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a b s t r a c t

Biological macromolecules can adopt multiple conformational and compositional states due to structural
flexibility and alternative subunit assemblies. This structural heterogeneity poses a major challenge in
the study of macromolecular structure using single-particle electron microscopy. We propose a fully
automated, unsupervised method for the three-dimensional reconstruction of multiple structural models
from heterogeneous data. As a starting reference, our method employs an initial structure that does not
account for any heterogeneity. Then, a multi-stage clustering is used to create multiple models represen-
tative of the heterogeneity within the sample. The multi-stage clustering combines an existing approach
based on Multivariate Statistical Analysis to perform clustering within individual Euler angles, and a
newly developed approach to sort out class averages from individual Euler angles into homogeneous
groups. Structural models are computed from individual clusters. The whole data classification is further
refined using an iterative multi-model projection-matching approach. We tested our method on one syn-
thetic and three distinct experimental datasets. The tests include the cases where a macromolecular com-
plex exhibits structural flexibility and cases where a molecule is found in ligand-bound and unbound
states. We propose the use of our approach as an efficient way to reconstruct distinct multiple models
from heterogeneous data.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Single-particle electron microscopy (EM) is routinely used to re-
solve the three-dimensional (3D) structure of large macromolecu-
lar assemblies (Sali et al., 2003). The classical single particle EM
methodology assumes that all molecules have the same 3D shape,
i.e., the data are homogeneous. However, in practice, some mole-
cules can adopt different conformational states, or complexes with
different compositional states may coexist. This results in hetero-
geneous EM data, in which individual projection images come from
different 3D volumes (Brink et al., 2004; Leschziner and Nogales,
2007; Orlova et al., 1999; Roseman et al., 2001; Staley and Guthrie,
1998; Yang et al., 2002). The use of standard analysis techniques on
such data results in the reconstruction of models that are an aver-
age of all conformations. Consequently, the density map of an aver-
age structure has low or absent densities in the regions of
ll rights reserved.
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structural variability, rendering biological interpretation difficult.
In addition, heterogeneous data result in projection-matching er-
rors that lower the resolution of the single-model reconstruction
(Shatsky et al., 2009). To overcome these reconstruction issues
and, ultimately to understand the functional significance of struc-
tural heterogeneity it is therefore vital to develop methods that are
able to resolve the heterogeneity within the data and obtain higher
resolution multi-model reconstructions.

In some cases, structural heterogeneity can be approximated
with discrete number of conformations. Such cases of structural
variability can result from ligand-bound/unbound state, alterna-
tive subunit assemblies, or a flexible region that is stabilized in a
small number of conformational states. However, in a more general
scenario, structural variability may result when flexible regions
within a molecule are not stabilized in any particular state, but in-
stead can occupy a continuum of structural states. Here, we as-
sume that the heterogeneous data can be approximated by a
small number of structural models (Brink et al., 2004; Leschziner
and Nogales, 2007; Orlova et al., 1999; Roseman et al., 2001;
Scheres et al., 2007; Staley and Guthrie, 1998; Yang et al., 2002).
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This assumption is correct for discrete data, but a simplification in
the case of a continuous variation. The exact description of such
continuous variation is problematic and presently impractical for
noisy and limited EM data. However, a description by a number
of intermediate structural states is practically reasonable (Siride-
chadilok et al., 2005).

Several attempts have been made to devise computational meth-
ods that recover multiple structural models from heterogeneous EM
data. Most are based on supervised methods in which user interac-
tion is needed in order to sort the data into multiple homogeneous
subsets (Burgess et al., 2004; Fu et al., 2007; Hall et al., 2007; Penczek
et al., 2006; White et al., 2004). For example a user may partition the
data based on average density of class averages (Elad et al., 2008;
Penczek et al., 2006), images with larger density represent ligand-
bound states and images with lower density represent unbound
configurations. In another case, supervised classification is per-
formed after a user defines references based on visual inspection
(Hall et al., 2007). Obviously, a supervised approach may not work
well in all the cases, can be heavily biased by assumptions that the
user holds about the data, and may be exceptionally labor intensive.
A way to overcome these limitations is to employ fully automated
unsupervised approaches. We are aware of only three unsupervised
methods for a multi-model reconstruction. One approach resolves
heterogeneity within small angular space by means of an approach
called cluster tracking (Fu et al., 2007). This method allows homoge-
neous clusters to be obtained within a small angular neighborhood;
however, no solution has been given that enables a global clustering
throughout projection angular space. A second method is based on
clustering the data according to the common line similarity measure
(Herman and Kalinowski, 2008). However, this has not been demon-
strated to work on real EM data. A third approach is based on max-
imum-likelihood optimization: starting with multiple models
created from random subsets of the data, the raw images are itera-
tively assigned alignment parameters based on maximum likeli-
hood. During each iteration the multiple models are regenerated
from the realigned images. After many iterations the multiple mod-
els converge, with some models hopefully representing a different
conformational state (Scheres et al., 2007). This method proved
successful in several cases, however, it has a few drawbacks: its con-
vergence depends on the starting models; it is extremely computa-
tionally expensive; and it requires a large quantity of experimental
data.

Here we introduce a fully automated, unsupervised method
that reconstructs multiple models from heterogeneous EM data.
It is able to automatically classify the experimental images into
more homogeneous subsets that produce structurally different
models. Our method can be viewed as a hierarchical clustering of
EM images, in which the final clustering step separates the images
into homogeneous subsets.

