 

individuals: pLI17 and LOEUF9. To specifically model coding sequence disruptions, we used 

three coding features: percentage of the coding sequence (CDS) affected by the SV, distance 

from the CDS start to the nearest position in the SV, and distance from the CDS end to the 

nearest position in the SV. To explicitly capture when an important gene is predicted loss-of-

function (pLoF) due to an SV, we included two predicted loss of important gene features: pLI of 

a pLoF gene and LOEUF of a pLoF gene. We included a single conservation feature, phyloP of 

100 vertebrates18, which produced the best classification among the conservation features we 

investigated (see Methods) and was the most informative conservation feature in a rare 

missense variant classifier.19 To capture expression features, we included the average 

expression across all tissues for each exon, exon inclusion across gene isoforms, and overlap 

with known topologically associating domain (TAD) boundaries. To be able to model potential 

differences that drive the pathogenicity of deletions and duplications, we included as a feature 
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whether an SV is a deletion or duplication. The remaining features were exon structure features 

including the number of exons in a disrupted gene, the number of exons disrupted, whether any 

exons were constitutive, whether all exons could be skipped in frame, and the rank of the exon 

in the transcript. When multiple exons or genes were disrupted, we typically took the maximum 

or minimum of features, as appropriate (see Methods).  

Correlation and importance of StrVCTVRE features 

Clusters emerged when we calculated these features for a set of SVs, computed the correlation 

between each feature, and clustered by correlation (Fig. 1a). The most prominent cluster 

contains gene importance, conservation, coding features, and one exonic feature, with most 

correlations above Spearman’s ρ = 0.6. Since both predicted loss of important gene features 

are present in this cluster, the other features in this cluster may also capture when an important 

gene is highly disrupted. Smaller clusters included the gene-importance features and exonic 

features. Expression and deletion/duplication status were the features least correlated with all 

other features (all ρ < 0.27). This low correlation suggests that these features capture unique 

information, which is unsurprising for deletion/duplication status, but given the feature 

importance of expression data (Fig. 1b), suggests expression data contains both orthogonal and 

valuable information in determining SV pathogenicity. The two predicted loss of important gene 

features were the features most correlated with each other (ρ = 0.97), indicating that pLI and 

LOEUF are generally interchangeable for assessing the importance of highly disrupted genes. 

By training on thousands of example SVs, StrVCTVRE discovers which features are useful for 

discriminating between pathogenic and benign SVs (Fig. 1b). Using Gini importance (see 

Methods), we found gene importance to be the most important feature. This was followed by a 

group of features with similar importance that include the conservation, number of exons in a 

gene, coding sequence, predicted loss of important gene, and expression. The importance of 

these features is largely intuitive; gene importance, coding sequence, and conservation are 

expected to be helpful to assess pathogenicity. In contrast, number of exons in gene is likely 

important because several pathogenic genes have numerous exons (DMD, NF1, BRCA2) and 

have many representative SVs in our dataset (Fig. S8). Surprisingly, several exonic features 

had relatively low importance, which may have been caused by the sparsity of SVs in our 

dataset that affect just a single exon. The low importance of TAD boundaries is counter to 

findings from a recent cancer SV impact predictor15 and may reflect StrVCTVRE’s focus on 

exonic SVs. Additionally, the low importance of deletion/duplication status suggests that on 
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average, for exonic deletions and duplications, the region affected by an SV is more important 

than whether there was a gain or loss of genome content.  

Characterization of StrVCTVRE training and held-out test sets 

A total of 7,263 pathogenic deletions and 4,551 pathogenic duplications were collected from 

ClinVar,20 a public database of variants cataloged by academic institutions, clinical laboratories, 

and genetic testing companies. We restricted our data to deletions and duplications, as they are 

the only SV types with more than 500 pathogenic examples in ClinVar. Additionally, deletions 

and duplications constitute the vast majority (> 95%) of rare gene-altering SVs10. Putatively 

benign variants were collected from ClinVar, gnomAD-SVs11, and a recent great ape 

sequencing study21. We retained only rare (allele frequency (AF) < 1% in general population) 

variants in order to match the challenge faced by SV discovery pipelines. Indeed, 92% of SVs 

identified by sequencing are rare (AF < 1%), so the salient challenge is to distinguish rare 

pathogenic variants from rare benign variants11. Existing SV predictors have been trained and 

assessed on common benign variants14, 15, which may cause them to instead rely on features 

that separate common from rare SVs and result in lower accuracy in clinical use16.  

