
















have adopted the following five additional metrics to assess
the quality of our sets and other sets of proposed PPIs.

Percentage of Same Operon PPIs—This measures the frac-
tion of protein pairs whose members are encoded in the same
operon.

Fold Enrichment in the Same TIGR Role—This measures
the fraction of protein pairs, both of whose members share
the same TIGR role annotation, were divided by the fraction
of the same TIGR role pairs that are found in gene pairs
chosen at random from the genome.

Percentage of PPIs in AP-MS—This measures the fraction
of protein pairs that are found in at least one AP-MS interac-
tome other than the dataset being assessed.

Percentage of PPIs in Y2H—This measures the fraction of
PPIs in a given set that are found in at least one Y2H inter-
actome other than the dataset being assessed.

Reciprocal Confirmation Percent—This measures the pro-
tein pairs for which interaction was reciprocally confirmed
within the same AP-MS or Y2H study as both bait-prey and
prey-bait pairs, as a percent of pairs in the interactome for
which both members were tested as baits.

To provide a benchmark for the properties of well charac-
terized bacterial complexes, we identified three “benchmark”
PPI datasets. One comprises the complexes in the EcoCyc
database, a manually curated dataset based on low through-
put experiments from the literature (supplemental Dataset S6)
(53). The other two are for the �3% of protein pairs that have
been confirmed as reciprocal PPIs in either bacterial Y2H or
AP-MS interactomes (Fig. 4 and supplemental Table S3).
Encouragingly, our high confidence PPIs score within the
same range as the benchmark datasets for our first four
metrics, never having a lower value (Fig. 4), although the fifth
metric is not applicable to the benchmark sets.

The accuracy of our high confidence PPIs is further sup-
ported by the fact that they include many previously charac-
terized interactions or are consistent with other data (see

supplemental text and supplemental Figs. S11–S13 for further
discussion). For example, interactions previously identified in
low throughput studies of D. vulgaris or other bacteria are
observed among components of dissimilatory sulfite reduc-
tase, quinone-interacting membrane-bound oxidoreductase,
flavin oxidoreductase, and RNA polymerase. Novel high con-
fidence PPIs supported by other data include associations
between an uncharacterized protein, DsrD and DsrAB;
FlxABCD and heterodisulfide reductase A; two proteins of
unknown function and RNA polymerase; and an uncharacter-
ized protein, a carbon storage regulator, and flagellin proteins.
In addition, of the 11 high confidence PPIs that include a
protein encoded on the native 200-kb D. vulgaris plasmid
pDV1, only one includes a protein encoded on the much
larger bacterial chromosome, a result consistent with a low
FDR.

Lower Confidence Sets of Protein Pairs

We next explored whether it is possible to detect additional
PPIs by using alternative criteria to interrogate the raw mass
spectrometry data. Four sets of “low confidence” protein
pairs were identified (Fig. 4 and “Experimental Procedures”).
The first three were captured as matrix models at �20% FDR
and included many PPIs from our high confidence set, but
here we only consider those unique pairs that were found in
addition to the high confidence PPIs. The four sets are (i)
“single hit” prey proteins that are detected by only one pep-
tide; (ii) ribosomal and chaperonin proteins, but limited only to
“ribo-other” protein pairs between a ribosomal or a chaper-
onin protein and another protein; (iii) “no threshold” pairs that
were excluded by the thresholds placed on the features NSAF
and dice; and (iv) the 677 “high FDR” protein pairs excluded
from our high confidence set at local FDRs between 20 and
61%.

Compared with our high confidence PPIs and the three
benchmark datasets, the low confidence sets are each less

FIG. 2. Evaluation of PPI inference for two AP-MS representation models. A, schematic representation of two possible models, spoke
and matrix, used to annotate PPIs from AP-MS experiments. B, precision/recall curve as measured from the cross-validation procedure. True
positives (TP) (correctly inferred gold standard positive interactions), false positives (incorrectly inferred as interacting gold standard negative
interactions), and FN (not inferred as interacting gold standard positive interactions). C, precision as the function of the number of PPIs inferred
by the logistic regression classifier.
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enriched in protein pairs that are encoded in the same operon,
reciprocally confirmed, or found in Y2H interactomes or, with
one exception, in AP-MS interactomes (Fig. 4). The single hit
and ribo-other sets are likely to be largely false positives as
they also show no enrichment for pairs with similar functions
(Fig. 4). This is not unexpected as single peptide hits are
present at lower abundance in purified material and thus are
more likely to be incompletely removed contaminants, and

ribosomal proteins are highly expressed in cells (supplemental
Fig. S3) and thus also likely to be difficult to completely
remove during purification. The “no threshold” and “high
FDR” sets, in contrast, may contain many functional but lower
affinity interactions. The no threshold pairs are almost as
strongly enriched in the same TIGR role protein pairs as our
high confidence set (Fig. 4). Given that this strong enrichment
is unlikely to occur by chance (p value � 0.05 after correction

