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Fig. S1. Average of the top 400 PhyloP scores is one of the best indicators of SV pathogenicity. 
Comparison of PhyloP and PhastCons in differentiating between pathogenic and benign SVs. 
The columns represent different values of N, and the top row is PhastCons, while the bottom 
row is PhyloP. In each plot, the classification accuracy of a linear classifier is shown, and was 
calculated using a single feature: the average of the largest N PhyloP or PhastCons values 
among all positions overlapped by the SV. Each plot uses the same underlying SVs and shows 
a histogram of SV features. 

 



 
 

 

Fig. S2. Certain well-studied genes were overrepresented in our dataset. This plot shows the 
number of SVs overlapping each gene in the pathogenic ClinVar SVs (only showing the top 40 
genes). For context, the median number of SVs overlapping each gene in our training dataset of 
pathogenic ClinVar SVs is 1.   

 

 

 

 

 

 

 

 

 



 
 

 

Fig. S3. Histogram of pathogenic SVs shows acquisition bias in SV size. Pathogenic SVs 
collected from ClinVar display three peaks consistent across both deletions and duplications. 
These peaks roughly correspond to the sensitivity range for three major methods to identify 
SVs: sequencing, oligo aCGH/SNP array, and karyotyping.  

 

 

 

 

 

 

 

 

 

 



 
 

 

   

 

 

 

 

  

 

 

 

 

 

 

 

Fig. S4. Drawing SVs from multiple datasets allowed StrVCTVRE to train on a balanced dataset 
of SVs across a large size range. This is a more detailed version of Fig. 3. a Benign deletions 
were composed of 14% ClinVar benign, 12% ClinVar likely benign, 16% apes, 12% gnomAD 
rare benign, and 46% gnomAD rare unlabeled. b Benign duplications were composed of 11% 
ClinVar benign, 64% ClinVar likely benign, 11% gnomAD rare benign, and 14% gnomAD rare 
unlabeled. 
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Fig. S5. Number of ClinVar test SVs (chromosomes 1, 3, 5, 7; from Fig. 2b) that VEP annotated 
with various sequence ontology terms. VEP classified more benign SVs than pathogenic SVs as 
transcript_ablation, leading to its poor performance in SV classification. Categories are ordered 
from left to right in descending deleteriousness.  

 



 
 

 
Fig. S6. Extended version of Fig. 2b. Receiver operating characteristic comparing StrVCTVRE 
(red) to SVScore (medium blue), CADD-SV (pink), X-CNV (dark blue), and VEP (purple) on a 
held-out test set comprised of ClinVar SVs on chromosomes 1, 3, 5, and 7.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

Fig. S7. StrVCTVRE and SVScore performance comparison on various held-out test datasets 
(ClinVar SVs on chromosomes 1, 3, 5, 7). a Duplicates and common variants were not removed 
from the test data. b Duplicates and common variants were not removed from the test data, and 
no size limit was imposed. c Duplicates and common variants were removed from the test data, 
and only SVs smaller than 1 Mb were included.  
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Fig. S8. Receiver operating characteristic comparing StrVCTVRE models trained on three 
different datasets: ClinVar in dark red, all data (ClinVar, SVs common to apes but not humans, 
and rare gnomAD SVs) in medium red, and a dataset in which each gene is overlapped by at 
most one SV in light red. The feature importances of the classifier trained on the one SV per 
gene dataset (light red) are more evently distributed than the other two datasets, but the AUC 
performance is decreased by 0.02 when this classifier is tested on held-out SVs.  