Our method is composed of four stages. In the first stage we
perform a standard projection-matching procedure to assign trans-
lational and Euler angle parameters to the experimental images
using an initial single 3D model. We then cluster the images that
correspond to a specific Euler angle (projection direction) into a
specified number, K, of classes. This results in K average images,
subclass averages, for each Euler angle. Some views show distinct
structural differences while in others the structural differences
may be small or indistinguishable. In related previous work (Hall
et al., 2007), a manual visual inspection of subclass averages was
performed in order to pick a single representative view that shows
the highest degree of variability. Here we apply a fully automated
approach that considers all subclass averages simultaneously and
combines them into K groups that define K 3D models. In the last,
fourth stage, we iteratively run a K-model refinement procedure
that reassigns experimental images to the most similar models
(Hall et al., 2007; Kostek et al., 2006).
We have tested our method, with positive results, on three sin-
gle particle EM datasets and one synthetic dataset. Two cryo-EM
datasets – the 70S ribosome with and without elongation factor
EF-G, and human translation initiation factor eIF3 with and with-
out internal ribosome entry site RNA (IRES) – were used to demon-
strate the ability of our method to separate structures that are
different in their quaternary structure composition, as well as af-
fected by flexibility. A human RNA polymerase II cryo-EM dataset
was used to demonstrate our method working with a macromole-
cule that exhibits global flexibility. Using a synthetic data set of the
Klenow fragment of DNA polymerase I, we show that our method
performs better than a supervised clustering method (Hall et al.,
2007).
2. Methods

The input to our method is a set of n boxed projection images,
{xi}, taken from EM micrographs; an initial 3D model M0 that
roughly represents the data; and a number, K, of structurally differ-
ent models that we would like to recover from the data. An initial
model can be obtained from a standard single-model reconstruc-
tion procedure. The number K is not known in advance, a common
problem in clustering (e.g., K-means clustering), but in practice it
can be set to two and iteratively incremented until no new struc-
turally different models are observed.

There are four major stages in our method (pseudocode of the
first three is shown in Box 2a and b), which are detailed below.

2.1. Angular assignment

Our first step is a standard projection-matching procedure com-
monly used in single-model reconstruction to assign Euler angles
to the experimental images. Given an initial model M0 we generate
evenly spaced projections {mj}. In practice, we generate 98 tem-
plates by projecting an initial 3D model by uniform sampling of
17� (note that the resolution can be improved at the later, fourth,
stage of the multi-model refinement). The images {mj} are then
used as the templates for the multi-reference-alignment of exper-
imental images {xi}. In this procedure each image xi is assigned to
the most similar template mj, thus establishing an Euler angle used
in the subsequent reconstruction (this stage is depicted in the
Fig. 1a, box ‘‘Angular assignment”). Similarity between the images
is measured based on the cross-correlation function which is com-
puted over a sample of rotational and translational parameters.
The final result of the multi-reference-alignment is {(xi, ji,Ti)},
where ji is the index of the most similar model template which im-
age i is assigned to and Ti is a 2D Euclidean transformation that
should be applied to xi for the alignment with mji .

2.2. Intra-angular clustering

The goal of this stage is to resolve heterogeneity within each Eu-
ler angle by clustering images into K groups. Our assumption is
that a sufficient number of angularly similar, but structurally dif-
ferent projections are going to be assigned to the same projection
template (Euler angle). It is not required that all Euler angles
should have such a property, but since class averages from these
Euler angles are going to be used for backprojection, their number
will affect the resolution of reconstructed models.

We apply clustering within each Euler angle based on Multivar-
iate Statistical Analysis (MSA) (Borland and van Heel, 1990) to sep-
arate all images of a specific projection direction into
homogeneous groups. Namely, for each model template mt we
cluster all images assigned to this template, i.e., {(xi, ji,Ti): ji = t},
into K groups. Then, we compute an average image for each of



Fig. 1. (a) Method flowchart. For illustrative purposes a two-model reconstruction process is shown, though the method is generally applicable for more than two models.
Gray boxes refer to new approaches introduced in this work. The input is a starting model and a set of boxed images. On the left side, the images are clustered into two groups
to generate the two initial models. In the ‘‘Angular assignment” step, Euler angles are assigned to the experimental images by aligning them against the model projections. In
the ‘‘Intra-angular clustering” step, we apply clustering within each Euler angle based on Multivariate Statistical Analysis (MSA) to separate all images of a specific projection
direction into two homogeneous groups. This results in two subclass average images for each Euler angle. In the ‘‘Global clustering” step, subclass averages are grouped into
two global clusters where subclass averages from the same Euler angle are assigned to different clusters. Two initial 3D models are reconstructed from the two global clusters
of subclass averages in the ‘‘Backprojection reconstruction” step. These two initial models are improved in the iterative two-model refinement procedure, the right part of the
figure. In this process, first, all experimental images are reclassified to the most similar projections of the two models. Then, new models are computed and the two-model
refinement procedure is repeated. (b) More detailed algorithmic presentation of the ‘‘Global clustering” stage from (a). First, similarities between all subclass averages are
computed. Next, subclass averages are clustered into two groups by applying the Spectral Clustering method. In the last step, two clusters are iteratively optimized by
improving the score based on the normalized cut criterion.
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the K groups (subclasses), which we term a subclass average. In
some instances, not every template has sufficient number of
images assigned to it, and some of the K subclasses may be too
small. We require each subclass to have a minimum number of
images which by default we set to 30, otherwise, the Euler angle
and all of its subclasses are disregarded from the next step. There
is obvious trade-off between the number of subclasses and their
SNR. More images improve SNR of the subclass averages and there-
fore improve sensitivity of the following classification based on the
common line similarity (discussed below). However, raising the
threshold reduces the number of subclasses, which results in less
Euler angles used for the reconstruction of the initial models. It
has been observed (Hall et al., 2007) that sensitivity of the classifi-
cation, based on the common line similarity, performs well at SNR
higher than 0.5. An average SNR of the experimental cryo-EM
images lies in the range of [0.05,0.1]. Therefore, averaging at least
30 images will boost SNR to the range of [0.27,0.55], bringing it
close to the desired minimum for the classification.