Hypothetical proteins, unknown or unclassified function

DNA metabolism
Transcription
Biosynthesis of cofactors, prosthetic groups, and carriers
Regulatory functions
Cellular processes
Cell envelope
Energy metabolism

Protein fate
Signal transduction
Protein synthesis
Purines, pyrimidines, nucleosides, and nucleotides
Central intermediary metabolism

Amino acid biosynthesis
Transport and binding proteins

Fatty acid and phospholipid metabolism

FIG. 3. D. vulgaris protein interaction network. All 459 interactions present in the high confidence interaction network are shown. Spoke
model (bait-to-prey) interactions are indicated with solid arrows, and matrix model (prey-prey) interactions are shown with dashed lines.
Gold-positive interactions inferred from 10-fold cross-validation are shown in purple color. All proteins are colored according to their assigned
TIGR role as indicated. Gray areas enclose complexes discussed in the supplemental text associated with sulfate reduction and energy
conservation (a1–a3), cofactor biosynthesis (b1–b3), RNA synthesis and degradation (c1–c3), motility (d1–d3), megaplasmid encoded complexes
(e1–e5), and novel and uncharacterized complexes (f1–f2).
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for multiple testing), it is reasonable that most no threshold
pairs are functional. The lower reproducibility with which
these PPIs are observed either in other interactomes or as
reciprocal PPIs could be because low affinity interactions are
harder to observe. Similarly for the high FDR set, pairs be-
tween 500 and 1000 on the regression score rank list remain
enriched in same TIGR role pairs, but they show little enrich-
ment in the same operon pairs, pairs found in other interac-
tomes, or reciprocally confirmed pairs (Fig. 5), suggesting
again that there is a class of functional associations among
proteins that differ from those that predominate our high
confidence set.

Estimating a False Negative Rate

Although we cannot identify additional PPIs with properties
similar to those in our high confidence set, it is possible to
estimate the percent of such PPIs that we have failed to
detect by calculating the false negative rate using gold stand-
ard positive PPIs (see “Experimental Procedures”). From the
estimated false negative rate of 69%, the number of PPIs that
should have been detected in our screen of 957 tagged baits
is �1196 versus the 459 we report. Extrapolating to a screen
in which all genes are tagged, we estimate that one might
detect �3000 PPIs with characteristics similar to both our
high confidence set of PPIs and the EcoCyc PPIs (see “Ex-
perimental Procedures”; supplemental Fig. S14).

Comparison with Other Bacterial AP-MS Interactomes

We next compared our high confidence interactome for D.
vulgaris with the three previously published bacterial AP-MS
networks, two for E. coli (17, 18) and one for M. pneumoniae
(16) (see “Experimental Procedures”). Our interactome is dra-
matically less connected than these other networks (Fig. 6
and supplemental Table S4). For example, the number of

protein pairs per bait and the size of linked complexes are
both �8-fold lower in our interactome compared with the
other three (supplemental Table S4). In addition, the protein
pairs in our interactome have very different qualities com-
pared with the other AP-MS networks (Fig. 7). For example,
using a common gold standard, the FDR of our interac-
tomes is 29% versus 66–91% for the other networks. In
addition, same operon protein pairs, same TIGR role pairs,
reciprocal PPIs, and pairs found in other bacterial interac-

% same 

operon

Fold same

TIGR role

% in 

Y2H 

% in other

AP-MS

EcoCyc  (1,549) 54.0% NA 10.0 11.0% 14.0%

AP-MS reciprocals  (389) 29.0% NA 6.4 22.0% 24.0%

Y2H reciprocals  (224) 18.0% NA 6.5 57.0% 44.0%

21.0% 34.0% 6.5 16.0% 24.0%

Single peptide hit  (328) 2.7% 3.8% 2.0 4.9% 4.3%

Ribo-other  (109) 0.0% 0.0% 0.7 0.0% 15.0%

No thresholds  (127) 2.4% 8.4% 5.4 7.0% 3.9%

High FDR  (677) 2.2% 2.3% 2.5 2.6% 9.5%

Benchmark

Datasets

D. vulgaris
Datasets

Reciprocal

confrm. %

High Confidence  (459)

FIG. 4. PPI quality metrics for benchmark datasets and high and low confidence D. vulgaris protein pair sets. The top three rows show
metrics for benchmark bacterial datasets: the EcoCyc complexes (53) and protein pairs that have been reciprocally confirmed in either four
AP-MS studies, including ours, or in six Y2H studies (supplemental Table S3). The remaining rows show metrics for our high confidence set
and the four low confidence sets of protein pairs described in the text. The numbers of protein pairs in each set are given in parentheses. The
columns shows from left to right are as follows: percent of pairs whose members are encoded in the same operon; reciprocal PPI confirmation
percent; fold enrichment of pairs for which both members have the same TIGR role over that expected among randomly chosen pairs; percent
overlap with a combined set of interologs from the six bacterial Y2H interactomes; and percent overlap with a combined set of interologs from
the three published bacterial AP-MS interactomes (see “Experimental Procedures” for more details).
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Rank by regression confidence score 