By training on rare variants, we intend to achieve better accuracy in the challenge faced in SV 

discovery. To create a rare benign dataset that matches the size range of our pathogenic 

dataset, we included SVs common in great apes but not humans, which we assume should be 

benign in humans due to our recent shared ancestry with great apes. Our benign dataset also 

included unlabeled rare SVs from gnomAD-SVs. Although a small fraction of these unlabeled 

SVs may be pathogenic, we made two assumptions that mitigated this issue: (1) pathogenic 

SVs have been depleted by selection so the large majority of unlabeled SVs are benign, and (2) 

the fraction of truly pathogenic SVs in the pathogenic and benign training sets is sufficiently 

different for StrVCTVRE to learn important distinguishing features. By including these additional 

data sources, we brought the ratio of pathogenic to benign closer to 1:1 in our training set, even 

at small sizes. This would have been impossible with ClinVar data alone due to the dearth of 

small benign SVs in ClinVar. 

To assess the appropriateness of including SVs from apes and gnomAD in our benign dataset, 

we explored how performance and feature importance changes with these data included. One 

predictor was trained only on ClinVar SVs, and another predictor was trained on ClinVar SVs, 

ape SVs, and gnomAD SVs (Fig. 2a Methods). Using leave-one-chromosome-out cross 

validation, we found both training sets performed similarly, supporting our theory that rare 
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unlabeled gnomAD SVs and great ape SVs are sufficiently depleted in pathogenic variants to be 

used as a training set of rare, benign variants. Additionally, the predictor trained on all data 

showed a distribution of feature importance that is more robust and more evenly distributed 

among feature categories. This includes a decrease in importance of gene-importance features, 

which are likely to be overrepresented in ClinVar data, and an increase in importance in coding 

sequence features, which are an important line of evidence for assessing SV pathogencity22.  

Before training, all SVs were extensively cleansed to remove duplicate records within and 

between datasets, remove common variants, and remove variants larger than 3 Mb (see 

Methods). Pathogenic deletions and duplications were found to have a large size bias, likely due 

to the sensitivity of detection methods to specific size ranges (Fig. S1). To avoid training on this 

acquisition bias, putatively benign variants were sampled to match the pathogenic size 

distribution (Fig. 3). In our training data, we included only those pathogenic SVs that could be 

matched to a benign SV of similar size and same type (deletion or duplication). Using this 

matching strategy, we were able to include nearly all pathogenic deletions and duplications 

below 1 Mb. By including ape and gnomAD SVs, we were able to utilize pathogenic SVs below 

10 kilobases (kb), a range nearly absent in ClinVar benign SVs. In the benign training set, 26% 

of deletions and 75% of duplications came from ClinVar benign or likely benign variants.  

To accurately assess StrVCTVRE’s performance, we used a held-out test set of ClinVar SVs on 

chromosomes 1, 3, 5, and 7 (~20% of the total ClinVar dataset). Only ClinVar SVs were used 

for testing, given it is the highest confidence dataset. The training set consisted of SVs from all 

three data sources on all remaining chromosomes. The training set consisted of 2,463 

pathogenic SVs and 2,372 benign SVs, and the test set consisted of 244 pathogenic SVs and 

334 benign SVs. The test set is of reduced size because pathogenic and benign SVs in the test 

set were matched on length. None of the SVs in the test set were used to develop the trained 

algorithm. At a sensitivity of 0.90, StrVCTVRE achieved a specificity of 0.54 (Fig. 2b) on the test 

set. StrVCTVRE performed equally well or better on test sets in which duplicates and common 

variants were not removed (Fig. S7).  

StrVCTVRE eliminates more than half of candidate SVs at 90% sensitivity 

In discriminating between pathogenic and putatively benign ClinVar SVs in the test dataset, 

StrVCTVRE performed substantially better than existing methods. Performance was measured 

using the area under the receiver operating characteristic curve (AUC). The AUC for 

StrVCTVRE was 0.823. The next best-performing method was SVScore (AUC = 0.710). 
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StrVCTVRE improved notably in the classification of large duplications and deletions (> 1 MB), 

a regime in which SVScore by default classifies all SVs as pathogenic (lower left corner of 

Fig. 2b). Transcript consequence predicted by VEP (AUC = 0.431) performed worse than 

random. This poor performance was largely due to VEP annotating more benign SVs than 

pathogenic SVs with its most deleterious sequence ontology term, transcript ablation (Fig. S3). 

The poor performance of transcript consequence from VEP reinforces the known limitations of 

prioritizing variants using sequence ontology terms in isolation. As we intend StrVCTVRE to be 

used to prioritize SVs seen in clinical cases, it needs to perform well in clinically relevant 

regimes. To avoid overlooking causal variants, clinical researchers must minimize false 

negatives, which requires high sensitivity. When compared to existing methods, StrVCTVRE 

makes substantial improvements in the high-sensitivity regime, as it is able to capture 90% of 

causal variants at a 46% false positive rate. This suggests that when used clinically, 

StrVCTVRE may identify 90% of causal SVs while reducing the candidate SV list by 54%. 