The intra-angular clustering stage is depicted as box ‘‘Intra-
angular clustering” in Fig. 1a.

2.3. Global clustering of subclass averages into homogeneous subsets

The next problem is to decide how to divide subclass averages
from all angles into K groups. This clustering stage is depicted as
box ‘‘Global clustering of subclass averages into homogeneous sub-
sets” in Fig. 1a and more detail is given in Fig. 1b. For each of the K
models we need to pick one subclass average from every Euler an-
gle direction. There is no trivial way to perform this task. We could
arbitrarily assign subclass averages from the first Euler angle into K
models, but it is not clear how to then classify the subclass aver-
ages from subsequent Euler angles. There are two questions that
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need to be addressed. First, what kind of similarity function do we
need in order to distinguish between subclass averages from the
same or different models? Second, how to find an optimal cluster-
ing of subclass averages into K groups?

2.3.1. Similarity problem
For meaningful clustering we need to define a similarity mea-

sure between the subclass averages from different Euler angles
so that more similar images are more likely to belong to the same
structural model. To measure similarity between any two images,
we compare their common 1D projections (Frank, 2006; van Heel,
1987) as follows. A transmission EM image is a 2D projection of a
3D object, where the normal vector of the projection plane defines
the projection direction. Consider a line that is defined by the inter-
section between a pair of projection planes. Without loss of gener-
ality assume that the intersection line passes through the center of
the coordinate system. If we perform an additional projection of
any two 2D projections of the same 3D object onto their intersec-
tion line, thus generating two 1D vectors, these 1D projections will
be identical. Thus, these 1D projections are called common 1D pro-
jections. The common 1D projection also corresponds to the Fourier
transform of the common line defined by the intersection of two
central sections of the 3D object represented in the Fourier space.
For the corresponding Euler angles, the common 1D projections of
more similar structures should be more similar than the common
1D projections of structurally different objects (Hall et al., 2007).
Notice, for each pair of images the direction of their common 1D
projections is known since we know their corresponding Euler an-
gle from the previous stage. Let us define CCCL(u,v) as the cross-
correlation coefficient between the common 1D projections of
images uand v, and CCCL(u,v) is in the range of [�1,1].

2.3.2. Clustering problem
To solve this problem we apply a graph-theoretic approach. Let

us define a graph G = (V,E), where vertices V = {v1, . . . ,vt} represent t
subclass averages taken from all Euler angles. Our goal is to cluster
the graph nodes into K disjoint subsets C1, . . . ,CK, such that a cluster
Ci contains images that represent the 3D model i. We also require
that no two subclass averages from the same Euler angle are as-
signed to the same cluster.

Let us define a weight between the vertices of graph G as
w(u,v) = F + CCCL(u,v), if u and v come from different Euler angles
and w(u,v) = 0 otherwise. The weights are designed so that the clus-
tering procedure will try to group together vertices with higher
weights in between them; thus, subclass averages with more similar
common 1D projections will be grouped together. We set F to be a
large number in order to separate weights of nodes from the same
and different Euler angles. This way, we encourage the clustering
procedure to not group together nodes with the same Euler angle.
As in our tests any value of F larger than 1 gave the same result, we
set the default value of F to 106. All the weights are set to be non-neg-
ative – a requirement from the clustering method explained below.

A cluster volume is defined as volðAÞ ¼
P

u2A;v2V wðu;vÞ. Notice
that vol(A) includes the weights associated with intra-cluster A
edges and edges connecting vertices from A with all the rest, i.e.
VnA. A weight between two clusters A and B is defined as
WðA;BÞ ¼

P
u2A;v2Bwðu;vÞ. W(A,B) measures how well two clusters

are separated. Smaller W(A,B) is a feature of a better clustering.
Now we are ready to define the normalized cut:

NcutðC1; . . . ;CKÞ ¼
1
2

XK

i¼1

WðCi;V n CiÞ
volðCiÞ

:

Our goal is to find a clustering that minimizes Ncut. Normaliza-
tion by cluster volume is required to avoid clusters with very few
nodes, since such clusters tend to trivially minimize the inter-clus-
ter weights. For example, if normalization by volume is omitted,
taking K � 1 clusters as single nodes and putting into the K0th clus-
ter all the rest of the graph nodes will likely create a cut with a very
small weight. However, we prefer to have a more balanced cluster-
ing, where all clusters have a substantial number of nodes.

The task of finding the global minima for the normalized cut
problem is computationally intractable, even for K = 2 (Appendix
in Shi and Malik (2000)). Here we apply the spectral clustering
method that has been shown to give a reasonable approximation
to the normalized cut criterion (Malik et al., 2001; Ng et al.,
2001). Briefly, the idea of spectral clustering is to map the graph
vertices into Euclidean space by projecting the vertices into an
eigenvector subspace of a Laplacian matrix derived from the simi-
larity matrix Sði; jÞ ¼ wðv i;v jÞ. After vertices are mapped onto
Euclidean space a standard K-means clustering is applied. The
description of spectral clustering is given in Box 1.

Box 1 Spectral clustering.
Input: S � a t � t similarity matrix, and K – number of
clusters.