Same operon pairs

Reciprocal PPIs

Pairs in Y2H

Pairs in other AP−MS

Same TIGR role pairs

FIG. 5. PPI quality metrics for regression score cohorts. Pre-
dicted interactions are sorted by the logistic regression score (x axis)
for the 4000 highest scoring matrix model interactions in the absence
of any regression feature threshold. The y axis shows the relative
enrichment of protein pairs that are encoded in the same operon
(maroon) that is reciprocally confirmed (green), is found in Y2H stud-
ies (red) and in other AP-MS studies (blue), and is shared the same
TIGR role (gold). Enrichment is expressed as a ratio over the fre-
quency expected for pairs randomly chosen from the genome, with
the horizontal dashed line indicating the background frequency ratio
of 1. The values are calculated for a series of windows of 500 protein
pairs, except that the first n �250 points the window size is n 
250.
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tomes are, with one partial exception, substantially more
enriched in our high confidence set than in the other inter-
actomes (Fig. 7). The partial exception is for M. pneu-

moniae. These protein pairs, however, were chosen using
genomic proximity data (16), which could well have intro-
duced a selection bias.

(C) E. coli  Hu revised  391 PPIs

(F) E. coli  Hu  5,993 PPIs  (E) E. coli Arifuzzaman  11,172 PPIs

 (B) D. vulgaris  Shatsky  459 PPIs

(D) M. pneumoniae  Kuhner  1,058 PPIs  

(A) E. coli  EcoCyc  1,549 PPIs

FIG. 6. Interactome connectivity of EcoCyc PPIs and proposed bacterial AP-MS interactomes. Visualization of interactomes for
manually curated protein complexes in the EcoCyc database (A), the high confidence AP-MS interactions inferred in this study for D. vulgaris
(B) and E. coli (C), the published AP-MS interactomes for M. pneumoniae (16) (D), and the E. coli (E and F) (17, 18).
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FIG. 7. PPI quality metrics for benchmark datasets and proposed bacterial interactomes. The top three rows show metrics for the three
benchmark datasets described in Fig. 4. The remaining rows show our high confidence interactomes for D. vulgaris and E. coli (supplemental
Datasets S8 and S18), the three previously published AP-MS interactomes (supplemental Datasets S9–S11), and the six Y2H interactomes
(supplemental Datasets S12–S17). The numbers of protein pairs in each set are given in parentheses. The left most column shows the FDR
estimated using gold standard positive and negative sets based only on complexes from the EcoCyc dataset or, in the case of the non E. coli
studies, their interologs. The remaining columns are as in Fig. 4.

Higher Accuracy Protein Interactomes

1550 Molecular & Cellular Proteomics 15.5

http://www.mcponline.org/cgi/content/full/M115.054692/DC1
http://www.mcponline.org/cgi/content/full/M115.054692/DC1
http://www.mcponline.org/cgi/content/full/M115.054692/DC1
http://www.mcponline.org/cgi/content/full/M115.054692/DC1


The different properties of our interactomes versus those
proposed previously could result from differences in data
quality or how the data was analyzed. The following suggests
that differences in data analysis methods are chiefly
responsible.

1) 23% of PPIs in the three previous AP-MS interactomes
include a ribosomal protein paired with a non-ribosomal pro-
tein. Only 0.4% of these pairs, however, were reciprocally
confirmed in a given study; only 1.1% are encoded in the
same operon; only 1.1% are present in at least one bacterial
Y2H interactome; and they are only 1.03-fold more frequently
annotated with the same TIGR role than expected for ran-
domly selected pairs of genes. The inclusion of ribo-other
pairs in the published bacterial AP-MS interactomes thus
significantly affects the quality metrics for the complete
interactome.

2) An “in solution” MS dataset of 3361 PPIs from the Hu et
al. (17) AP-MS study of E. coli used biochemical and MS
methods closest to ours and thus was most appropriate for
complete reanalysis. Using our data filtering and analysis
methods to identify high confidence PPIs from this dataset,
only 391 matrix model PPIs are identified at 20% FDR (sup-
plemental Dataset S18). These PPIs have network connectiv-
ity and PPI quality metrics scores similar to those of our high
confidence D. vulgaris interactome and the three benchmark
datasets (Figs. 6 and 7 and supplemental Table S4). In con-
trast, the 2970 protein pairs from the Hu et al. (17) dataset that
were not selected by our reanalysis have metric scores similar
to protein pairs from the three published bacterial AP-MS
interactomes (supplemental Table S5). In addition, several
hundred pairs that were excluded just below the 20% FDR
threshold in our reanalysis tend to share the same TIGR role
but are not to be encoded in the same operon, found in other
interactomes, or reciprocally confirmed (Fig. 8, regression

score ranks 500–1,500). Finally, based on our estimate for the
false negative rate, �716 PPIs could in principle be detected
from the Hu et al. (17) in solution dataset, versus the 3361 PPIs
reported by Hu et al. (17) and the 391 identified in our re-analysis
of these data (see under “Experimental Procedures”). Thus, by
reanalyzing the Hu et al. (17) MS data, we can achieve results
very similar to those obtained using our D. vulgaris data.