Performance of StrVCTVRE on an independent test set 

All held-out test SVs, and a large fraction of training SVs, come from a single database: ClinVar. 

To independently test StrVCTVRE, we collected pathogenic and benign SVs from DECIPHER, 

a public database to which clinical scientists submit SVs seen in patients with developmental 

disorders23. Because there is some overlap between training ClinVar SVs and DECIPHER SVs, 

we tested on DECIPHER using a leave-one-chromosome-out approach, in which 24 separate 

StrVCTVRE classifiers were developed, one for each chromosome. Specifically, DECIPHER 

variants on chromosome 1 were predicted by a StrVCTVRE classifier trained on chromosomes 

2, 3, 4, etc. Additionally, we considered only DECIPHER SVs with a reciprocal overlap of less 

than 10% with any SV used in training StrVCTVRE. This strategy effectively removes concerns 

regarding training and testing on the same or similar variants. Because StrVCTVRE was trained 

on variants less than 3 Mb, and few benign variants larger than 3 Mb have been observed24, all 

SVs larger than 3 Mb were scored as pathogenic (given a score of 1). Compared to its 

performance on the held-out test set, StrVCTVRE performed similarly well on the DECIPHER 

test set, although performance varied across SV size (Fig. 4a). On large SVs (> 500 kb), 

StrVCTVRE performed very well, partially because most of the SVs larger than 3 Mb are 

pathogenic. StrVCTVRE performed similarly well on small SVs (< 10 kb), likely due to the large 

amount of small SVs present in the training data. StrVCTVRE performed modestly on mid-

length SVs, and is only slightly more accurate than SVScore.  

StrVCTVRE eliminates the most benign variants seen in 221 individuals 
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Typically, patients with a rare disorder caused by SVs have one or two pathogenic SVs in their 

genome, and the remainder can be classified as benign. An ideal impact predictor would 

prioritize the causal variants and eliminate from consideration as many of the benign variants as 

possible. To evaluate StrVCTVRE’s performance in this scenario, we applied it to SVs called in 

2,504 genomes identified by the 1000 Genomes Project phase 325 (Fig. 4b). Each genome can 

be treated as if it came from a proband with a rare disorder whose causal variants have been 

removed. 221 of these genomes had 1 or more homozygous rare exonic SVs, almost all of 

which should be benign. Using our leave-one-chromosome-out predictor at a 90% sensitivity 

threshold, StrVCTVRE identified an average of 59% of these putatively benign variants as 

benign, compared to 43% when SVScore was used at the same sensitivity (Wilcoxon paired-

rank p = 8.06e-06). In a clinical setting, StrVCTVRE classifies more benign variants as benign, 

allowing clinicians and researchers to eliminate the most benign homozygous variants from 

consideration at 90% sensitivity.  

StrVCTVRE performance improves when data are more reliable 

There were undoubtably some mislabeled SVs in the ClinVar dataset used for training and 

testing. We expect that certain subsets of the data are more reliably labeled, and identified two 

subsetting methods: classification and supporting evidence. Consider, SVs classified as 

‘pathogenic’ or ‘benign’ must meet stricter standards, and nominally indicate 99% confidence, 

compared with ‘likely pathogenic’ or ‘likely benign’ SVs, which indicate just 90% confidence. We 

therefore expected a subset containing only ‘pathogenic’ and ‘benign’ SVs would be more 

reliably labeled than the full dataset. Additionally, we expected that SVs that were submitted 

with a minimum level of supporting evidence would be more reliably labeled than those 

submitted with none. As shown in Fig. 5a, we found a consistent shift towards more accurate 

StrVCTVRE classification in subsets that are more reliably classified. Since StrVCTVRE’s 

performance improves on presumably more reliable data, we have reason to believe it is an 

accurate method. 

Predictors are more accurate when they draw on diverse features and their decision boundaries 

are learned rather than manually determined 

Since probands with the same disorder often have SVs affecting the same genome element, 

and even recurrent pathogenic de novo SVs are known to occur26, one strategy used to 

prioritize SVs is to annotate them with SVs of known pathogenicity. AnnotSV is a popular 

method to identify pathogenic SVs based on their overlap with both known pathogenic SVs in 
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the National Center for Biotechnology Information’s dbVar. Because it considers catalogued 

variants, AnnotSV is more accurate than other predictors for a proband whose causal SV 

overlaps a cataloged pathogenic dbVar SV (Fig. S6). Yet, many probands have novel causal 

SVs that are not cataloged. To address these novel SVs, AnnotSV also considers SV overlap 

with genes associated with disease or predicted to be intolerant to variation, and it uses 

manually-determined decision boundaries to score SVs (e.g. an SV overlapping a gene with pLI 

