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a b s t r a c t

We propose a feature-based image alignment method for single-particle electron microscopy that is able
to accommodate various similarity scoring functions while efficiently sampling the two-dimensional
transformational space. We use this image alignment method to evaluate the performance of a scoring
function that is based on the Mutual Information (MI) of two images rather than one that is based on
the cross-correlation function. We show that alignment using MI for the scoring function has far less
model-dependent bias than is found with cross-correlation based alignment. We also demonstrate that
MI improves the alignment of some types of heterogeneous data, provided that the signal-to-noise ratio
is relatively high. These results indicate, therefore, that use of MI as the scoring function is well suited for
the alignment of class-averages computed from single-particle images. Our method is tested on data from
three model structures and one real dataset.

� 2009 Published by Elsevier Inc.
1. Introduction

Single-particle electron microscopy (EM) is used to resolve the
three-dimensional (3D) structure of large macromolecular com-
plexes (Frank, 2002a; van Heel et al., 2000). The reconstruction
of a 3D structure from randomly orientated two-dimensional
(2D) projections requires the assignment of both 2D translational
alignment parameters and relative 3D Euler angles. Image align-
ment is used to assign translational parameters to raw images so
that they can be classified and averaged in 2D, and to compare pro-
jections with an initial model so that Euler angles can be assigned
(projection matching) (Penczek et al., 1994). Due to the large num-
ber of raw images and model templates used in a reconstruction,
computationally efficient alignment methods based on the Fast
Fourier Transform are widely used (Joyeux and Penczek, 2002).
This use of the Fast Fourier Transform enables the processing of
very large datasets, but limits the scoring function to cross-corre-
lation or one of its variants.

The refinement of a 3D structure relies on the availability of an
initial 3D model. This initial 3D model can be from a closely related
structure generated by EM or X-ray crystallography, an ab initio
reconstruction obtained using Random Conical Tilt (RCT) (Raderm-
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acher et al., 1987), or a reconstruction obtained using a common
line based method (Penczek et al., 1996; van Heel, 1987). The ini-
tial 3D model is used as a template for the assignment of transla-
tional parameters and Euler angles. The raw data can then be
used to calculate a new structure which again is used to assign
translation and Euler angle parameters to the raw images. This
process (projection matching) is used iteratively to improve the
accuracy of parameter assignment, resulting in progressively high-
er resolution structures.

This basic projection matching approach relies heavily on the
structural homogeneity of the macromolecule being studied. Prob-
lems arise when the macromolecule exhibits structural flexibility
or alternative assemblies (Brink et al., 2004; Leschziner and
Nogales, 2007; Orlova et al., 1999; Roseman et al., 2001; Saibil
et al., 2001; Staley and Guthrie, 1998; Yang et al., 2002). Currently,
the most successful approach for studying such samples is to bio-
chemically isolate, or fix the structure in a single conformational
state before microscopy (Frank, 2003); however, this is not always
feasible. Several computational methods have been developed to
study heterogeneous data, either by classifying the data into
homogeneous subsets (Burgess et al., 2004; Fu et al., 2007; Hall
et al., 2007; White et al., 2004), or by quantifying variability in
the final reconstruction (3D-variance) (Penczek et al., 2006b).
One approach for dealing with heterogeneous data uses maxi-
mum-likelihood-based classification (Scheres et al., 2007) whereby
the Expectation Maximization steps reassign the raw images into
several structurally distinct models. However, this approach is ex-
tremely computationally expensive and requires a large quantity
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of experimental data. 3D-variance can be used as a tool to analyze
heterogeneity in a reconstruction, enabling regions of high vari-
ability to be further investigated using other tools (Penczek et al.,
2006a). Another approach uses cross-correlation of common lines
(CCCL) (Hall et al., 2007) to segregate the 2D averages of raw par-
ticles (class-averages) into homogeneous 3D structures. This ap-
proach essentially clusters class-averages into groups that
represent distinct conformational states. The methods of 3D-vari-
ance and CCCL rely on the accurate assignment of in-plane transla-
tion and Euler angle parameters, generally found by projection
matching. However heterogeneity within the data has a detrimen-
tal effect on projection matching by reducing the accuracy of
parameter assignment, and therefore lowering the quality of the fi-
nal reconstruction and the ability of these methods to work.

The cross-correlation function is widely used to optimize align-
ment between two images. It has been shown to be very successful
in aligning highly noisy images to model templates. It is of most
use when the particles are structurally homogeneous. Heteroge-
neous data are problematic, as templates from a single model can-
not be fully representative of the data being studied; thus, multiple
models can be used in the processing of heterogeneous data (Brink
et al., 2004; Falke et al., 2005; Valle et al., 2002). In this approach,
translation, relative Euler angles, and conformational state are as-
signed to particle projection images according to the template for
which they have the highest cross-correlation. This approach was
successful on multiple occasions when processing EM data of the
ribosome (Frank, 2003), but relies on the availability of multiple
starting models that account for the heterogeneity within the
sample.

Here we present a computationally efficient alignment method
that is not limited in the scoring function which is used. The meth-
od identifies basic image features that are used to define local
directions that are subsequently used to superimpose two images.
The identified image features allow a more efficient sampling of
transformational space than an exhaustive search approach. Our
data indicate that the application of a scoring function based on
the Mutual Information (MI) improves the alignment of heteroge-
neous particles when aligning to a single model, given that the sig-
nal-to-noise ratio of the images being aligned approaches that
which is expected for class-averages. Mutual information mea-
sures the amount of shared information between two images. It
has been extensively used in medical imaging for image registra-
tion (alignment) (Maes et al., 1996; Pluim et al., 2003; Viola and
Wells, 1995). For example, two images of roughly the same brain
area obtained using two different techniques, such as PET, which
captures functional processes, and CT, which captures structural
information, can be aligned based on their shared information
rather than on a linear relationship between gray level distribu-
tions. In the field of electron microscopy mutual information has
been previously used for the alignment of 3D volumes that differ
in resolution (Telenczuk et al., 2006).