(1) Compute the normalized graph Laplacian matrix
L = I � D�1/2S D�1/2, where:

� S is the t � t non-negative matrix that describes sim-

ilarity between t elements;
� I is the t � t identity matrix with ones on its diagonal

and zero elsewhere;
� D is the t � t diagonal matrix with vertex degrees di

on its diagonal: di ¼
P

j¼1...tSði; jÞ, which is the total
sum of similarities for the element i.
(2) Compute K eigenvectors p1, . . . ,pK corresponding to the
smallest eigenvalues of L.

(3) Construct the matrix P 2 Rt�K where columns of P are
vectors p1, . . . ,pK.

(4) Construct the matrix P� 2 Rt�K by normalizing the rows

of P: p�ij ¼ pij=
PK

k¼1p2
ik

� �1=2
.

(5) Define a set of t points in RK by letting yi, i = 1, . . . , t, be
the i0th row of matrix P*.

(6) Apply the K-means clustering algorithm to obtain K
clusters C1, . . . ,CK of the point set {yi}. Consequently,
the input element i belongs to cluster j if yi belongs to
cluster Cj.
Since the spectral clustering is not guaranteed to find an opti-
mal value for the normalized cut criterion, we apply two additional
local-optimization steps to improve the cut.

First, we are optimizing the cut by trying to move a single node.
Find a node in the graph, by going over all graph nodes, that re-
duces the normalized cut score when moved to another cluster.
Move this node and update the clustering. Repeat until no further
improvement is possible. Even though this optimization is guaran-
teed to converge upon a local optima, it may require an exponen-
tial number of iterations to explore all clustering options. We limit
the maximal number of iterations to 20 � t, sufficient for conver-
gence in all our experiments. At the end of this local optimization,
and for all our experiments, the optimized cut resulted in equal
size clusters such that the subclass averages from the same angle
are placed in different clusters. This is due to the choice of the
weighting function w(u,v). Next, we are optimizing the cut by try-
ing different permutations of subclass averages from the same Eu-
ler angle. These two optimization procedures are given as items 6
and 7 of Box 2(b).
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Box 2(a) Pseudocode of multi-model reconstruction.

Input: K – is the number of desired models/clusters,
M0 – is a starting 3D model and
{xi: i = 1, . . . ,n} – is the set of boxed images.

(1) {mj: j = 1, . . . ,p} =
Evenly Spaced Forward Projections (M0, sampling_
angle)
# Default: sampling_angle = 17�, which results in p = 98
projections.

(2) ðfx�i : i ¼ 1; . . . ; ng; f Þ =
Multi Reference Alignment ({mj}, {xi})
# f – is a mapping from an index of image xi to an index
of the most similar template projection mj, i.e. f(i) = j.
# x�i is a transformed image that maximizes similarity
with its assigned template mf(i).

(3) For each Euler angle a = 1, . . . ,p
Compute K clusters within given Euler angle:

(P1, . . . ,PK) =
Multivariate Statistical Analysis ({xi:f(i) = a})

# where Pi is a subclass of images
if exists Pi such that jPij < 30 then continue with next a,

otherwise:
Set subclass average images sia

i ¼ Average Image (Pi),
i = 1, . . . ,K.

SIa ¼ fsia
i : i ¼ 1; . . . ;Kg

end for each
(4) Compute similarity matrix S for each pair (u,v) of sub-

class averages u,v 2
S

aSIa:

Sðu;vÞ ¼ 0 9 a s:t: u 2 SIa ^ v 2 SIa

F þ CCCLðu; vÞ otherwise;

�

where F = 106 and CCCL(u,v) is a cross-correlation coef-
ficient of common
1D projections of u and v.

(5) Using S and K as parameters, run spectral clustering
algorithm from Box 1 to obtain K clusters (C1, . . . ,CK).
Box 2(b)

(6) Iterative improvement of (C1, . . . ,CK):

counter = 20
While counter > 0

For each s 2
S

aSIa, $i s.t. s 2 Ci

if $j s.t. Ncut(C1, . . . ,Cin{s}, . . . ,Cj [ {s}, . . . ,CK) <
Ncut(C1, . . . ,CK) then

update clustering: Ci = Cin{s} and Cj = Cj [ {s}
end for each
counter = counter � 1

end while
(7) Iterative improvement of k � tuples in (C1, . . . ,CK):

counter = 20
While counter > 0

For each (s1, . . . ,sK) 2 (C1, . . . ,CK) s.t. $a si 2 SIa, i = 1, . . . ,K
if exists a permutation ðsi1 ; . . . ; siK Þ s.t.
NcutðC1 [ fsi1g n fs1g; . . . ;CK [ fsiK g n fsKgÞ <

NcutðC1; . . . ;CKÞ then
update clustering: Ci ¼ Ci [ fsiig n fsig; i ¼ 1; . . . ;K .

end for each
counter = counter � 1

end while
(8) Apply backprojection reconstruction to compute model

Mi from subclass averages Ci for each i = 1, . . . ,K.
In our experiments for K = 3 we found that we achieve better re-
sults if we do not use the clustering in its general form described
above, but apply it iteratively. Namely, apply steps 1–7 to obtain
two clusters and then partition the largest cluster into two more
clusters. All the reported results with K > 2 are obtained using iter-
ative clustering.

Once K clusters of subclass averages are computed, each cluster
is reconstructed using standard backprojection to produce a 3D
model (Fig. 1a, box ‘‘Backprojection reconstruction”). These initial
models are filtered to a low resolution (30 Å is used by default in
all our experiments) to prevent any noise bias in the following
multi-model refinement procedure.