> 0.9 is scored as likely pathogenic). To compare the performance of AnnotSV to machine 

learning SV impact predictors on novel variants, we created a dataset of DECIPHER SVs that 

do not overlap dbVar SVs used by AnnotSV, and we recorded the prediction accuracy of each 

method (Fig. 5b). AnnotSV performed notably worse on these uncatalogued variants. Both 

StrVCTVRE and SVScore showed significant predictive power, which we attribute to their 

consideration of features beyond gene intolerance (such as conservation and expression 

features) and their use of methods that learn decision boundaries based on training data, rather 

than manually determined boundaries. Researchers searching for SVs in novel disease genes 

will improve their predictive power by using an SV predictor such as StrVCTVRE because it 

considers diverse features and learns decision boundaries based on training data.  

Interpreting StrVCTVRE scores 

The StrVCTVRE score ranges from 0 to 1, reflecting the proportion of decision trees in the 

random forest that classify an SV as pathogenic. Note that StrVCTVRE scores are not 

probabilities. We recommend against using StrVCTVRE scores as a threshold, and instead 

recommend that greater consideration be given to SVs with greater StrVCTVRE scores. Yet, 

many variants are classified using the guidelines for sequence variant interpretation 

recommended by the American College of Medical Genetics and Genomics (ACMG)27, in which 

thresholds are currently required for computational tools. Following work done by Tavtigian et 

al.28 to model the ACMG guidelines in a Bayesian framework, we provide a table of StrVCTVRE 

scores corresponding to different strengths of evidence (Table 1).  

 Benign Pathogenic 

ACMG 

Evidence 

Stand-

alone 

Strong Supporting Supporting Moderate Strong Very 

Strong 

Odds 

Pathogenic 

0 0.053 0.48 2.1 4.3 19 350 
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StrVCTVRE 

Score 

NR NR ≤0.322 ≥0.642 ≥0.852 NR NR 

Table 1. StrVCTVRE scores corresponding to ACMG evidence strength.                                       

*NR = Not recommended 

Discussion 

As exome sequencing continues to expand, clinical researchers face a challenge in identifying 

one or two causal SVs in the dozens identified by sequencing. The ACMG recently offered 

guidelines for classifying SVs, acknowledging that classification is complex and many 

pathogenic SVs will be classified as variants of uncertain significance due to incomplete 

knowledge22. SV impact predictors can address this challenge, but few SV impact predictors 

exist. Although SVs comprise a significant fraction of the loss-of-function mutations that cause 

rare disease, fewer than 10,000 have been cataloged in ClinVar, which leads to acquisition bias 

that hinders predictor development. Additionally, it’s not clear which features are most useful 

when classifying SVs and how to address the large size range of SVs. StrVCTVRE is the first 

method to address these problems by predicting the impact of exonic deletions and duplications 

in rare genetic disorders. We overcame data limitation and bias by both combining SVs across 

multiple data sources as well as matching pathogenic and benign variants by size. Since clinical 

researchers must recognize causal SVs among dozens of rare SVs detected in a proband, we 

trained only on rare SVs and showed that StrVCTVRE outperforms other methods in this 

regime.  

Determining whether a single SV is pathogenic requires consideration of numerous features in 

combination, as demonstrated by the recent ACMG SV guidelines. Independent of these 

guidelines, our method identified important features in cataloged SVs. Our findings reinforce the 

clinical intuition that researchers bring, while also highlighting new areas to explore. Both 

StrVCTVRE and the ACMG guidelines found gene importance and coding-region disruptions to 

be critical for SV interpretation. Additionally, StrVCTVRE highlighted two features not discussed 

in the guidelines: conservation and expression. We found expression in particular is both 

algorithmically important and uncorrelated with all other features, suggesting it captures unique 

information for determining pathogenicity. More widespread consideration of expression 

features could be beneficial for SV classification.  

StrVCTVRE additionally identified features that are not useful, such as TAD boundary strength 

and whether there is a gain or loss of DNA. This is consistent with the ACMG guidelines, which 
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do not consider TAD boundaries and give very similar scoring metrics for both copy gain and 

copy loss. Since SVs range from 50 bp to > 100 Mb, it is challenging to accurately classify SVs 

across this range. Benign SVs in ClinVar are mainly > 10 kb, but accurate prediction requires 

training on benign variants from a wide range of sizes. We accomplished this by training on 

small benign SVs from great apes and gnomAD. When tested on an independent test set, 

StrVCTVRE made significant improvements over current methods in both small and large SVs. 

To be helpful in a clinical setting, a method must perform well at moderately high sensitivity. 