3) Although Hu et al. (17) used a gold-positive set that,
similar to ours, was based on low throughput experiments,
their gold-negative set was built differently. It consisted of
pairs comprising a cytoplasmic protein (CY) and either a
periplasmic (PE) or an outer membrane (OM) protein. There
are, however, seven times fewer OM and PE proteins than CY
proteins, and OM and PE proteins are detected by mass
spectrometry with half the efficiency of CY proteins (see sup-
plemental Fig.S1b in Ref.17). Gold standard negatives esti-
mate the frequency of contaminating proteins that are incom-
pletely removed during purification. If a member of each
negative pair is, on average, of lower abundance or less
detectable than the positive proteins, this frequency will be
underestimated. To reduce the possibility of such a bias, our
gold-negative set comprised non-interacting pairings be-
tween proteins from our gold-positive set. To test the impact
of the difference between ours and the negative sets of Hu et
al. (17), we constructed a negative set identical in size to our
original one, but used pairs between D. vulgaris CY proteins
and either PE or OM proteins. Using this set together with our
usual gold standard positive set, the recalculated FDR of our
high confidence interactome of 459 PPIs is 10% (versus 17%
previously), and the FDR for the set of 1136 protein pairs input
to the regression is 22% (versus 35% previously). Thus, a
gold-negative set built of CY pairs underestimates the FDR.

Comparison with Bacterial Y2H Interactomes

We have also compared our D. vulgaris high confidence
interactome and our revised version of the Hu et al. (17) E. coli
interactome to Y2H networks from six bacteria: E. coli (4), H.
pylori (3), T. pallidum (9), C. jejuni (7), B. subtilis (6), and
Synechocystis sp. (Fig. 7 and supplemental Fig. S15 and
Table S6 and “Experimental Procedures”) (8). These six Y2H
interactomes are at least severalfold less well enriched in same
operon, same TIGR role, and reciprocal protein pairs than are
our two high confidence networks or the benchmark datasets
and have substantially higher FDRs (Fig. 7). By these four PPI
quality metrics, the Y2H networks instead closely resemble the
three published AP-MS interactomes. Two other quality met-
rics, however, reveal differences among the Y2H interactomes.
The Y2H networks of E. coli, H. pylori, and Synechocystis are
more similar to our high confidence sets when judged by the
percent of protein pairs found in other interactomes and overall
network connectivity (Fig. 7 and supplemental Table S6), al-
though the other Y2H interactomes resemble the published
AP-MS networks. Thus, there is some heterogeneity in the
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FIG. 8. PPI quality metrics for regression confidence score co-
horts for the Hu et al. (17) revised dataset. The values plotted were
determined as described in Fig. 5 except that information from our
reanalysis of Hu et al. (17) data are shown.
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quality of the protein pairs between the Y2H datasets, but
despite this, all differ in important regard to our high confidence
AP-MS networks and the benchmark sets.

DISCUSSION

Accurately defining the spectrum of PPIs in an organism is
challenging, in part because there is a poor overlap between
PPIs proposed in different studies (Fig. 7) (3, 10). For example,
even when overlap is computed only for proteins present in
both an E. coli AP-MS (17) and an E. coli Y2H (4) interactome,
the overlaps are only 13 and 24%, respectively. Such poor
agreement could result from the different specificities of each
method for detecting classes of PPIs (3, 54), high false posi-
tive rates (55, 56), or high false negative rates. A further
complication is that there are many non-functional PPIs that
are not under evolutionary constraint but that result because
short amino acid sequences that bind at low affinity evolve
frequently by chance (57). Such interactions are hard to dis-
tinguish from genuine false positives because both fail to
display characteristics helpful in validating functional PPIs,
such as having related functions.

