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1 Database coverage of environments

The validation procedure we developed holds out an entire study at a time, simulating
the situation that each study was not yet incorporated in the reference database and
needed to be classified. Figure S1 shows the proportion of sequences in each tested
sample that are within a given percent identity of a sequence in the remainder of
GreenGenes. Of course, now that the studies we evaluated are in GreenGenes, future
samples of similar composition will be easier to classify than we report. This is
especially relevant for studies that are the only representative in GreenGenes of a
given environment type, such as the hypersaline mat sample. We would expect a
second hypersaline mat sample to classify a good deal better than reported here,
because matches can now be made to sequences from the first sample (assuming, of
course, that those sequences now carry manually curated taxonomic annotations,
including taxa that were not previously present in the database, and assuming that the
second sample bears any resemblance to the first). But, many other environments
remain as poorly represented now as hypersaline mat was previously. Thus our results
are particularly sobering with respect to whatever environment types are
underrepresented in the database at the moment that it is used as a basis for
classification.
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Figure S1: Coverage of different environments by GreenGenes. The plot shows the dis-
tribution of percent identity scores between environmental sequences and their closest
matches in the remainder of GreenGenes (with each respective sample held out). The
distributions are presented cumulatively from right to left, so that the Y value indicates
the proportion of each sample that is within a given distance of any reference sequence.
We see that GreenGenes provides excellent coverage of human gut and skin samples,
but relatively poor coverage of the grassland soil and hypersaline mat samples. This
plot is based on the full GreenGenes database (version of August 25, 2010), which
had not been subjected to the 2-study filter or other filters for potential chimeras, as
the version of GreenGenes used for the primary analysis was. It can be seen here, for
instance, that more than half of the sequences from the hypersaline mat sample have
no match within 97% identity in the rest of GreenGenes. Sequences from such 97%
OTUs that are unique to one sample are not included in the main analysis.



2 Choice of query datasets

We wished to test all primer and read length combinations using consistent sets of
underlying sequences. We therefore sought data sets containing many near-full-length
sequences from the same environment. We defined "near-full-length" as including
hypervariable regions V1 through V9 (specifically, extending from positions 69 to
1465 in E. coli coordinates). We wished the datasets to be as large as possible in order
to limit stochastic variation in the proportions of sampled taxa, and so that rare species
would be represented.

We downloaded the GreenGenes database (version of March 11, 2011) and identified
eight appropriate studies contained within it, representing a variety of environments,
shown in table S1.

We considered only those sequences passing the chimera filters of (McDonald et al.,
2011). These filters included the requirement that each sequence be a member of an
OTU, defined at 97% identity, which was present in at least two different samples.
While some of the sequences excluded on this basis were likely indeed chimeras, the
filter presumably also excluded legitimate sequences from OTUs that were unique to
one sample. This circumstance is particularly likely when only one sample is
available from a given environment type, as in the case of the hypersaline mat.
Naturally, the excluded sequences would have been more difficult to classify because
they lack a close match in the reference database. Hence, excluding them has the
effect of increasing the apparent classification accuracy (measured with respect to the
remaining sequences) compared to what would have been obtained from the whole
sample. On the other hand, chimera filters are regularly applied to new environmental
samples before classification.

3 Choice of primers

50 forward and 44 reverse primer sequences were obtained from from a survey of
literature on primer choice. These were aligned to the 154 1nt E. coli 16S sequence to
confirm appropriate naming. The primers were also mapped to the 7682-column
NAST coordinates (Desantis et al., 2006) by alignment to all GreenGenes sequences.
In many cases, the primers began and ended in slightly different NAST columns (+-
1-5nt) in different sequences, suggesting that there are errors in the GreenGenes
NAST alignment; we therefore report the column with the largest number of hits. Our
initial survey included 94 primers, but many of these were specific to Archaea or for
some other reason hit a small fraction of sequences in the environments we tested.
Here, we selected all 22 forward and 22 reverse primers that hit at least 40% of the
sequences in at least one of the query datasets (Tables S2 and S3).

For PCR or paired-end sequencing, the selected primers could be combined into 374
viable pairs for very short reads; as the read length increases, pairings spaced more
closely than the read length become unviable.
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4 Preparation of reference databases

For each query data set, we built a reference database based on chimera-free
GreenGenes, excluding all sequences from the same study as the query sequences
(whether near-full-length or not).