2.4. Multi-model refinement procedure

In the last, fourth stage, we iteratively improve the K models,
{M1, . . . ,MK} obtained from the previous stage (Fig. 1a, right col-
umn). All experimental images, {xi}, are reassigned to the most
similar projections of {M1, . . . ,MK} by applying multi-reference
alignment. K new models are computed and the refinement proce-
dure is repeated. In our experiments we iterated up to five times.
Only some percentage of the most similar images (from {xi}), based
on cross-correlation coefficients, are used for the reconstruction of
each model. Only images with coefficients larger than l + ar are
accepted, where l and r are the average and standard deviation
of the cross-correlation coefficients. We set a to �0.8 which results
in roughly 78% of the images. In the following iteration all original
images are realigned against the new models. The right part of the
flow chart in Fig. 1a depicts the multi-model refinement procedure.

3. Results

In our experiments below we aimed to assess the ability of a
single automated protocol to produce useful results. For this reason
we did not optimize parameters for each individual reconstruction.
Our goal was to assess our method in this diverse set of examples
using the same, fixed, set of parameters described above. We real-
ize that in doing so we did not obtain the best possible reconstruc-
tions, but we did provide realistic results. In some cases we know
the correct classification of the images (at least based on alterna-
tive sorting procedures). In order to assess a quality of partitioning
by our method we calculate a classification accuracy of each recon-
structed model which is measured as 100% � TP/(TP + FP), where TP
are true positives and FP are false positives, and TP+FP is the total
number of images used to reconstruct a particular model.

3.1. Different assemblies and a ratchet motion: 70S ribosome with and
without elongation factor-G (EF-G)

Here we analyze ten thousands cryo-EM images of 70S Esche-
richia coli ribosomes with either EF-G bound or absent (data were
provided by J. Frank). A previous study using supervised classifica-
tion (Gao et al., 2003) partitioned the data into 5000 EF-G bound
images and 5000 EG-G absent images. The images were CTF cor-
rected, band-pass filtered and normalized. For the starting model
we used a density map of 70S ribosome from EBI Database EMDB
(Tagari et al., 2002), entry EMD-1003, resolution 11.3 Å (Rawat
et al., 2003). We then ran our method with K = 2. Assuming that
the previous partition of the 10,000 images is correct, our approach
clustered the images with 84% and 86% classification accuracy
(100 � TP/(TP + FP)). The resolution of the resulted models is 16 Å
(FSC at 0.5 cut-off). These two models agree very well with previ-
ously published results and are shown in Fig. 2. It is clear that in
one model EF-G is present, while it is absent in the other, and the
binding of EF-G results in an overall structural change of the 70S
ribosome called ratchet motion.



Fig. 2. Results from the reconstructions of 70S with and without EF-G. (a) shows the two reconstructions resulting from the implementation of our method, pink in the
structure to the left indicates the assumed EF-G, other colors indicate the 30S and 50S subunits. (b) shows the difference map created by subtracting the structure of 70S alone
from the structure assumed to contain EF-G, the difference is indicated in pink. It is clear from the difference map that not only have we captured the presence or absence of
EF-G, but also a ratchet movement between the two subunits (Gao et al., 2003).
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Table 1 shows a comparison of our method with the Double
MSA method (Elad et al., 2008), based on manual selection of
eigenvectors for the classification, and with ML3D, an implementa-
tion of a maximum-likelihood approach (Scheres et al., 2007). Dou-
ble MSA method shows the fastest convergence with good results
after two iterations of refinement, benefiting from accurately clas-
sified subclass averages. Our method achieved a comparable result
after three more refinement iterations; however, our classification
approach did not require any user supervised decisions. Maximum
likelihood classification produced a broadly comparable result
when using four random starting models. It should be noted that
all three approaches use different multi-model refinement proto-
cols. The percentage accuracies shown in Table 1 should not be
treated as an absolute ‘‘ground-truth” assessment, since the refer-
ence classification may contain some errors with respect to pres-
ence or absence of EF-G.

We also applied our method to the ribosome data setting K = 3.
After two iterations of the multi-model refinement one model
Table 1
Comparison of multi-model reconstruction methods. This is a two model reconstruction tes
images correspond to the ribosomes with and without the elongation factor-G (EF-G) (Gao
truth as it may contain some errors. ML3D, which is a 3D multi-reference maximum-likelih
four starting models. For all three methods the starting models and refinement procedure

Refinement ac
One iteration.

Our method 63 70
Double MSA (Elad et al., 2008) Two iterations
ML3D (Scheres et al., 2007) Two modelsc: 50 50

Four modelsc: 55,58 56,58

a Twenty-five iterations for our method are not required, and are only given for comp
b Estimated accuracy from personal communication with Dr. Elena Orlova.
c From personal communication with Dr. Sjors Scheres.
started to converge to the EF-G absent state (92% accuracy), while
the other two models started to converge to the EF-G bound con-
formation (92% and 60% accuracy).

3.2. Different assemblies: Human translation initiation factor eIF3 and
eIF3-IRES complex

In mammalian cell protein synthesis, translation initiation fac-
tor eIF3 controls assembly of 40S ribosomal subunit on mRNA.
eIF3 interacts with eIF4F bound to mRNA 50-cap. Alternatively, a
viral internal ribosome entry site (IRES) can interact with eIF3
and functionally substitutes for the eIF4F and mRNA 50-cap com-
plex. We analyzed two cryo-EM datasets of the human translation
initiation factor eIF3 and of eIF3-IRES complex where eIF3 is bound
with hepatitis C virus (HCV) internal ribosome entry site (IRES)
(Siridechadilok et al., 2005). The datasets consist of 6736 images
of eIF3 and 19,027 images of eIF3-IRES, taken under the same
experimental conditions. By mixing images from the two datasets
t based on the 10,000 cryo-EM images of 70S E. coli ribosomes where two halves of the
et al., 2003); note that this classification should not be taken as an absolute ground

ood refinement implementation (Scheres et al., 2007), has been applied using two and
s are different.

curacy. Refinement accuracy.
Five iterations.