With the above challenges in mind, we have conducted an
AP-MS survey of the sulfate-reducing bacterium D. vulgaris
and have reanalyzed nine Y2H and AP-MS screens for other
bacteria. Using a more stringent data analysis strategy than
employed previously, we have identified 391 and 456 high
confidence PPIs for E. coli and D. vulgaris, respectively, many
of which are supported by low throughput data from the
literature (supplemental text and Figs. S11–S13). The PPIs we
identified have dramatically different properties from previous
Y2H and AP-MS interactomes. Compared with these other
interactomes, our two high confidence networks are smaller,
much less connected, and have a higher fraction of PPIs
homologous to those in other interactomes (Figs. 6 and 7 and
supplemental Fig. S15). In addition, the protein pairs in our
networks have lower FDRs, are more frequently confirmed as
reciprocal PPIs, and are more commonly comprised of part-
ners encoded in the same operon or sharing the same TIGR
role (Fig. 7). By these same metrics, three benchmark data-
sets (PPIs in the EcoCyc database and the �3% of PPIs that
have been reciprocally confirmed in AP-MS or Y2H studies)
are much more similar to our high confidence interactomes
than to the complete versions of the published bacterial PPI
networks (Fig. 7).

These striking differences suggest that only a minority of
protein pairs in the other interactomes are stable interactions
of the sort captured in our high confidence sets and the
benchmark sets. Of the remaining pairs, several hundred may
be lower affinity, functional interactions because some lower
confidence protein pairs excluded from our interactomes tend
to share the same TIGR role, while being rarely found in other
interactomes, reciprocally confirmed or encoded in the same
operon (e.g. Figs. 4, 5, and 8). Our interpretation is that these
pairs interact, but at lower affinity, and thus the interactions

are harder to detect. To explain the low frequency of the same
operon PPIs in these low confidence sets, we assume that
bona fide PPIs not encoded in the same operon must be
generally of weaker affinity than the bona fide same operon
PPIs. Beyond the high and low affinity functional pairs, how-
ever, several lines of evidence suggest that most pairs in the
previously published interactomes are false positives that do
not interact and/or are non-functional interactions.

1) Our FDR estimates for the previous nine interactomes are
42–91% when gold standards based on protein complexes
from E. coli are employed (Fig. 7). Although our estimates for
the non-E. coli interactomes are necessarily limited to well
conserved protein pairs, and thus the high FDRs could be
explained if there is a rapid evolution of bona fide PPIs be-
tween species, this concern does not apply to the published
E. coli networks. Because the published non-E. coli interac-
tomes are by other metrics similar in quality to the three
published E. coli interactomes (Fig. 7), the proportion of false
positives among non-conserved protein pairs is probably sim-
ilar to that for conserved pairs in all interactomes. Therefore,
the high FDRs we have estimated for prior interactomes do
not result from a rapid evolution of PPIs.

2) Four of the earlier AP-MS and Y2H studies (17) estimated
FDRs. These prior FDR estimates are all lower than ours for
the same datasets (9–28% versus 66–81%), and the follow-
ing suggest that this is due to the earlier studies underesti-
mating the percent of false positives. Hu et al. (17), for exam-
ple, employed gold standard negatives that were biased
toward proteins that are harder to detect by MS than typical
proteins (see “Results”). Two of the other studies used gold-
negative sets that were the same size as the gold-positive
sets (7, 9), whereas negative sets should approximate the
square of the number of proteins in the positive set divided by
two (see “Experimental Procedures”). As a result, the FDR
would be underestimated by �4-fold. Finally, although Ra-
jagopala et al. (4) did not estimate an FDR, this can be derived
from their gold standard control data, implying an FDR of
�80% (see “Experimental Procedures”).

3) Most of the published interactomes have far fewer pro-
tein pairs that share the same TIGR role than either our high
confidence networks or the benchmark datasets. Low affinity
functional interactors, however, should share the same TIGR
role as often as high affinity pairs. Thus, the low prevalence of
same TIGR role pairs suggests that most pairs in the pub-
lished interactomes have no functional relevance.

4) In AP-MS datasets, pairs between a ribosomal protein and
a non-ribosomal protein lack the hallmarks of bona fide PPIs
(see “Results” and Fig. 4). Such pairs constitute 19–34% of
PPIs in the previously proposed AP-MS interactomes, although
they are excluded from our high confidence sets, suggesting
that these pairs contribute significantly to high FDRs.

Our results also suggest that the poor overlap between Y2H
and AP-MS interactomes cannot be due solely to differences
in the types of interaction that the two methods detect. When
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PPIs are confined to only those that have been reciprocally
confirmed within each study, the agreement between the Y2H
and AP-MS methods increases 5–10-fold (Fig. 7). Further-
more, when Y2H and AP-MS interactomes from the same
species, E. coli, are directly compared, the overlaps are 2–3-
fold higher using our AP-MS interactome than using the in-
teractome proposed by Hu et al. (17) that was based on the
same initial MS dataset (13 and 24% versus 39 and 49%).