We demonstrate the performance of MI as a scoring function
using three model structures and one real dataset. As model struc-
tures we use the 50s and 70s subunits of the Escherichia coli ribo-
some (Gabashvili et al., 2000; Matadeen et al., 1999), the
multiprotein splicing factor SF3b (Golas et al., 2005), and the Kel-
now fragment of DNA polymerase I (Beese et al., 1993). The ribo-
some structure was used in the development of the method and
demonstrates the ability of mutual information to utilize a single
model for the alignment of heterogeneous data that show alterna-
tive molecular assemblies. SF3b is used to demonstrate the model
independent nature of our alignment method, while the Klenow
fragment of DNA polymerase I is used as a test for the type of het-
erogeneity observed in the real cryo-EM data of eIF3-IRES complex
(Siridechadilok et al., 2005), i.e., a constant structure with a pro-
truding flexible domain. Cryo-EM data from human translation ini-
tiation factor eIF3 bound to the flexible internal ribosome entry
site (IRES) from the hepatitis C virus (HCV) (Siridechadilok et al.,
2005) are used to show that our new method is successful for
use with experimental images of biological macromolecules.

Our results indicate that mutual information leads to a better
alignment than cross-correlation when the signal-to-noise ratio
(SNR) is at the level usually found in class-averages, e.g., SNR of
1:1. Therefore, the best use of the MI based alignment is in the
reconstruction approaches that first compute class-averages from
raw data and then align class-averages to a model (Elad et al.,
2008; Hall et al., 2007). Thus, we expect that our approach will im-
prove the alignment step of such methods and consequently will
lead to a better reconstruction of multiple models from heteroge-
neous data.
2. Methods

Given a set of template images, {mi}, consisting of evenly spaced
2D projections of an initial 3D model, and a set of raw images, {ri},
boxed from an electron micrograph, projection matching is the
problem of finding, for each raw image ri, the template image mi

to which it is most similar. The raw images, {ri}, have unknown
in-plane translation and rotation parameters relative to the model
projections {mi}. It is therefore necessary to first solve the align-
ment problem; i.e., given two images mi and rj find a superposition
such that the similarity between two images is maximized.

A similarity measure based on the dot product of image pixels is
widely used in image processing. To integrate the dot product with
the image alignment problem, the cross-correlation function (CCF)
is used to describe the dot product optimization. In case of transla-
tions, the CCF is defined as:

CCFðmi; rj; tÞ ¼
X

k

miðkÞrjðkþ tÞ;

where t is a translation applied to image rj and k runs over the im-
age pixels. For simplicity we omit discussion of the dot product
optimization that involves rotations. A CCF variant, the normalized
cross-correlation function (NCCF), is usually more appropriate for
image comparison since image brightness may vary among the
samples. NCCF is defined as:

NCCFðmi; rj; tÞ ¼
X

k

ðmiðkÞ � �mÞðrjðkþ tÞ � �rÞ
rmrr

;

where �m and �r are image mean values, and rm and rr are standard
deviations. Mean and standard deviation values can be computed
either based on all image pixels or only within the area where the
dot product is being applied. In the later case the NCCF is called lo-
cally normalized cross-correlation function (LNCCF). One reason for
the widespread use of the CCF and its variants is their computation-
ally efficiency. Using the Fast Fourier Transform (FFT), the transla-
tion that maximizes the CCF can be found in O(n log(n)), where n
is the image size. The CCF and NCCF measure similarity between
two images based on their pixel dot product. However, if we wish
to apply a different scoring function, like mutual information used
below, a naïve approach would be to perform an exhaustive search
over all possible rotations and translations, which is computation-
ally expensive.

We propose an alignment technique based on feature extraction
that avoids an exhaustive search and is able to efficiently find a
high scoring superposition between two images. Feature based
alignment approaches are extensively used in computer vision
(Forsyth and Ponce, 2002). Using features that can range from sim-
ple forms such as corners and edges to more complex structures
such as lines, curves, object boundaries and areas, a superposition
between two images is computed by alignment of the defined fea-
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tures. Since the number of features is usually significantly smaller
than the number of image pixels, a feature-based alignment can be
potentially more efficient than an exhaustive search. The high lev-
els of noise associated with electron microscopy images, and the
visible lack of features, makes the application of such methods dif-
ficult. In our approach we therefore utilize basic features that are
likely to be preserved between noisy images, such as local extreme
values. Our method is composed of five major stages.

2.1. Preprocessing and feature detection

This stage is done separately for each image. Due to different
contrast conditions, each image is normalized; i.e., value(p) = |va-
lue(p)-l|/r, where value(p) is the gray level at pixel p, l and r
are the mean and standard deviation of the gray levels within
the image. Next, we detect local extreme (maximum and mini-
mum) values: E = {ei}. A pixel is a local maximal extreme value if
all of its eight neighbors have lower or equal gray value. A pixel
is a local minimal extreme value if all of its eight neighbors have
greater or equal gray level. Notice that some extreme value pixels
can be direct neighbors. An example of a set E is demonstrated in
Fig. 1, second column.