 

 

 

 

 

 

 

 

 

 



 
 

  

 

 

 

 

 

 

 

 

 

 

Fig. S9. Extended version of Fig. 4a. Comparison of StrVCTVRE with X-CNV and CADD-SV on 
a set of DECIPHER SVs across three size ranges. a StrVCTVRE (solid lines) performance 
compared to X-CNV (dotted lines). Line color denotes SV size range. b StrVCTVRE (solid lines) 
performance compared to CADD-SV (dotted lines). Line color denotes SV size range.  
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Fig. S10. Extended version of Fig. 4b. Comparison of StrVCTVRE with X-CNV and CADD-SV 
on a set of DECIPHER SVs with varying levels of contribution to proband phenotype. SV 
contribution to proband phenotype increases from set 3 (includes less confidently classified 
SVs) to set 2 and from set 2 to set 1 (most confidently classified SVs). a StrVCTVRE (solid 
lines) performance compared to X-CNV (dotted lines). b StrVCTVRE (solid lines) performance 
compared to CADD-SV (dotted lines).  
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Fig. S11. AnnotSV excelled when tested on ClinVar variants that have a high degree of overlap 
with its cataloged variants. AnnotSV (orange) has an AUC of 0.905 when tested on 1042 
ClinVar pathogenic variants and 867 ClinVar benign variants. It predicts nearly all pathogenic 
variants as pathogenic, along with 19% of the benign variants. The gray line represents chance.   

 

 

 

 



 
 

 
Fig. S12. Comparison of time required for StrVCTVRE and SVScore to annotate the same N 
structural variants. Each method was run on a 64-core Linux server with 2.6GHz Intel Xeon 
CPUs.   

 

 

 

 

 



 
 

 

Fig. S13. Histogram of the predicted dominance of pathogenic SVs used in training. Predicted 
dominance was calculated for each SV by taking the maximum Domino(1) score of all genes the 
SV overlaps. SVs with larger Domino scores are more likely to have a dominant effect. Using a 
threshold of 0.5, 62% of pathogenic SVs are predicted to have a dominant effect. This analysis 
excludes SVs on sex chromosomes as they are not scored by Domino. 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 
 

Fig. S14. ROC and Precision-Recall Curve (PRC) plots comparing StrVCTVRE’s performance 
on recessive and dominant SVs. a ROC and b PRC plot of StrVCTVRE’s performance on SVs 
in predicted dominant and recessive genes, using a Domino(1) threshold of 0.5 to separate 
dominant from recessive genes. c ROC and d PRC plot of StrVCTVRE’s performance on SVs 
overlapping high-confidence recessive or dominant genes identified by Balick et al(2). Overall, 
StrVCTVRE performs similarly on SVs in both dominant and recessive genes. There may be 
differences in performance at low sensitivity/recall but they are not consistent across datasets. 
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Supplemental Tables 

chrom start end svtype 
StrVCTVRE 
Score 

chr1 145687715 146020436 DEL 0.768 
chr1 202434559 202604719 DEL 0.673 
chr2 111994154 111994818 DEL 0.569 
chr2 219420423 219426832 DEL 0.511 
chr6 10791578 10791945 DEL 0.276 
chr6 64997485 65057825 DEL 0.634 
chr6 64997485 65057825 DEL 0.634 
chr10 27043329 27067384 DUP 0.699 
chr13 23320540 23320858 DEL 0.3 
chr15 42321688 42360212 DEL 0.502 
chr15 42384386 42394439 DEL 0.619 
chr16 28486250 28486550 DEL 0.571 
chr17 7454200 7454618 DEL 0.567 
chr17 50170063 50170449 DEL 0.471 
chr19 54105500 54126715 DEL 0.678 
chr19 54114345 54129468 DEL 0.753 
chr19 54121739 54131817 DEL 0.847 
chrX 31627576 31679684 DEL 0.835 
chrX 31819878 31968612 DEL 0.847 
chrX 32545062 32699391 DEL 0.823 
chrX 154379176 154381621 DEL 0.601 

 

Table S1. Subset of the 34 CMG clinical SVs used to evaluate the StrVCTVRE 90% sensitivity 
threshold. Due to data restrictions, the full list of SVs is not available. See ‘Data and code 
availability’ for more details.   
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