Refinement accuracy.
Twenty-five iterations.

84 86 86 88a

: 85 85b

58 55 69 63
77,82 76,80 78,82 77,80

arison purpose only.
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we can create a model dataset with a known result for further test-
ing our method.

We initially mixed the 6736 images of eIF3 and the 19,027
images of eIF3-IRES into one set and applied our method with
K = 2. The initial model was a previously reconstructed volume of
eIF3 (EMDB entry EMD-1170). The two reconstructed models are
shown in Fig. 3b and c. The accuracy of the eIF3-IRES model is
Fig. 3. (a) Structure of unliganded eIF3 (EMDB entry EMD-1170) used as an initial m
reconstruction from a mixed set of 6736 images of eIF3 and 19,027 images of eIF3-IRES. (d
(b). (e and f) Results of two-model reconstruction from 19,027 images of eIF3-IRES. (g) St
(h) Example of five visually most distinctive subclass averages (columns) partitioned in
with IRES structure (white arrows) from unliganded eIF3 (second row). Notice that
(Siridechadilok et al., 2005).
82%, while the accuracy of eIF3 reconstruction is only 29%. The
low accuracy of the eIF3 model is due to the large number
(5642) of images from the eIF3-IRES experiment’s dataset assigned
to the eIF3 reconstruction. To investigate further we reconstructed
a volume using only these 5642 images from the eIF3-IRES dataset
that were assigned to the eIF3 model. This reconstruction looked
almost identical to the eIF3 model. Therefore we conclude that a
odel in our two-model reconstruction process. (b and c) Results of two-model
) Structure from (c) colored according to the density map difference between (c) and

ructure from (f) colored according to the density map difference between (f) and (e).
to two groups (rows). The clustering procedure clearly separated subclass averages
the IRES is not well defined in the subclass averages due to its high flexibility
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large fraction of the images from the eIF3-IRES dataset are of un-
bound eIF3. This fact motivated us to apply our approach to the
eIF3-IRES data alone.

The results of two-model reconstruction from 19,027 images of
eIF3-IRES dataset are shown in Fig. 3d and e. Clearly, the RNA IRES
is only present in the second model (Fig. 3e). Five thousand eight
hundered and seventy-three images were assigned to the model
without IRES (Fig. 3d) and 7994 images were assigned to the
eIF3-IRES model (Fig. 3d). Therefore, we were able to partition
the data into unbound eIF3 and eIF3 bound to IRES. The resolution
of the two models is 34 Å and 39 Å correspondingly (FSC at 0.5 cut-
off). We used these two models to reclassify all 19,027 images by
removing the cross-correlation threshold used to select only highly
correlated images during the multi-model refinement. That re-
sulted in 6580 (35%) images assigned to the eIF3 model and
12,449 (65%) images assigned to the eIF3-IRES model.

3.3. Different conformations: human RNA polymerase II

RNA polymerase II exhibits significant conformational changes
during the process of transcription, for example between the tran-
scriptional initiation (Gnatt et al., 2001) and elongation (Cheetham
et al., 1999; Tahirov et al., 2002). We applied our method to 6835
cryo-EM images of hRNAPII, that have been previously shown to
exhibit flexibility (Kostek et al., 2006). A structure from a standard
one model reconstruction of the data served as an initial model for
the approach (Kostek et al., 2006). Fig. 4 shows the results of our
two-model reconstruction. The resolution of these two models is
approximately 30Å (FSC at 0.5 cut-off). As it can be seen from
the figure, the automated two-model reconstruction obtained with
our method gave comparable results for a closed and an open con-
formation of hRNAPII computed with a more tedious and subjec-
tive supervised approach (Kostek et al., 2006). 2185 images were
assigned to the first model and 2766 images were assigned to
the second one.

3.4. Assessment of the method components

Here we analyze how well the key components of our method
contribute to the quality of the multi-model reconstruction. There
are two key steps in our method, ‘‘Intra-angular clustering” and
‘‘Global clustering” (marked gray in Fig. 1), that aim to resolve
the heterogeneity in the data. We analyze whether each of these
two stages do any better than a random partitioning. We also ana-
Fig. 4. Human RNA polymerase II. (a) Reconstruction from the entire dataset. (b and c) O
the stalk, clamp and jaw regions. (d) Structure from (b) colored according to the density m
correspond to the closed and open forms (Kostek et al., 2006). The resolution of these tw
map difference between (e) and (f).
lyze the results when we substitute our clustering stages with a
perfect clustering. For the test, we use the experimental dataset
of 70S ribosome discussed above and one synthetic dataset. These
two datasets model two types of heterogeneity: different quater-
nary structure assemblies, and structural flexibility.

We started by performing four tests on the 70S ribosome data.
For each test we compute the classification accuracy for each
stage of the method assuming that the true partitioning of the
data is 1–5000 and 5001–10,000 as reported previously. The sec-
ond and the third column of Table 2 show the classification accu-
racy for ‘‘Intra-angular clustering” and ‘‘Global clustering”. The
last column displays accuracy after all images are realigned and
reassigned to the two-models obtained after the ‘‘Global cluster-
ing” stage.