We then define the set of pixels at which there is a significant
gray value in the image, S = {p:|value(p)-l0| > ar0}, where l0 and
r0 are the mean and standard deviation after normalization (equal
to zero and one respectively), while a is a dynamic parameter that
has initial value of two and is then iteratively decreased by 10% if
the size of S is too small. Operationally, we require the size of S to
be at least 50. An example of a set S is demonstrated in Fig. 1, third
column. A set of vectors based on S and E are defined as:

F ¼ ff ¼ ðs; eÞ : s 2 S and e ¼ arg min
e2E;e–s

js� ejg;

i.e., each point from S selects the closest point from E to make a vec-
tor in F.
Fig. 1. Example demonstrating the feature extraction approach applied to a 50S ribosom
SNR 5:1, and (b) at SNR 1:1. The second column shows the set, E, of local extreme values,
third column shows the set, S, of significant values (red for high densities and blue for low
two sets, S, (top rightmost and bottom rightmost images) are distributed at similar locatio
in dark blue, and the nearest pixel from the set E, colored in light blue. Three arrows are s
in S to elements in E.
2.2. Construction of transformations

To define a 2D transformation that superimposes image B onto
A we align two vectors, one from A and one from B. For each image
the vector set is defined by F (Fig. 1, top rightmost image). There-
fore a set of 2D transformations is defined as the product of all pos-
sible vector pairs: F(A) � F(B). Specifically, given a vector pair
fA = (sA, eA) and fB = (sB, eB) a transformation T[fA,fB] is constructed
such that, after applying the transformation on B, the starting point
of fA and fB coincide and the vector directions are equal, i.e.,
T[fA,fB](sB) = sA and three points (sA, eA, T[fA,fB](eB)) are collinear.
We only match vector pairs of equal local extreme value type;
i.e., eA and eB should be either both local maximum or both local
minimum.

2.3. Pose-clustering

The number of transformations computed at Stage 2 can be rel-
atively high, and applying a scoring function for each of the trans-
formations can be expensive. However, high scoring alignments
usually have a large number of features with similar transforma-
tions. Therefore, the number of transformations can be signifi-
cantly reduced by a pose-clustering technique (Olson, 1993;
Stockman, 1987). Similar transformations are grouped together
into clusters, and only transformations representing large enough
clusters are used for scoring image similarity. In order to test
whether two transformations are similar enough they are applied
to the same set of pixels. If the corresponding pixels are trans-
formed into nearby locations then the transformations are consid-
ered similar. Applying a transformation on the whole set of image
pixels is time consuming. Usually, the image corners will show the
largest deviation between any two transformations. Therefore, we
define two transformations, Ti and Tj, to be similar if the maximal
distance between Ti(pt) and Tj(pt), t = 1,2, is less than one pixel,
e projection. The first column shows simulated images that were computed (a) at
where maximum values are colored red and minimum values are colored blue. The
densities). Even with the increased level of noise shown in (b), the members of the

ns. The zoomed region in the top right panel shows six pixels from the set S, colored
hown as examples of the directions that are defined by the vectors, F, from elements
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where points {pt} are selected as two diagonally opposite corner
pixels, (0,0) and (N � 1,N � 1), of an N � N image. We apply an
heuristic greedy clustering procedure (in general, finding an opti-
mal solution to a clustering problem is computationally intracta-
ble). First, we map transformations into four-dimensional bins
based on the transformed points {pt}. Each transformation gets a
vote equal to the number of similar transformations located in
nearby bins. The binning strategy allows to reduce computational
time over all pairwise comparisons of transformations. Next, we
select a transformation (a cluster representative) that has the larg-
est vote. Transformations that contributed to a cluster are marked
and cannot be selected as cluster representatives at later iterations,
however they are allowed to contribute to other clusters (there-
fore, this is a fuzzy clustering approach). We continue iteratively
selecting a transformation with the next largest vote until we col-
lect two thousand transformations (cluster representatives). Even-
tually, the two thousand transformations are evaluated with the
scoring function to determine image similarity.

For example, in the case of 128 � 128 images and translations
limited to 10 pixels from the image center, the number of transfor-
mations computed in the previous stage can be about 120,000. The
total number of possible clusters in the pose clustering step is
about 25,000, given the above defined similarity of transforma-
tions. Consequently, we pick only 2000 high scoring
transformations.

2.4. Scoring function

Let pA(a) define the fraction of pixels with gray value a in image
A (the marginal probability). Given two aligned images A and B let
pAB(a,b) define the fraction of aligned (superimposed) pixels with
gray value a in A and b in image B (the joint probability). Then,
the mutual information of two aligned images is given by:

Mutual informationðA; BÞ ¼
X

a;b

pABða; bÞ log
pABða; bÞ

pAðaÞpBðbÞ
:

We use mutual information to measure similarity between two
images for each superposition from the previous stage. For the
scoring we rescale the original non-normalized images to the smal-
ler gray level range of [1:t], where t is the number of gray levels.
With the presence of noise, the original 256 gray levels, usually
used in EM images, do not produce the best result in the alignment
and projection matching. We found that for the parameter t the va-
lue of 20–50 gives the best results in our experiments (t = 20 is
used as the default parameter). Such a down-scaling of gray levels
can be seen as a noise suppression mechanism. Selecting an appro-
priate number of gray levels is a known problem for effective use of
the mutual information function, especially for noisy images (Zhu
and Cochoff, 2002).