StrVCTVRE satisfies this requirement, and is able to remove 57% of homozygous variants from 

consideration at a sensitivity of 90% in the 1000 Genomes Project dataset. Overall, we found 

StrVCTVRE is the best-performing SV impact predictor, outperforming SVScore in most tasks. 

This is unexpected given that SVScore derives its scores from CADD, a method trained on > 

1,000-fold more variants. 

StrVCTVRE is accessible to the widest possible audience. There is both a web-based version 

(forthcoming) and downloadable command line version (see Data Availability). Whereas 

SVScore requires users to download an 80 gigabyte (Gb) CADD file, StrVCTVRE only requires 

a 9 Gb phyloP file. While SNV scores can be pre-computed, SVs must be scored anew, and 

thus require efficient scoring methods. StrVCTVRE runs rapidly and annotates 10,000 SVs in 

two minutes, while SVScore annotates the same SVs in three hours.  

Following existing predictors, StrVCTVRE predicts the pathogenicity of a variant in isolation. Yet 

human biology complicates this picture through zygosity and dominance. Since zygosity is not 

reported for most variants in ClinVar, StrVCTVRE is zygosity-naïve. Additionally, StrVCTVRE’s 

pathogenic training dataset consists largely of variants in genes predicted to lead to dominant 

disorders (Fig. S4). For these reasons, StrVCTVRE may give lower scores to recessive 

mutations. Researchers who suspect a recessive mode of inheritance may need to consider 

lower thresholds for SVs scored by StrVCTVRE and consider these scores in tandem with 

impact scores from SNVs in trans in the same gene. Since StrVCTVRE considers only the 

genomic context, it may be helpful to consider StrVCTVRE scores in tandem with one of the 

many methods that assess the match between patient phenotype and known phenotypes for an 

affected gene29-31.  

A method is only as good as the data it trains on. StrVCTVRE is limited by the relatively small 

number of identified pathogenic and putatively benign SVs, as well as the over-representation of 

certain genes in the dataset (Fig. S8). These data limitations almost certainly curtail the ultimate 

performance of our approach. We concede that our method is unable to classify inversions and 
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insertions due to limited data; however, these have been shown to contribute to a minority of the 

pLoF events caused by SVs11. We are hopeful that additional clinical sequencing studies will 

identify a more diverse range of SVs, which will be cataloged in open resources such as ClinVar 

and leveraged to make more accurate models. We look forward to greater non-coding genome 

annotations, which will expand our understanding and cataloging of pathogenic noncoding SVs, 

which remain vexing to classify.  

Much of the focus in SV algorithms has been on methods to accurately detect SVs. These 

methods have left clinical researchers awash with new SVs not previously known. As 

experimental methods and algorithms advance, SV detection will improve, but SV interpretation 

will increase in difficulty. StrVCTVRE fills this empty niche in the clinical evaluation of SVs. 

During genome sequencing analysis, some cases contain an SV that matches a cataloged 

pathogenic SV or clearly satisfies the conditions for pathogenicity set forth in the ACMG SV 

guidelines. However, in the many cases in which no SV is immediately promising, StrVCTVRE’s 

niche is to aid clinical researchers in rapidly identifying compelling SVs. In these cases, we 

anticipate StrVCTVRE will first be used to prioritize SVs for manual investigation, saving 

researchers valuable time. Then, if a case remains unresolved by manual investigation, 

StrVCTVRE’s predictive capacity can be used to prioritize SVs in novel disease genes for 

experimental validation. This will empower researchers to identify novel disease genes where 

haploinsufficiency and triplosensitivity were not previously known causes of disease. Rapid 

adoption of variant impact predictors will enable researchers to make the most of these new 

data to improve both patient care and our understanding of basic biology. 

 

Methods 

Training, validation, and test datasets 

All variants were retrieved in GRCh38 or converted using the University of California, Santa 

Cruz (UCSC) liftover tool.  

All ClinVar SVs were downloaded from  

ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/tab_delimited/variant_summary.txt.gz on January 21, 2020. 

Variants were retained if they fulfilled all the following requirements: clinical significance of 

pathogenic, likely pathogenic, pathogenic/likely pathogenic, benign, likely benign, or 
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benign/likely benign; not somatic in origin; type of copy number loss, copy number gain, 

deletion, or duplication; > 49 bp in size; at least 1 bp overlap with exon.  

Great ape SVs were downloaded from 

ftp://ftp.ebi.ac.uk/pub/databases/dgva/estd235_Kronenberg_et_al_2017/vcf/ on April 8, 2019. 