In the first test, ‘‘Perfect clustering”, we compute an accuracy
that can be achieved at the multi-model refinement stage if we
perfectly partition the data. This accuracy is not 100% since the ini-
tial model used to align images does not exactly represent any
model from the data. This result represents a ceiling on what a
method may be able to achieve.

In the second test, ‘‘Perfect intra-angular clustering”, we per-
fectly partition the data into two subclasses within each Euler an-
gle. Then we apply our ‘‘Global clustering” method followed by the
multi-model refinement. Table 2 shows that our global clustering
stage partitioned the subclass averages into two groups with al-
most perfect accuracy. It made mistakes only for three pairs of sub-
class averages out of 41 pairs (here we used the same set of Euler
angles that passed the threshold for sufficient number of images as
in our whole approach). For comparison, a random global cluster-
ing that starts from perfectly created subclass averages achieved an
average accuracy of only 54% (Table 2, fourth row). Therefore, we
conclude that the ‘‘Global clustering” stage is very accurate; how-
ever, its accuracy depends on the accuracy of ‘‘Intra-angular clus-
tering”, which remains limiting (60% on average using
Multivariate Statistical Analysis (Borland and van Heel, 1990) as
described above).

Next, we compare our method against random approaches. In
the ‘‘Random intra-angular clustering” test we substitute ‘‘Intra-
angular clustering” with a random clustering of images into two
subclasses and apply our ‘‘Global clustering” method. It would na-
ively be expected to observe a random accuracy of 50%; however,
projections from the same view but from different conformations
may not always match to the same model templates. Thus, some
Euler angles are going to be populated with more images from
ur result of the two-model reconstruction. Most of the structural changes happen in
ap difference between (b) and (c). (e and f) Two previously published models that

o structures is not available. (g) Structure from (e) colored according to the density



Table 2
Accuracy of two-model reconstruction. The data used for the tests are 10,000 cryo-EM images of 70S E. coli ribosomes where two halves of the images correspond to the
ribosomes with and without the elongation factor-G (EF-G). ‘‘Our method” refers to the method presented in this paper. ‘‘Perfect clustering” refers to two models reconstructed
from images 1–5000 and 5001–10,000 after they were aligned to a density map of EMD-1003. In the ‘‘Perfect intra-angular clustering” experiment, images within each Euler angle
are perfectly classified into two groups and then the ‘‘Global clustering” method is applied (third row) or subclass averages are randomly classified (fourth row). ‘‘Random intra-
angular clustering” refers to the experiment where subclass averages were computed based on a random classification, i.e., the ‘‘Intra-angular clustering” stage is omitted.
‘‘Random global clustering” refers to the initial reconstructions computed from the random selection of subclass averages of the ‘‘Intra-angular clustering” stage, i.e., ‘‘Global
clustering” stage is omitted. ‘‘Random split” refers to the reconstructions from two randomly split datasets of 10,000 originally images, thus skipping the ‘‘Intra-angular” and
‘‘Global” clustering stages. Column ‘‘Intra-angular accuracy” shows classification accuracy within computed subclass averages. Since at this stage it is not known what subclasses
belong to what model only one accuracy average for all subclasses is computed. Column ‘‘Global accuracy” is the classification accuracy after all subclasses are partitioned into
two groups. ‘‘Refinement accuracy” displays the accuracy after all 10,000 images are realigned and reassigned to the two models computed in a corresponding experiment. All the
randomized experiments were repeated 20 times, and its average result plus minus one standard deviation are reported.

Intra-angular clustering
accuracy.

Global clustering
accuracy.

Refinement accuracy.
One iteration.

Refinement accuracy.
Five iterations.

Our method 60 (average) 57 64 63 70 84 86
Perfect clustering 100 100 100 77 87 90 90
Perfect intra-angular clustering 100 97 96 80 89 91 90
Perfect intra-angular and random global clustering 100 54 ± 4 54 ± 4 58 ± 6 58 ± 6 81 ± 10 81 ± 9
Random intra-angular clustering 53.3 ± 0.4 51 ± 2 50 ± 2 52 ± 2 52 ± 2 77 ± 9 77 ± 10
Random global clustering 60 (average) 54 ± 3 55 ± 3 56 ± 6 56 ± 5 77 ± 13 76 ± 12
Random split – – 51 ± 2 52 ± 2 78 ± 11 78 ± 11
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one conformation than from the other. Consequently, a random
clustering accuracy can be higher than 50%.

In addition we compare our method with a random partitioning
of the data at the ‘‘Global clustering” stage (test ‘‘Random global
clustering”). Instead of optimizing the partitioning of the subclass
averages into two groups we perform a random partitioning of
the subclass averages and compute two initial models. While the
difference in accuracy between the random global clustering and
our method at the level of global clustering may appear not large,
it however significantly increases at the refinement stage.

In the last test, ‘‘Random split”, we measure the accuracy of a
totally random approach where we randomly split the original
10,000 images into two sets and compute two initial models from
each set. In this test, we skip all clustering stages.

Following the above tests we conclude that all algorithmic
stages of our method contribute to achieving higher quality mul-
ti-model reconstructions compared with the randomized substi-
tutes of the corresponding stages. Even a small improvement in
accuracy of the initial models leads to a faster convergence during
the multi-model refinement.