2.5. Iterative projection matching

Due to different gray level distributions, some images tend to
receive high scores even when aligned to an incorrect template.
This phenomenon can happen for any scoring function. Consider
the following example. There are three model projections, m1,
m2 and m3, and three images, i1, i2 and i3. Consider the following
scores from an alignment procedure (higher value corresponds to a
better fit):
m1
 m2
 m3
i1
 10
 6
 5

i2
 11
 5
 7

i3
 12
 8
 9
The standard, direct, approach to the projection matching problem
is to select the best fitting template for each image i. In our example

all images i1, i2 and i3 would be matched to m1. However, high
alignment scores of m1 can be due to a particular pattern that gives
a high score with any image. Therefore, to prevent such spurious
matches we add a step to check the significance of the matching.
We define a matching of i to m to be K-th significant if i is ranked
K-th among all image scores with template m. We start to look
for the first significant solutions. Only i3 satisfies this criterion.
Therefore we match i3 to m1 and remove its scores with other
templates.

ral Biology 166 (2009) 67–78
m1
 m2
 m3
i1
 10
 6
 5

i2
 11
 5
 7

i3
 12
 —
 —
After we remove the scores of i3 with m2 and m3, the second high-
est scores of i1 and i2 are first significant matches. Therefore, we
match i1 to m2 and i2 to m3. When no first significant matching is
found we look for the second significant matching and so on. Setting
K too large may also result in spurious matches with low scores.
When K reaches its maximal allowed value and there are no K-th
significant matches we apply the standard matching procedure
which selects the highest scoring template image for any un-
matched raw image. The pseudo-code for our iterative projection
matching is given below:

1. K = 1.
2. While K < Threshold. (Our default is #images/#templates.)
3. For each image I.
4. Find the highest scored template for which I is at most K-th

significant.
5. If found, then match I to that template.
6. End For each.
7. Remove the scores of matched images, besides the scores

with correspondingly matched templates, from the future
considerations.

8. If no K-th significant matching is found then K = K + 1.
9. End While.

10. Match any unmatched raw image to its highest scored
template.

The improvement obtained by using our iterative matching pro-
cedure rather than the standard, direct matching is demonstrated
by results that are included in Table 2.

3. Results

The results obtained with the alignment technique that applies
feature extraction (FE) and the MI scoring function were compared
with the results we obtained when we used NCCF-based alignment
as it is implemented in the commonly used software packages Spi-
der (Frank, 2002b) and Imagic (van Heel et al., 2001), as well as our
own implementation. We refer to our feature extraction based
alignment that applies mutual information scoring function as
FE + MI. Specific program parameters were consistent with those
used in the routine use of such programs. In our own implementa-
tion we applied the locally normalized cross-correlation function
(LNCC), where the dot product, means, and standard deviations
are computed within the circular mask of a noisy image and within
the corresponding circular area of a template image. The image fil-
tering step can be an ad hoc procedure depending on image data.
To avoid a possible bias, in all our experiments the images were fil-



Table 2
Success of alignment and matching for the case of synthetic, heterogeneous data in
which noisy 50S ribosome projections are aligned with noise-free templates for the
70S ribosome. The columns show the percentage of correctly aligned and matched
50S noisy images. The notation (NCCF, FE + MI, IMatch) is the same as in Table 1.

SNR NCCF (%) IMatch (NCCF) (%) FE + MI (%) IMatch (FE + MI) (%)

No noise 15 40 19 67
5:1 14 36 18 71
2:1 14 35 19 74
1:1 15 35 17 54
1:2 11 20 10 11
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tered in the same manner. Differences in the algorithms imple-
mented in Spider and Imagic can lead to discrepancies between
the alignment results. Therefore, we report only the best results
obtained either by Spider, Imagic or by our own implementation,
and thus, for simplicity, we identify the ‘‘best” results with the
notation ‘‘NCCF” without mentioning a particular implementation.

3.1. Synthetic data generated for the 70S ribosome and its 50S sub-
complex

We selected the well studied structure of the 70S ribosome (EBI
EMDB (Tagari et al., 2002), entry EMD-1003, resolution 11.5 Å
(Gabashvili et al., 2000)) and its 50S sub-complex (EBI Database
EMDB, entry EMD-1019, resolution 7.5 Å (Matadeen et al., 1999))
from E. coli. Our goal was to simulate an experimental case with
heterogeneous data in which EM images may contain a mixture
of 70S and 50S ribosome projections, while using a single model
of the 70S ribosome as a template for the angular assignment.
Therefore, we performed two experiments. First, the 70S ribosome
was used as a template for the alignment of 70S projections, as an
example of aligning images for a homogeneous structure. Second,
the 70S ribosome was used as a template for the alignment of
50S projections, as an example of aligning images of heterogeneous
structures. Since the difference in volume between 70S and 50S is
more than 40%, there are many ways in which the 50S subunit
could be misaligned to the 70S template. As a result, we consider
this case to be a very challenging test for the image alignment
and projection matching problem.

Two hundred twelve template images were generated from
equally spaced projections of the 70S ribosome. We first compare
the NCCF-based method with our alignment approach, based on
MI, for the case of homogeneous data. We applied various levels
of Gaussian noise to the 212 projections of the 70S ribosome. These
noisy images are aligned with the noise-free 70S templates. The
projection matching accuracy is measured as a percent of images
which are, first, correctly matched to its corresponding templates
and, second, the alignment between these pairs (image superposi-
tion) deviates at most 1 pixel and 5� from the optimal alignment.
As shown in Table 1, NCCF and FE+MI perform comparably at the
signal-to-noise ratios (SNR) of 1:5 or higher. For noisier images,
NCCF is more accurate than FE + MI. We discuss below how such
accuracy relates to model dependency.