Deletions were retained if they were absent in humans and homozygous in exactly two of the 

following species: chimpanzee, gorilla, or orangutan. Only exonic deletions > 49 bp were 

retained. These deletions are subsequently referred to as apes. 

gnomAD 2.1.1 SVs (build GRCh37) were downloaded from 

https://storage.googleapis.com/gnomad-public/papers/2019-sv/gnomad_v2.1_sv.sites.vcf.gz on 

June 28, 2019. Only duplications and deletions with PASS Filter were retained. Only exonic SVs 

> 49 bp were retained. gnomAD variants were broken into three categories: SVs with a global 

minor allele frequency (MAF) > 1% (gnomAD common), SVs with a global MAF < 1% with at 

least one individual homozygous for the minor allele (gnomAD rare benign), and SVs with a 

global MAF < 1% with no individuals homozygous for the minor allele (gnomAD rare unlabeled).  

Release 2016-05-15 of GRCh38 “DGV Variants” from Database of Genomic Variants 

(http://dgv.tcag.ca/dgv/app/downloads) was downloaded on April 08, 2019. Allele frequency of 

each deletion was calculated as ‘observedlosses’ / (2 * ’samplesize’). Allele frequency of each 

duplication was calculated as ‘observedgains’ / (2 * ’samplesize’). Only exonic SVs > 49 bp 

were retained. Those SVs with an allele frequency greater than 1% are subsequently referred to 

as DGV common.  

DECIPHER CNVs (build GRCh37) were downloaded on Jan 27, 2020 from 

http://sftpsrv.sanger.ac.uk/. Only exonic variants 50 bp or larger with pathogenicity of 

“pathogenic”, “likely pathogenic”, “benign”, or “likely benign” were retained. Identical variants 

with conflicting pathogenicity were removed.  

1000 Genomes Project merged SVs were downloaded from 

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/supporting/GRCh38_positio

ns/ on Oct 22, 2019. Only exonic deletions and duplications with a global allele frequency less 

than 1% were used for testing.  

We used exon boundaries from Ensembl biomart, genes v96, Human genes GRCh38.p12, 

limited only to genes with HGNC Symbol ID(s) and APPRIS annotation. For each gene, a single 

principal transcript was used, based on the highest APPRIS annotation. For transcripts that tied 
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for highest APPRIS annotation, the longest transcript was used. Exon overlap was determined 

using bedtools intersect.  

Extensive deduplication of data was performed as follows. Benign SVs were ordered (ClinVar 

benign, ClinVar likely benign, apes, gnomAD rare benign, gnomAD rare unlabeled) and 

duplicates (reciprocal overlap of 90% or greater) were removed, keeping the first appearance of 

an SV. Deletions and duplications were considered separately. This removed 577 SVs from 

ClinVar benign/likely benign, 5 SVs from apes, and 408 SVs from gnomAD. The retained data 

are subsequently referred to as benign. To deduplicate pathogenic SVs, exact matches 

between ClinVar pathogenic and ClinVar likely pathogenic were removed from likely pathogenic. 

SVs were then sorted by size, ascending. SVs with > 90% reciprocal overlap were removed, 

keeping the smallest variant. Deletions and duplications were considered separately. This 

removed 2,421 pathogenic SVs. The retained data are subsequently referred to as pathogenic. 

Next, exact matches between benign and pathogenic datasets were removed from both 

datasets. Finally, duplicates between pathogenic and benign (reciprocal overlap of 90% or 

greater) were removed from the pathogenic dataset. This removed 3 benign SVs and 82 

pathogenic SVs.  

Data were processed as follows to assure we trained only on rare SVs. Pathogenic and benign 

SVs that exactly matched a DGV common SV were removed. Pathogenic and benign SVs that 

were very similar (reciprocal overlap > 90%) to an SV in gnomAD common were removed. This 

removed 30 benign SVs and 1 pathogenic SV. SVs between 50 bp and 3 Mb were retained, all 

others were removed. 

To assure StrVCTVRE was not learning acquisition bias caused by the sensitivity of different 

sequencing methods (Fig. S1), the size distribution of benign and pathogenic variants were 

matched with the following procedure. Benign variants were organized into five tiers: ClinVar 

likely benign; ClinVar benign; apes; gnomAD rare benign; and gnomAD rare unlabeled. Each 

pathogenic variant was then matched by size and type (DEL or DUP) to a benign variant, 

iterating through each tier. Specifically, each pathogenic variant of size N seeks a benign variant 

of the same type in the bin [N - (N / α + 20), N + (N * α + 20)] where α = √106101  (this bin size 

derived from Ganel et al.14). A pathogenic SV first seeks a benign variant in the first tier. If 

matched, the pathogenic and benign SVs are included in the training set, and the benign variant 

cannot match any further pathogenic SVs. If no match is found in the first tier, the same process 

is repeated while progressing through further tiers. Pathogenic variants that do not find a match 

.CC-BY 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 13, 2020. . https://doi.org/10.1101/2020.05.15.097048doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.15.097048
http://creativecommons.org/licenses/by/4.0/


16 
 

in any tier are not included in the final training set. This process was continued for all pathogenic 

SVs and the resulting data are shown in Fig. 3. 