The AP-MS and Y2H interactomes for eukaryotes also have
a much higher connectivity than our high confidence D. vul-
garis and E. coli interactomes or the EcoCyc PPIs (5, 10–12,
14, 15, 58, 59). These interactomes could genuinely have
quite different connectivities due to fundamental differences
in the biology of bacteria and eukaryotes. The eukaryotic
studies, however, used methods similar to those employed in
bacteria. For example, several did not calculate an FDR (10,
15, 59); one used a gold-negative set that contained only pairs
whose members are localized differently within cells (5), which
our analysis suggests can lead to underestimated FDRs, see
“Results”; and two performed single step affinity purifications
(58, 59), which are in principle less accurate than tandem
affinity purifications and produce the least accurate of the
three published bacterial AP-MS interactomes (Fig. 7) (com-
pare Arifuzzaman et al. (18) with both Hu et al. (17) and Kuhner
et al. (16)). Thus, many of the proposed protein pairs in the
eukaryotic networks may be either false positives or low af-
finity non-functional interactions.

Conversely, our more selective analysis strategy fails to
detect many bona fide PPIs. For example, we estimate that
our D. vulgaris study should have detected �1196 high con-
fidence PPIs from the 957 bait proteins tested versus the 459
PPIs we reported (see “Results”). We also estimate that if all
proteins were tested as baits �3000 PPIs should be detect-
able in both E. coli and in D. vulgaris. These estimates, how-
ever, are for PPIs that have similar properties to the protein
pairs in the EcoCyc database and in our high confidence sets.
Our work also shows that there are additional lower affinity
PPIs that are not well represented in the EcoCyc dataset. The
proportion of such transient yet functional interactions is un-
known as is the number of interactions involving membrane
proteins because of technological challenges in surveying
membrane complexes. Future efforts should thus focus on
identifying a larger proportion of bona fide PPIs, both high and
low affinity, while maintaining an acceptable FDR.
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D., Chen, W. H., Devos, D., Güell, M., Norambuena, T., et al. (2009)
Proteome organization in a genome-reduced bacterium. Science 326,
1235–1240

17. Hu, P., Janga, S. C., Babu, M., Díaz-Mejía, J. J., Butland, G., Yang, W.,
Pogoutse, O., Guo, X., Phanse, S., Wong, P., Chandran, S., Christopou-
los, C., Nazarians-Armavil, A., Nasseri, N. K., Musso, G., et al. (2009)
Global functional atlas of Escherichia coli encompassing previously un-
characterized proteins. PLos Biol. 7, e96

18. Arifuzzaman, M., Maeda, M., Itoh, A., Nishikata, K., Takita, C., Saito, R.,
Ara, T., Nakahigashi, K., Huang, H. C., Hirai, A., Tsuzuki, K., Nakamura,
S., Altaf-Ul-Amin, M., Oshima, T., Baba, T., et al. (2006) Large-scale
identification of protein-protein interaction of Escherichia coli K-12. Ge-
nome Res. 16, 686–691

19. Estojak, J., Brent, R., and Golemis, E. A. (1995) Correlation of two-hybrid
affinity data with in vitro measurements. Mol. Cell. Biol. 15, 5820–5829

20. Seebacher, J., and Gavin, A. C. (2011) SnapShot: protein-protein interac-
tion networks. Cell 144, 1000, 1000 e1001 doi:10.1016/j.cell.
2011.02.025.

21. Venkatesan, K., Rual, J. F., Vazquez, A., Stelzl, U., Lemmens, I., Hirozane-
Kishikawa, T., Hao, T., Zenkner, M., Xin, X., Goh, K. I., Yildirim, M. A.,
Simonis, N., Heinzmann, K., Gebreab, F., Sahalie, J. M., et al. (2009) An
empirical framework for binary interactome mapping. Nat. Methods 6,
83–90

22. Zhou, J., He, Q., Hemme, C. L., Mukhopadhyay, A., Hillesland, K., Zhou,
A., He, Z., Van Nostrand, J. D., Hazen, T. C., Stahl, D. A., Wall, J. D.,
and Arkin, A. P. (2011) How sulphate-reducing microorganisms cope
with stress: lessons from systems biology. Nat. Rev. Microbiol. 9,
452–466

23. He, Q., He, Z., Joyner, D. C., Joachimiak, M., Price, M. N., Yang, Z. K., Yen,
H. C., Hemme, C. L., Chen, W., Fields, M. M., Stahl, D. A., Keasling, J. D.,
Keller, M., Arkin, A. P., Hazen, T. C., et al. (2010) Impact of elevated
nitrate on sulfate-reducing bacteria: a comparative study of Desulfovibrio
vulgaris. ISME J. 4, 1386–1397

24. Mukhopadhyay, A., Redding, A. M., Joachimiak, M. P., Arkin, A. P., Borglin,
S. E., Dehal, P. S., Chakraborty, R., Geller, J. T., Hazen, T. C., He, Q.,
Joyner, D. C., Martin, V. J., Wall, J. D., Yang, Z. K., Zhou, J., and
Keasling, J. D. (2007) Cell-wide responses to low-oxygen exposure in
Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 189, 5996–6010