Despite its high accuracy for the alignment of homogeneous
data, NCCF-based methods gave 85% errors in aligning and match-
Table 1
Success of alignment for the case of synthetic, homogeneous data in which noisy
projections are matched to noise-free templates. The columns show the percentage of
noisy images that are correctly aligned and matched to template images. The notation
NCCF and FE + MI, respectively, refer to the results for alignment in which images at
the specified levels of noise are matched based on the highest scoring template. The
notation ‘‘IMatch (FE + MI)” refers to the results obtained when iterative projection
matching is used to match noisy images (see Section 2). (a) Results for 212 noisy
images and 212 templates of the 70S ribosome. (b) Results for 300 noisy images and
300 templates of the multiprotein splicing factor SF3b.

SNR NCCF (%) FE + MI (%) IMatch (FE + MI) (%)

(a) 70S ribosome
1:2 100 100 100
1:5 100 94 94
1:7 97 39 46
1:10 83 0 0

(b) Multiprotein splicing factor SF3b
1:2 100 100 100
1:5 100 100 100
1:7 99 94 94
1:10 99 41 41
1:15 94 0 0
1:20 73 0 0
ing 50S projections to the 70S templates even in the case of noise-
free projections. FE + MI, on the other hand, correctly aligned and
matched using the proposed above iterative matching at least
54% of the projections with the SNR greater than one. The results
are summarized in Table 2.

3.2. Alignment by mutual information is less model biased than
alignment by cross-correlation

We investigate how FE + MI and NCCF-based alignments behave
for a case in which the model structure is not related to the exper-
imental data. Model dependence occurs when a template-based
alignment results in class-averages that resemble more the model
projections (templates) than the projections of the experimental
structure. It has been widely shown that NCCF-based alignment
can result in model dependence (Grigorieff, 2000). Here, we show
that MI is far less model biased than NCCF. If not enough informa-
tion is shared between the model and raw data, then the MI based
alignment fails completely.

We first demonstrated that if pure noise is given as an input,
then mutual information reconstructs noise, while cross-correla-
tion reconstructs a model-dependent image from the noise. As an
illustration of the model-independence of FE + MI, we employed
the frequently used image of Einstein as a template. Alignment
and averaging was performed for 1000 images of Gaussian noise
with the same average and variance as the template (the images
contain only the noise, not the template). Fig. 2 shows the sum
(average) of aligned images that were obtained by cross-correla-
tion and by FE + MI, respectively.

We next considered what happens when one attempts to align
two unrelated structures, splicing factor SF3b and 70S ribosome,
both of which are non-symmetrical. For the purpose of these
experiments, SF3b is scaled (�1.25) in relation to the ribosome in
1:3 7 10 7 7
1:5 3 2 0 0

Fig. 2. Model-dependency test. A familiar photograph of Einstein is used as a
model, and 1000 images of pure white noise are aligned to the model. (a) The
reconstruction that is based on the use of the NCCF for alignment shows model
dependency. (b) The reconstruction that is based on the use of mutual information
is close to random.
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order to model two similarly sized globular structures. For both
structures we produced 736 equally spaced projections for use as
templates. For SF3b we then generated 2000 randomly oriented
projections and added noise to the level of SNR = 1:3.

In the first experiment we used both FE + MI and standard
NCCF-based alignment to align noisy SF3b images to the template
projections of the 70S ribosome. Fig. 3a shows the Fourier Shell
Correlation (FSC) (Harauz and van Heel, 1986) between reconstruc-
tions from halves of the SF3b noisy images, and (B) shows FSC be-
tween reconstructions of the SF3b data and the ribosome model.
Clearly, cross-correlation based reconstruction of SF3b shows
non-random low frequency similarity with the ribosome model,
while mutual information-based reconstruction lacks any signifi-
cant information. From visual inspection, cross-correlation based
reconstruction has some structural features that are similar to
the ribosome template, while FE + MI based reconstruction looks
like an average of randomly oriented images of SF3b (Fig. 4a and b).

Next, we verify that both methods are able to reconstruct the
original SF3b structure from its noisy images using the correct
template images from SF3b itself. Fig. 3c shows the FSC between
reconstructions from halves of the SF3b data. Using the 0.5 criteria
(Penczek, 1998) estimated resolutions were 11 and 12 Å for the
NCCF and FE + MI reconstructions respectively. We computed the
‘‘best” possible reconstruction of SF3b with no alignment/matching
error by back-projecting the noisy images with the known param-
Fig. 3. Model dependency test on synthetic data sets. Comparison of reconstructed struct
halves of the SF3b data when a ribosome template structure is used to align and assign Eu
ribosome data when a ribosome template structure is used to align and assign Euler ang
halves of the SF3b data when a SF3b template structure is used to align and assign Eu
obtained after alignment with the NCCF and FE + MI method and (2) a reconstruction of t
A SF3b template was used to align and assign Euler angles to the SF3b data.
eters from the initial forward projection. Fig. 3d shows FSC be-
tween the ‘‘best” reconstruction and two reconstructions based
on NCCF and FE + MI alignments. While the NCCF-based recon-
struction is closer to the SF3b model, our reconstruction is almost
comparable in terms of FSC resolution. From visual inspection both
reconstructions look similar (Fig. 4c).