After SVs were annotated with features (see below), SVs with identical features were removed 

from the training set. For feature-identical SVs that were present in both the pathogenic and the 

benign datasets, all feature-identical SVs were removed. For feature-identical SVs that were 

present in only the benign dataset or only the pathogenic dataset, a single SV was retained, and 

duplicates were removed. 

Structural variant impact predictors 

VEP v96 was downloaded on April 16, 2019, and used to annotate SVs with transcript 

consequence sequence ontology terms. SVScore v0.6 was downloaded on June 16, 2019. It 

was run using CADD v1.3, downloaded on June 16, 2019, using all default settings. AnnotSV 

v2.3.2 was downloaded on Feb 27, 2020. AnnotSV was run using human annotation and default 

settings.  

Structural variant features 

All gene and exon boundaries used to determine features came from Ensembl Genes v96 as 

described above. Each SV was annotated with the following 17 features:  

Feature description 
Data 
type 

Aggregation 
method for 

multiple 
genes 

SV is deletion or duplication boolean NA 
Average phyloP score of the 400 most conserved overlapping 
nucleotides float NA 
Number of exons SV overlaps by 1 or more bp integer max 
Minimum exon transcript rank* integer min 
Number of exons in canonical transcript of gene integer min 
All overlapped exons can be skipped in frame boolean NA 
Any overlapped exon is constitutive  boolean NA 
pLI of gene float max 
LOEUF of gene float min 
Exon expression (see below) float NA 
Exon inclusion (see below) float NA 
TAD boundary strength (according to Gong et al32) float max 
Fraction of CDS adjacent to start codon that is not disrupted by SV float min 
Fraction of CDS adjacent to stop codon that is not disrupted by SV float min 
Fraction of CDS overlapping SV float max 
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pLI of gene where start codon overlaps SV or >50% of CDS 
overlaps SV float max 
LOEUF of gene where stop codon overlaps SV or >50% of CDS 
overlaps SV float min 

*The exon transcript rank was defined as the number of exons preceding a given exon in a 

gene. 

Expression features were derived from transcript data downloaded from the GTEx Portal v733. 

Exon expression was calculated for each nucleotide as the sum of the transcripts per million 

(TPM) of fragments that map to that nucleotide. Exon inclusion estimated the proportion of 

transcripts generated by a gene that include a given nucleotide and was calculated for each 

nucleotide as the TPM of fragments that map to that nucleotide, divided by the sum of TPM that 

map to the gene containing that nucleotide. For both features, adjacent base pairs with the 

same value were merged together into genomic intervals. For SVs that overlapped more than 

one of these genomic intervals, exon expression was calculated by averaging the 400 highest 

exon expression genomic intervals contained in that SV. The same was done for exon inclusion. 

All GTEx tissues were used in this analysis. 

To determine which conservation feature to use, we assessed the accuracy of both 

PhastCons34 and PhyloP18 in discriminating between pathogenic and benign SVs using the 

average of the highest-scoring 200, 400, 600, and 800 nucleotides (Fig. S5). The test set 

consisted of 200 small (< 800 bp) SVs. We found the mean PhyloP score of the 400 most 

conserved nucleotides in an SV gave the best accuracy. For both conservation and expression 

features, if the total overlap between SV and exons was less than 400 intervals, then the 

remaining overlapped intervals were averaged together to generate the feature. Median 

imputation was used to fill in missing feature annotations.  

In Fig. 1a, features were clustered by correlation using the linkage and fcluster functions from 

SciPy’s hierarchical clustering package. Values for some features were reversed to ensure most 

matrix correlations are positive.  

Random forest classification 

StrVCTVRE was implemented as a random forest classifier in Python with scikit-learn v0.1735, 

using class RandomForestClassifier. A grid search was performed to find the optimal 

hyperparameters by using a leave-one-chromosome-out cross validation strategy and validation 

only on ClinVar data, as described previously. The hyperparameters searched included: the 

max depth of a tree (5, 10, 15, No limit), max features considered at each split (1, 2, 3, 4), the 
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minimum samples at each leaf node (1, 2, 4), the minimum samples required to split a node (2, 

4), the number of trees generated (500, 1000, 3000), and whether to use out-of-bag samples to 

estimate accuracy (True, False). Several combinations of features performed similarly well, and 

we chose one that performed well while unlikely to over-fit to the training data—max depth: 10, 

max features considered at each split: 1, minimum samples at each leaf node: 2, minimum 

samples required to split a node: 4, number of trees: 1,000. Feature importance used in figures 

is also known as Gini importance36, and was calculated using the feature_importances_ 

attribute of RandomForestClassifier.  