We used the GreenGenes taxonomy (McDonald et al., 2011) to provide the taxonomic
identity of the reference sequences.

Each reference database was dereplicated at 99% using UCLUST 4.1.93 (Edgar,
2010) such that for any cluster of sequences with >99% identity only the most
abundant sequence was used. This reduced each database from approximately
500,000 sequences to approximately 140,000 representatives, thereby correcting for
database bias at the strain level, and substantally improving performance of the
downstream analyses.

The taxonomic identity of each reference cluster was usually unambiguous. For the
occasional cluster containing sequences differing in taxonomic classification, we
assigned taxonomic position at the deepest rank at which over half of the clustered
sequences were in agreement.



5 RTAX: Rapid and accurate taxonomic classification
of short paired-end sequence reads from the 16S
ribosomal RNA gene.

5.1 Introduction

The rapid advance in sequencing technology continues to motivate researchers to
obtain larger numbers of shorter reads. As platforms such as the 454 GS 20, the
Illumina GA IIx and HiSeq, and the Ion Torrent reach ~100 bases of
reasonable-quality sequence, they begin to be applicable to taxonomic profiling of
microbial communities (Sogin et al., 2006; Lazarevic et al., 2009; Claesson et al.,
2010; Degnan & Ochman, 2011). A key challenge is using these short reads,
especially paired-end reads that do not overlap, to obtain taxonomic assignments.

Accordingly, we report a new method of performing taxonomic classifications of
non-overlapping paired-end reads from the 16S ribosomal RNA gene. This gene is
frequently used to delineate bacterial and archaeal taxa, because it present in all
bacteria and archaea, and has an overall mutation rate that is amenable to phylogenetic
analysis (Pace, 1997; Tringe & Hugenholtz, 2008).

Existing classification methods require sequences that are contiguous (except for
small indels): that is, single reads, or paired-end reads that overlap and so can be
assembled prior to classification (Gloor et al., 2010; Caporaso et al., 2011; Zhou et al.,
2011; Bartram et al., 2011; Ram et al., 2011). However, some current sequencing
technologies (e.g., [llumina) can provide non-overlapping paired-end reads in high
volume and at low cost. To date, the two ends of each sequence have been classified
independently, without taking advantage of mate pair information (Caporaso et al.,
2011). We therefore asked whether including this information might substantially
improve classifier performance.

To address this question, we first attempted to reconcile taxonomic assignments made
for each read independently; we hoped that cases in which one read provided an
ambiguous assignment might be “rescued” by a precise assignment from the other
read. However, we found that this procedure provided essentially no advantage in
classification rate or accuracy over single-ended data. This counterintuitive result
arises because existing reference databases are relatively sparse and biased. Thus,
given the degree of variation present in different regions of the 16S sequence, a single
short read often has seemingly optimal matches in the database that are in fact
phylogenetically distant (as revealed by poor matching to the mate pair). The use of
reference databases that are not filtered for chimeras can exacerbate this effect.

Classification of paired-end reads therefore requires finding reference sequences that
match both reads simultaneously. Essentially, the goal is to search using paired-end
reads concatenated with N’s in between. However, existing sequence similarity search
software such as BLAST (Altschul et al., 1990) and USEARCH (Edgar, 2010) do not
perform well with this type of query.



5.2 Results and conclusions

We developed RTAX to provide accurate paired-end taxon assignment. RTAX is a
script that drives and interprets results from multiple underlying USEARCH runs.
Like pure USEARCH, the identification of best matches is alignment-based, but is
nonetheless very fast because of an initial k-mer based filtering step.

The speed and accuracy of USEARCH depends strongly on search parameters,
including the minimum percent identity (%id) threshold that is accepted to report a
match. In the typical usage, a list of query sequences is provided to USEARCH; for
each sequence it then returns all hits that match better than the given threshold.
Because database coverage is biased towards some taxa, some query sequences have
nearly perfect matches; in those cases a lower %id threshold would dilute the perfect
hits and consequently decrease classification accuracy. Conversely, other query
sequences have only very distant matches (although these distant matches may still be
sufficiently informative to classify at higher taxonomic levels), which would be
excluded by a stringent %id threshold. RTAX must thus be adaptive to different %id
levels for each query sequence, taking a selection of the best available hits at any %id
level.