3.3. Synthetic data generated for Klenow fragment of DNA polymerase
I

Three different synthetic conformations of the Klenow fragment
of DNA polymerase I, previously generated by Hall et al., 2007,
were filtered to 20 Å resolution. The three conformations are not
meant to represent known conformational states of the molecule,
but they nevertheless serve as a reasonable model for a protein
complex with a small flexible domain extending from the main
body of the structure. For each conformation we produced 400 pro-
jections at random orientations and added noise to give a final SNR
of 1:1. To simulate a reconstruction in which heterogeneity has not
been taken into account we back-projected all 1200 (3 � 400)
noisy images to create a 3D model that is an average of all confor-
mations. From this averaged model we produced 212 template
projections.

To test how FE + MI compares with NCCF when a model does
not fully represent the data we aligned and assigned Euler angels
ure resolution for NCCF and FE + MI. (a) FSC between reconstructions obtained from
ler angles to the SF3b data. (b) FSC between reconstructions of the SF3b data and the
les to the two respective data sets. (c) FSC between reconstructions obtained from

ler angles to the SF3b data. (d) FSC between (1) a reconstruction of the SF3b data
he SF3b data with no alignment error and no error in the assignment of Euler angles.



Fig. 4. Model dependency test on synthetic data sets. (a) An example of noisy images of SF3b used for the reconstruction. (b) Reconstruction of SF3b images using the 70S
ribosome as a template. First row are ribosome templates. Second row are reprojections from the cross-correlation-based reconstruction. Third row are reprojections from the
mutual information-based reconstruction. Columns correspond to the same projection angle relative to the ribosome model. (c) Same as (b), with SF3b as the template model.
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to all the noisy images, using the template projections produced
from the averaged model. We then calculated a reconstruction
from each homogeneous set of 400 aligned images. To measure
the quality of the alignment and projection matching we calculated
the Fourier Shell Correlation (FSC) between the homogeneous
reconstructions and reconstructions of the same data with no
alignment or Euler angle assignment error, Fig. 5. The FSC curves
show slight variability between conformations, but in all cases
the curve from the FE + MI reconstructions has correlation to high-
er spatial frequency than NCCF. It is clear from the FSC plots that
the reconstructions from the images aligned using FE+MI more clo-
sely match the reconstructions with no alignment error. Therefore
FE + MI has performed better at alignment and Euler angle assign-
ment than NCCF. Note that each reconstruction contains only par-
ticles of one conformation; therefore any difference between the
reconstruction and the error free reconstruction is due to inaccu-
racy in the alignment.

3.4. Experimental data of eIF3-IRES complex

To test the FE+MI method on real cryo-EM images we used data
from a eIF3-IRES structure. The structure has been previously pub-
lished (Siridechadilok et al., 2005), and it has also been used in the
development of other methodologies (Hall et al., 2007). The eIF3-
IRES structure was found to have a stable central domain, con-
nected to a flexible protrusion, shown to be IRES RNA. It was pos-
sible to calculate homogeneous class-averages using focused
classification (Hall et al., 2007). For focused classification the vari-
ance is used to define a specific area within the image on which to
base classification. A method based on the cross-correlation of
common lines (CCCL) was developed so that these class-averages
could be related in 3D space in order that reconstructions could
then be made that reflect flexibility within the structure (Hall
et al., 2007). Critical to this method is the assignment of relative
Euler angles to the 2D class-averages by aligning them to refer-
ences from an average structure. The usefulness of our method in
cases such as this was demonstrated using the Klenow model data.
To make a comparison between NCCF and FE + MI, the alignment
and assignment of Euler angels was carried out followed by the
CCCL approach. The resulting reconstructions were used as refer-
ences for multi reference projection matching where all raw
images are realigned to the best matching model. The final recon-
structions after multi reference projection matching are compared
in Fig. 6.

Fig. 6 shows the results from using both NCCF and FE + MI in
such an approach, shown are the initial 2D class-averages, com-



Fig. 5. Fourier Shell Correlation (FSC) plots of reconstructions that were obtained
after aligning the images by FE+MI and by the use of NCCF for three model
conformations of the Klenow fragment of DNA polymerase I. The FSC was calculated
between reconstructions in which the translational and Euler angle parameters
where re-assigned using either FE + MI or NCCF and reconstructions without
translational or Euler angle error. It can be seen that the FSC plots for the FE + MI
reconstructions are consistently better than for the NCCF, showing that the FE + MI
reconstructions more closely resemble those without errors.
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pared with equivalent projections of the resulting final 3D recon-
structions. It can be seen from the results that in the reconstruc-
tions for which FE + MI was used the definition of the flexible
region in the final reconstruction more closely matches the initial
2D class-averages from focused classification.

3.5. Method efficiency

An exhaustive search in three parameters of transformation
(two translational and one rotational parameter) can be used to
evaluate any possible scoring function. However, an exhaustive
search is computationally expensive. Here we compare the running
time and accuracy of our version of feature-based alignment with
an exhaustive search.

Our method detects pixels that represent local extreme values
and pixels with above-average significance and uses them to define
a transformation. Unlike an exhaustive search, not every possible
transformation is going to be evaluated. Increasing the number of
transformations analyzed will increase the accuracy, but also the
run time, therefore a tradeoff must be made.