Figures 

In Fig. 4b, 90% sensitivity thresholds were taken from StrVCTVRE and SVScore performance 

on the held-out test set (Fig. 2b). In Fig 5a, testing datasets were derived from ClinVar variants 

as described above, except no size matching was performed. To maintain a balanced ratio of 

pathogenic to benign variants, variants were oversampled from the smaller dataset. 

Calculation of the StrVCTVRE threshold corresponding to each ACMG evidence category 

The odds pathogenic for each ACMG evidence category were derived from Tavtigian et al.28. 

Corresponding StrVCTVRE scores were calculated from performance on DECIPHER database 

SVs. StrVCTVRE score thresholds were determined by sorting test SVs by StrVCTVRE score, 

calculating the odds pathogenic for SVs in a size 100 sliding window, and using the most 

conservative threshold at which the sliding window odds pathogenic fell below the ACMG odds 

pathogenic. 

Data availability 

StrVCTVRE command line tool can be downloaded from 

https://github.com/andrewSharo/StrVCTVRE along with all source code for the classifier. A job 

submission version of StrVCTVRE will be made available at 

http://compbio.berkeley.edu/proj/strvctvre/. 
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Fig. 1. By considering feature clustering and importance, we can identify features providing unique and 
important information. a, Correlation matrix of StrVCTVRE features. Features were ordered by hierarchical 
clustering, and some values were reversed to reduce negative correlation between features. Float values 
represent Spearman’s rank correlation between features. b, Feature importance of StrVCTVRE features. 
Feature importance was estimated using mean decrease in impurity (Gini importance). Note that expression 
features had high importance yet were uncorrelated with all other features, suggesting they capture unique and 
useful information.  
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Fig. 2. By training on multiple datasets, StrVCTVRE learned more diverse feature importances and performed 
well on a held-out test set. a, Receiver operative characteristic comparing models trained on two different 
benign datasets: ClinVar in light purple, and all data (ClinVar, SVs common to apes but not humans, and rare 
gnomAD SVs) in dark purple. When validated only on ClinVar data, performance is not significantly different. 
However the feature importances (inset) of the classifier trained on all data were signficantly more evenly 
distributed among feature categories. This suggests that unlabeled rare SVs and common ape SVs are a 
suitable benign training set. b, Receiver operative characteristic comparing StrVCTVRE (red) to other methods 
on a held-out test set comprised of ClinVar SVs on chromosomes 1, 3, 5, and 7.  
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Fig. 3. Benign training SVs closely match the size distribution of pathogenic SVs and were drawn from multiple 
datasets. Histogram of pathogenic and benign (a) deletions and (b) duplications. a, Benign deletions are 
composed of 26% ClinVar, 16% apes, and 58% gnomAD. b, Benign duplications are composed of 75% 
ClinVar and 25% gnomAD. Use of apes and gnomAD SVs allowed us to include more small pathogenic SVs in 
our training data. 
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Fig. 4. a, Across three size ranges, StrVCTVRE accurately classified variants in an independent test set. In 
this AUC comparison of StrVCTVRE and SVScore, three size ranges of SVs were considered. StrVCTVRE 
performed best on the large (blue) and small (red) SVs, while performing comparable to SVScore on mid-sized 
variants (green). b, StrVCTVRE eliminated a significantly larger fraction of benign SVs from consideration. 
When tested on rare exonic SVs from 221 putatively healthy individuals, StrVCTVRE was able to correctly 
classify the most benign variants. White dots represent mean values. For both methods, the threshold for 
variant consideration was at 90% sensitivity.  
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Fig. 5. a, When presented with data that is more reliably classified, StrVCTVRE’s performance improved. ROC 
plot showing StrVCTVRE’s performance on all ClinVar data (red) compared to performance on two datasets: 
(1) only ClinVar SVs classified as ‘Pathogenic’ or ‘Benign’, and (2) only ClinVar SVs with supporting evidence 
provided. b, ROC comparing two machine-learning methods with diverse features (StrVCTVRE and SVScore) 
to one method (AnnotSV) that uses limited features and manually-determined decision boundaries. AnnotSV 
ranks an SV as ‘pathogenic’ or ‘likely pathogenic’ when the SV overlaps a catalogued pathogenic SV, known 
disease gene, or gene predicted to be intolerant to variation. To generate this figure, any SV overlapping any 
of AnnotSV’s catalogued pathogenic SVs was removed from the DECIPHER dataset, and the remaining SVs 
were used for testing. AnnotSV performs poorly on these novel variants. In contrast, the machine learning 
methods perform better because they use more diverse features and have decision boundaries trained on real 
data. 
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