25. Han, B. G., Dong, M., Liu, H., Camp, L., Geller, J., Singer, M., Hazen, T. C.,
Choi, M., Witkowska, H. E., Ball, D. A., Typke, D., Downing, K. H.,
Shatsky, M., Brenner, S. E., Chandonia, J. M., et al. (2009) Survey of
large protein complexes in D. vulgaris reveals great structural diversity.
Proc. Natl. Acad. Sci. U.S.A. 106, 16580–16585

26. Oliveira, T. F., Vonrhein, C., Matias, P. M., Venceslau, S. S., Pereira, I. A.,
and Archer, M. (2008) The crystal structure of Desulfovibrio vulgaris
dissimilatory sulfite reductase bound to DsrC provides novel insights
into the mechanism of sulfate respiration. J. Biol. Chem. 283,
34141–34149

27. Walian, P. J., Allen, S., Shatsky, M., Zeng, L., Szakal, E. D., Liu, H., Hall,
S. C., Fisher, S. J., Lam, B. R., Singer, M. E., Geller, J. T., Brenner, S. E.,
Chandonia, J. M., Hazen, T. C., Witkowska, H. E., et al. (2012) High
throughput isolation and characterization of untagged membrane protein
complexes: outer membrane complexes of Desulfovibrio vulgaris. J.
Proteome Res. 11, 5720–5735

28. Chhabra, S. R., Butland, G., Elias, D. A., Chandonia, J. M., Fok, O. Y., Juba,
T. R., Gorur, A., Allen, S., Leung, C. M., Keller, K. L., Reveco, S., Zane,
G. M., Semkiw, E., Prathapam, R., Gold, B., et al. (2011) Generalized
schemes for high throughput manipulation of the Desulfovibrio vulgaris
genome. Appl. Environ. Microbiol. 77, 7595–7604

29. Zeghouf, M., Li, J., Butland, G., Borkowska, A., Canadien, V., Richards, D.,
Beattie, B., Emili, A., and Greenblatt, J. F. (2004) Sequential peptide
affinity (SPA) system for the identification of mammalian and bacterial
protein complexes. J. Proteome Res. 3, 463–468

30. Roan, N. R., Chu, S., Liu, H., Neidleman, J., Witkowska, H. E., and Greene,
W. C. (2014) Interaction of fibronectin with semen amyloids synergisti-
cally enhances HIV infection. J. Infect. Dis. 210, 1062–1066

31. Chiu, Y. L., Witkowska, H. E., Hall, S. C., Santiago, M., Soros, V. B., Esnault,
C., Heidmann, T., and Greene, W. C. (2006) High molecular-mass
APOBEC3G complexes restrict Alu retrotransposition. Proc. Natl. Acad.
Sci. U.S.A. 103, 15588–15593

32. Elias, J. E., and Gygi, S. P. (2007) Target-decoy search strategy for in-
creased confidence in large-scale protein identifications by mass spec-
trometry. Nat. Methods 4, 207–214

33. Liu, H., Sadygov, R. G., and Yates, J. R., 3rd. (2004) A model for random
sampling and estimation of relative protein abundance in shotgun pro-
teomics. Anal. Chem. 76, 4193–4201

34. Lundgren, D. H., Hwang, S. I., Wu, L., and Han, D. K. (2010) Role of
spectral counting in quantitative proteomics. Expert Rev. Proteomics
7, 39–53

35. MacLean, B., Tomazela, D. M., Shulman, N., Chambers, M., Finney, G. L.,
Frewen, B., Kern, R., Tabb, D. L., Liebler, D. C., and MacCoss, M. J.
(2010) Skyline: an open source document editor for creating and
analyzing targeted proteomics experiments. Bioinformatics 26,
966–968

36. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990)
Basic local alignment search tool. J. Mol. Biol. 215, 403–410

37. Karp, P. D., Riley, M., Saier, M., Paulsen, I. T., Collado-Vides, J., Paley,
S. M., Pellegrini-Toole, A., Bonavides, C., and Gama-Castro, S. (2002)
The EcoCyc Database. Nucleic Acids Res. 30, 56–58

38. Chhabra, S. R., Joachimiak, M. P., Petzold, C. J., Zane, G. M., Price,
M. N., Reveco, S. A., Fok, V., Johanson, A. R., Batth, T. S., Singer, M.,
Chandonia, J. M., Joyner, D., Hazen, T. C., Arkin, A. P., Wall, J. D., et
al. (2011) Towards a rigorous network of protein-protein interactions of
the model sulfate reducer Desulfovibrio vulgaris Hildenborough. PLoS
One 6, e21470