There are many parameters in our alignment algorithm that
influence the running time and the alignment accuracy. One of
the most influential parameters is the number of transformations
reported after the pose-clustering procedure. Since computing a
scoring function for each transformation is time consuming (it
takes time proportional to the size of the images), it is preferable
to consider the smallest number of transformations. Ideally, the
largest transformation cluster after the pose-clustering procedure
should correspond to the correct alignment; however, in practice,
many more of the larger clusters should be evaluated with a scor-
ing function. Fig. 7a shows the alignment accuracy and the running
time of aligning two images as a function of the number of re-
ported pose-clustering transformations. The graph shows the accu-
racy of aligning 50S ribosome images at SNR 1:2 and 1:7 with 70S
ribosome templates. The images have 128 � 128 pixels. We define
an alignment to be nearly correct if it deviates not more than 5�
from the correct rotation and no more than (1,1) pixel shift from
the correct translation. We chose 2000 transformations as a default
parameter in all reported experiments, as it has sufficient accuracy
and running time of only 2.2 s. In comparison, under the same con-
ditions, the exhaustive procedure is able to perform an angular
sampling of only 35� at the same running time of 2.2 s.

Fig. 7b shows the running time of the exhaustive implementa-
tion. These measurements are done based on alignment of two
ribosome images, which have 128 � 128 pixels. The exhaustive
search generates all possible translations within 10 pixels from
the image center and samples rotational parameter as a function
of the graph curve. Similarly, in our feature extraction method
the translations were limited up to 10 pixels from the image cen-
ter, though the translational parameters are not explicitly gener-
ated as in the exhaustive procedure. Exhaustive sampling
implementation uses exactly the same code as our method, apart
from the procedure that computes a list of transformations.

3.6. Source of errors in the alignment and projection matching
procedures

There are three points at which errors can be made in our align-
ment procedure. First, the feature-based alignment method can
miss the correct transformation, such that the correct superposi-
tion is never evaluated by the scoring function. Second, the scoring
function can fail to properly rank image alignment even when the
correct superposition is tested. Given that two images share en-
ough similarity, a perfect scoring function should always give the
highest score to the correct superposition of two images. The third
point at which errors can be made lies in the projection matching
scheme. The alignment method can perfectly align a raw image
and its corresponding model projection, but the matching proce-
dure may select an incorrect higher scoring template for this im-
age. One way in which such errors could occur is that a scoring
function cannot be properly normalized, as discussed in the meth-
ods section. The last two sources for error are closely related.

We have tested the error sources as follows. First, we measure
in how many cases our transformation sampling method misses
the correct transformation; i.e., the first source of errors. The re-
sults appear in the first row of Table 3a, b, and c. There is a small
drop in sampling accuracy with increased noise level. Then, we
measure the second source of errors – the limited ability of mutual
information to give the highest score to the correct transformation
(second row in Table 3a, b, and c). In this case the correct superpo-
sition is always tested. Therefore, at least one transformation has
zero deviation from an ideal alignment. The MI scoring accuracy
drops very quickly after SNR 1:3, 1:7 and 1:10 for the heteroge-
neous and the two homogeneous alignments correspondingly.
The combined effect of all three sources of errors is shown in the
last two columns of Tables 1 and 2.

We conclude that our transformation sampling method is not
the primary reason for the poor performance of our method at
decreasing SNR, but rather the MI scoring function is failing. This
shows that the transformation sampling method has the possibility
of being used with different scoring functions to give results better
then presented here.
4. Discussion

Currently one of the most challenging problems in single-parti-
cle cryo-electron microscopy is the 3D reconstruction of particles
that exhibit structural heterogeneity. Computational tools have
been developed to study conformational heterogeneity in single-
particle reconstructions (Elad et al., 2008; Fu et al., 2007; Hall
et al., 2007; Penczek et al., 2006b; Scheres et al., 2007; White
et al., 2004). However, the success of these procedures relies
strongly on the accuracy of image alignment. Alignment of hetero-
geneous images to a common homogeneous model, using NCCF as



Fig. 6. Results from using FE + MI and NCCF for aligning experimental heterogeneous eIF3-IRES data. All images are from the same projection direction. (a) Initial class-
averages resulting from focused classification, showing three distinct conformations of the IRES particle. (b) Projections at the same Euler angle as (a) for the structures
resulting from FE + MI alignment. (c) Projections from the structures resulting from using NCCF for alignment. (d) Fourier ring correlation plots comparing original class-
averages (a) to results from FE+MI (b) and CCF (c). The three plots correspond to the conformations shown in columns 1–3.
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Fig. 7. Running time measurements of FE + MI method and exhaustive transfor-
mation search implementation with MI as a scoring function. In both methods the
translations are limited to at most 10 pixels from image center. (a) Transformation
sampling accuracy and running time measurements for the FE + MI alignment
method. The graph shows the percentage of nearly correct alignments, i.e.,
transformation sampling accuracy, of 50S ribosome images at SNR 1:2 and 1:7
with noise-free 70S ribosome templates. The accuracy is displayed as a function of
the number of transformations employed after the pose-clustering procedure. The
running time scales linearly with the number of transformations as each transfor-
mation should be evaluated with the scoring function. The running time of 2.2 s for
2000 transformations is equal to the time required for exhaustive rotational
sampling at an angular step of 35�. (b) Exhaustive search running time is displayed
as a function of the size of angular steps used for rotational sampling.

Table 3
Measurement of frequency with which the correct alignment is included in the
feature-based set of possible alignments and the frequency with which the mutual
information scoring function identifies the correct alignment as being the top-scoring
alignment. (a) Represents the heterogeneous case, while (b and c) represent the
homogeneous examples. ‘‘Sampling accuracy” measures the frequency with which a
nearly correct transformation (max. deviation: rotation 5�, translation (1, 1) pixels) is
included in the set of transformations that are scored. ‘‘Scoring accuracy” measures
the frequency with which a correct or a nearly correct transformation scores higher
than any other transformation. In the ‘‘scoring accuracy” case, a correct transforma-
tion is always added to the list of transformation computed by the FE method.