We also carried out this analysis with the synthetic data set
used to model structural flexibility of a protein complex with a
small flexible domain extending from the main body of the struc-
ture. We used the same dataset as in Hall et al. (2007) in order to
compare the results of our and their method. Three different syn-
thetic conformations of the Klenow fragment of DNA polymerase
I (PDB code: 1kfd, Beese et al., 1993) were generated and filtered
to 20 Å resolution (Hall et al., 2007). For each conformation they
produced 150 projections at random orientations and added noise
to give a final SNR of 1:1. The level of noise was chosen to resemble
the level of noise of typical experimental subclass averages. An ini-
tial model was constructed by taking all 450 images from the three
structures and producing an average conformation. Angular
assignment by projection matching was then carried out for the
450 images using the average conformation as the reference. Since
in this experiment the images are modeled to resemble subclass
averages, we do not apply our ‘‘Intra-angular clustering” step. We
also do not set to zero the weights between the images assigned
to the same Euler angle, since in this experimental setup more than
three images may be assigned to an Euler angle. Essentially, the
only difference between the previous study (Hall et al., 2007)
and the adaptation of our method for this dataset is in application
of the unsupervised ‘‘Global clustering.” In the previous study (Hall
et al., 2007) a supervised clustering was performed by manually
picking three representative images and classifying all other
images based on CCCL similarity to the picked three representa-
tives. Their accuracy was 61%, 63%, and 77% for the corresponding
three structures. We applied our ‘‘Global clustering” method and
achieved a corresponding accuracy of 99%, 90%, and 98%.

From the above experiments with ribosome 70S and the Klenow
fragment of DNA polymerase I we conclude that the ‘‘Global clus-
tering” stage of our method is very accurate, while the ‘‘Intra-angu-
lar” clustering is the weakest point in our approach. However, the
combination of these algorithmic steps is capable of producing
starting models with sufficient differences for the multi-refine-
ment procedure to converge. In the case of ribosome 70S data
the accuracy of the first two-model refinement is 63% and 70% (Ta-
ble 2), while after five refinement iterations the accuracy rises to
84% and 86% (Fig. 2).
4. Discussion

Two extreme approaches have been proposed to solve the mul-
ti-model reconstruction problem. According to one methodology
(Scheres et al., 2007) at least in some cases, and in the context of
a maximum-likelihood approach, it is enough to randomly parti-
tion the data into K subsets and run iterative multi-model refine-
ment on reconstructions from these random partitions. Thus no
complex clustering (‘‘Intra-angular” and ‘‘Global” clustering stages
in our method) is required to produce the starting models. The
alternative methodology (Elad et al., 2008) maintains that a super-
vised method is necessary for an accurate classification of subclas-
ses where a subclassification of images from the same projection
direction based on manual selection of eigenimages is performed
in order to sort heterogeneity in 2D averages, similar to the reclas-
sification of images within the same Euler angle in our method
(‘‘Intra-angular clustering”). The benefit of the first approach is
its simplicity to generate K starting models, while its drawback is
relatively slow execution time and dependency on the number of
starting models needed for convergence. The benefit of the second
approach is in its high classification accuracy within class averages,
however, it requires a tedious manual selection of eigenimages for
each Euler angle. Our approach falls somewhat in between. We
have shown that a manual selection of the most distinguished sub-
set of eigenimages is not required, enabling the classification to be
carried out unsupervised. The results from our unsupervised clas-
sification, may not always be as accurate as a supervised classifica-
tion of (Elad et al., 2008), but they are sufficient to generate
starting models with significant enough differences for a multi
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model reconstruction procedure to converge. In addition, our
method does not increase significantly the time for reconstruction,
as it takes less time than a usual one iteration of a refinement pro-
cedure. For example, in the case of the 70S ribosome dataset the
stages of ‘‘Intra-angular” and ‘‘Global” clustering take about one
and a half hour on a single 2.2 GHz AMD Opteron CPU computer.

Our method provides a multi-stage approach that addresses a
classification problem of multi-model reconstruction. Several other
approaches can benefit from applying our method or some of its
stages to improve the multi-model reconstruction further. For
example, the methods of Hall et al. (2007) and Elad et al. (2008)
can benefit from applying ‘‘Global clustering” to perform the unsu-
pervised clustering of class averages into homogeneous subsets.
The method of Scheres et al. (2007) may benefit by performing
its maximum-likelihood refinement from the starting models pro-
duced by our method instead of the models produced from random
subsets. This may allow a faster convergence for the iterative max-
imum-likelihood refinement.

In general, the choice of the number of clusters (i.e., the num-
ber of models) and of a clustering method can be considered as
two separate computational problems, each having its own chal-
lenges. To solve the first problem one should start with answering
the following question: do two given 3D structures represent the
same or two different conformations? To answer this question
one might consider to use a resolution (e.g., an FSC curve) of
the reconstructed models as a measure of similarity. However,
resolution inevitably drops when data are split into more clusters,
thus making models reconstructed from fewer images artificially
more distinct than the models reconstructed from more images.
In this paper we have dealt only with the second problem of a
clustering method, when the number of desired models is given.
We estimated the differences between the models mostly based
on the visual examination and compared with the previous clas-
sification. We have demonstrated that our method works for var-
ious types of heterogeneous data: macromolecules exhibiting
flexible motion, complexes with variable composition, or both.
Most of our results present an analysis of two-model reconstruc-
tion (K = 2). Looking for an increased number of structurally dif-
ferent models is more challenging. The number of images
needed to obtain the same signal-to-noise ratio in the class aver-
ages increases with K, and the structural differences become
smaller and harder to detect. Our method can be applied to
K > 2 problems, given the required increase in the number of
raw images, either by applying the method as described, or by
running it iteratively. Namely, apply it with K = 2, dividing the
data into two subsets (not necessarily of equal size) and then iter-
atively cluster each subset separately.

The program protocol including Perl scripts, Matlab code, and
instructions how to apply various stages using Spider (Frank,
2002) and Imagic (van Heel et al., 2001) software is available at
http://compbio.berkeley.edu/proj/emmm/.
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