39. Wodak, S. J., Vlasblom, J., Turinsky, A. L., and Pu, S. (2013) Protein-protein
interaction networks: the puzzling riches. Curr. Opin. Struct. Biol. 23,
941–953

40. Zybailov, B., Mosley, A. L., Sardiu, M. E., Coleman, M. K., Florens, L., and
Washburn, M. P. (2006) Statistical analysis of membrane proteome ex-
pression changes in Saccharomyces cerevisiae. J. Proteome Res. 5,
2339–2347

41. Choi, H., Larsen, B., Lin, Z. Y., Breitkreutz, A., Mellacheruvu, D., Fermin, D.,
Qin, Z. S., Tyers, M., Gingras, A. C., and Nesvizhskii, A. I. (2011) SAINT:
probabilistic scoring of affinity purification-mass spectrometry data. Nat.
Methods 8, 70–73

42. Breitkreutz, A., Choi, H., Sharom, J. R., Boucher, L., Neduva, V., Larsen,
B., Lin, Z. Y., Breitkreutz, B. J., Stark, C., Liu, G., Ahn, J., Dewar-
Darch, D., Reguly, T., Tang, X., Almeida, R., et al. (2010) A global
protein kinase and phosphatase interaction network in yeast. Science
328, 1043–1046

43. Collins, S. R., Kemmeren, P., Zhao, X. C., Greenblatt, J. F., Spencer, F.,
Holstege, F. C., Weissman, J. S., and Krogan, N. J. (2007) Toward a
comprehensive atlas of the physical interactome of Saccharomyces
cerevisiae. Mol. Cell. Proteomics 6, 439–450

44. Park, Y., and Marcotte, E. M. (2012) Flaws in evaluation schemes for
pair-input computational predictions. Nat. Methods 9, 1134–1136

45. Dehal, P. S., Joachimiak, M. P., Price, M. N., Bates, J. T., Baumohl, J. K.,
Chivian, D., Friedland, G. D., Huang, K. H., Keller, K., Novichkov, P. S.,
Dubchak, I. L., Alm, E. J., and Arkin, A. P. (2010) MicrobesOnline: an
integrated portal for comparative and functional genomics. Nucleic Acids
Res. 38, D396–D400

46. Díaz-Mejía, J. J., Babu, M., and Emili, A. (2009) Computational and exper-
imental approaches to chart the Escherichia coli cell-envelope-associ-
ated proteome and interactome. FEMS Microbiol. Rev. 33, 66–97

47. Gardy, J. L., Laird, M. R., Chen, F., Rey, S., Walsh, C. J., Ester, M., and
Brinkman, F. S. (2005) PSORTb v.2.0: expanded prediction of bacterial
protein subcellular localization and insights gained from comparative
proteome analysis. Bioinformatics 21, 617–623

48. Zane, G. M., Yen, H. C., and Wall, J. D. (2010) Effect of the deletion of

Higher Accuracy Protein Interactomes

1554 Molecular & Cellular Proteomics 15.5



qmoABC and the promoter-distal gene encoding a hypothetical protein
on sulfate reduction in Desulfovibrio vulgaris Hildenborough. Appl. Envi-
ron. Microbiol. 76, 5500–5509

49. Delli-Bovi, T. A., Spalding, M. D., and Prigge, S. T. (2010) Overexpression
of biotin synthase and biotin ligase is required for efficient generation of
sulfur-35 labeled biotin in E. coli. BMC Biotechnol. 10, 73

50. Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., Broackes-
Carter, F., Campbell, N. H., Chavali, G., Chen, C., del-Toro, N., Dues-
bury, M., Dumousseau, M., Galeota, E., Hinz, U., Iannuccelli, M., et al.
(2014) The MIntAct project–IntAct as a common curation platform for
11 molecular interaction databases. Nucleic Acids Res. 42,
D358–D363

51. Sharma, V., Eckels, J., Taylor, G. K., Shulman, N. J., Stergachis, A. B.,
Joyner, S. A., Yan, P., Whiteaker, J. R., Halusa, G. N., Schilling, B.,
Gibson, B. W., Colangelo, C. M., Paulovich, A. G., Carr, S. A., Jaffe, J. D.,
et al. (2014) Panorama: a targeted proteomics knowledge base. J. Pro-
teome Res. 13, 4205–4210

52. Davidsen, T., Beck, E., Ganapathy, A., Montgomery, R., Zafar, N., Yang,
Q., Madupu, R., Goetz, P., Galinsky, K., White, O., and Sutton, G.
(2010) The comprehensive microbial resource. Nucleic Acids Res. 38,
D340–D345

53. Keseler, I. M., Mackie, A., Peralta-Gil, M., Santos-Zavaleta, A., Gama-
Castro, S., Bonavides-Martínez, C., Fulcher, C., Huerta, A. M., Kothari,
A., Krummenacker, M., Latendresse, M., Muñiz-Rascado, L., Ong, Q.,
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