(a) 50S vs 70S
SNR 1:1 1:2 1:3 1:5 1:7 1:10
Sampling accuracy (%) 100 100 98 92 87 83
Scoring accuracy (%) 90 77 55 11 1 0

(b) 70S vs 70S
SNR 1:2 1:5 1:7 1:10 1:15 1:20
Sampling accuracy (%) 100 99 98 94 89 84
Scoring accuracy (%) 100 97 81 14 0 0

(c) SF3b vs SF3b
SNR 1:2 1:5 1:7 1:10 1:15 1:20
Sampling accuracy (%) 100 100 100 99 99 97
Scoring accuracy (%) 100 100 97 87 13 0
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implemented in packages such as Imagic (van Heel et al., 2001) and
Spider (Frank, 2002b), has a detrimental effect on alignment
accuracy.

Here we presented an approach that improves image alignment
when the images being aligned are not fully represented by the
templates to which they are being compared. We first demon-
strated an efficient method for sampling transformational space
such that an arbitrary scoring function can be used. Then we
showed that using mutual information as a scoring function is
more suitable than NCCF in cases where the images being aligned
are not fully represented by the templates.

Model independence is an important property of an alignment/
matching procedure. If an incorrect model is used, the reconstruc-
tion should not converge to a structure that resembles the model. A
scoring function is sensitive if it allows the correct alignment when
the correct template is used, even with high levels of noise. The
high sensitivity of the NCCF is a desirable property if the model
is close to the experimental structure. However, when the similar-
ity between an image and template is low (the model is far from
the experimental structure), cross-correlation will often produce
spurious peaks that reflect an optimal alignment to the noise
rather than to the signal. We have shown that within the limited
set of conducted experiments, the mutual information-based align-
ment is far less biased by the model, but that it is also less sensitive
than NCCF. Using mutual information for the alignment of hetero-
geneous data that shares some structural elements with the tem-
plate can result in accurate alignment, but if the data shares no
structural elements with the template then the alignment will tend
to a completely random alignment, which is preferable.

In previous image alignment approaches each experimental im-
age was matched to the highest scoring template. Some template
images tend to have multiple high scoring images, even those that
are not represented by the template. This is a result of the differ-
ence in score distributions for different template images. We pro-
posed an iterative projection matching procedure to address this
problem. This iterative procedure is shown to improve the accu-
racy in the case of matching noisy 50S ribosome images to the tem-
plates of 70S ribosome for both NCCF and MI based alignments.

The main drawback for using MI in scoring alignments for elec-
tron microscopy data is its sensitivity to noise. Minimization of
Euclidean distance, or alternatively maximization of cross-correla-
tion, in the alignment of two images is known to optimize the max-
imum-likelihood estimation when the images are affected by
additive Gaussian noise (Scheres et al., 2007). Therefore it is unli-
kely that MI or other scoring function could give better alignment
results at lower SNR in the case of the additive Gaussian noise
model. However, when images undergo other types of distortions,
like molecular flexibility or varied subunit structure, NCCF might
not be the best choice; other functions, like MI, could provide a
better alignment. One of the reasons why MI fails at low SNR
may be due to its sensitivity to the quantization range of the image
gray levels. As discussed above, we achieved better results, espe-
cially at low SNR, when images are downscaled to 20 gray levels.
However, such a mechanism of noise suppression results in not
using the whole information, which may explain the inferior result
relative to NCCF at high noise levels. Use of MI for scoring is shown
to be of greatest use, when compared with NCCF, for heteroge-
neous data with SNR 1:1 or higher. Such a high SNR is unrealistic
for cryo-EM images of single-particles, which can have a SNR as
low as 1:10. However the SNR of cryo-EM data can be improved
by computing class-averages. Recently, class-averages were suc-
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cessfully used in separating heterogeneous data into homogeneous
subsets (Elad et al., 2008; Hall et al., 2007). In those cases, a suffi-
ciently large number of computed class-averages represented rela-
tively homogeneous views of distinct molecular conformations.
Consequently, class-averages were classified into subsets that rep-
resent projections of homogeneous structures. Below, we list one
possible scheme for a reconstruction of multiple structures from
heterogeneous data, where our approach could contribute to
achieve a better result:

(1) Compute class-averages from raw data using, for example, a
Multivariate Statistical Analysis (MSA) (Borland and van
Heel, 1990). Class-averages can be further refined by apply-
ing an additional step of MSA or/and a focused classification.
The unsupervised MSA process of computing class-averages
does not require a 3D model and thus does not possess
drawbacks of the template-based cross-correlation
alignment.

(2) Apply the proposed FE + MI approach to align class-averages
to an initial single model, which may only partially represent
the structural data within the class-averages.

(3) Apply a method such as CCCL (Hall et al., 2007) to sort the
class-averages into structurally homogeneous subsets that
can be reconstructed into multiple models.

(4) Use iterative multi-model refinement to improve the initial
models (Elad et al., 2008; Hall et al., 2007). Here, every
raw image is realigned and rematched, using the standard
NCCF-based alignment, into the most similar projection of
one of the models. At this stage, a more sophisticated
approach based on maximum-likelihood alignment and
matching (Scheres et al., 2007) can be used to improve the
multi-model refinement.

Variations on the scheme can be used to tackle the challenging
problem of heterogeneous reconstruction in a number of cases
(Elad et al., 2008; Hall et al., 2007). Two of our reported experi-
ments, the Klenow fragment and eIF3-IRES, demonstrate that our
proposed FE + MI method is able to improve the accuracy of heter-
ogeneous reconstruction if used as a part of the above scheme.
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