RTAX runs two USEARCH jobs concurrently—one for each sequence region. That
is: RTAX takes two FASTA files as input, containing, respectively, all reads from the
forward primer and all reads from the reverse primer. Each underlying USEARCH job
takes one of these files as input, and reports database matches to each read in turn. As
hits to each read are found, the outputs of the two jobs are intersected to find reference
sequences that matched both reads of a mate pair (on the basis of matching sequence
identifiers in the forward and reverse FASTA files). For each such matching sequence,
the average %id is computed. Finally, reference sequences are selected where the
average %id to the query reads is within 0.5% of the maximum observed for that
query sequence pair.

One technical challenge is that USEARCH requires a %id threshold per read, but
assignments are improved by finding hits that have maximal average %id for the pair.
Using a permissive %id threshold would allow us to comprehensively find all
sequences that match both query reads, but is time-consuming because of the large
number of hits returned. It is therefore much faster to take an iterative approach,
starting with a stringent %id threshold. Any query sequence pairs that have good
matches can be immediately classified. A list is made of those queries that do not
initially produce a match. This list is used to construct input files for subsequent
USEARCH runs with a less stringent threshold. The queries are thus passed through a
“sieve”, iteratively processing unmatched sequences with successively lower
thresholds until either a match is found for each query or the lowest permissible
threshold is exceeded. The advantage of this approach is that many query sequences
can be processed in the early iterations (using fast, high-%id searches), so searches
with a low %id threshold (which are slow and can produce voluminous output) are
performed only for few query sequences—i.e., those for which no better match was
found in earlier iterations.
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Even with this iterative technique, and especially in the later iterations, the lists of hits
matching each read are much larger than their intersection; writing these to disk as
large files would be very slow. Thus, we process piped outputs from the two
USEARCH processes in a streaming fashion. This approach works because input
queries are processed in order, so the two USEARCH output streams can be kept
synchronized (i.e., so that they provide results for mate-paired reads simultaneously).
We thus find the best matches to the two reads taken jointly, using an alignment score
that does not penalize the large gap between reads.

Given these hits, we examine the taxonomic annotations provided in the reference
database (in our case, chimera-filtered GreenGenes with consistent taxonomic
annotations: (McDonald et al., 2011)). At each taxonomic level, we accept an
annotation that is present on at least 50% of the hits. Others have required 67%
agreement (Huse et al., 2008; Hamp et al., 2009); we found in preliminary
experiments (not shown) that classification performance is fairly insensitive to this
threshold, except at the extremes.

Fully utilizing information from mate pairs in this way markedly improves
classification rate and accuracy (Figure S2). In an extreme case, we found in a human
gut sample that a pair of 32nt reads provided confident genus-level classifications of
90% of the sequences—far more than the 41% of the sample that could be classified
using a single 64nt read, and more than could be classified using single-ended reads of
any length. The apparent paradox—that a single long read might encompass both
short reads, and yet provide less accurate classifications—arises from the fact that the
sequence in the middle is less phylogenetically informative than that at the ends, so
including it dilutes the signal.

Classification accuracy depends strongly on which region within the 16S rRNA gene
is sequenced, and on the environment from which the sample was taken. Accordingly,
our paired-end approach provides a benefit in some but not all circumstances, as
demonstrated in the main text.

Because of the iterative procedure, the speed of classification varies with database
coverage. Overall, in testing datasets from a variety of environments, we observed
rates in the vicinity of 10 sequence pairs per second on an Amazon EC2 “large”
instance, corresponding roughly to a 2007-era 2.4GHz dual-core Xeon machine.

The availability of RTAX as a component in QIIME (Caporaso et al., 2010) makes it
broadly available to microbial ecologists studying a range of environments, and
greatly increases the utility of short reads produced on Illumina and other emerging
platforms.

11
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Figure S2: Maximum achievable genus-level classification rate for read lengths from
32nt through 800nt, comparing single-ended and paired-end experiments. Sequence
reads from many primers were simulated from a human gut sample of near-full-length
16S rRNA gene sequences (Li et al., 2008) and classified using RTAX, taking care to
exclude the query sequences from the reference database. For each read length, the
primer or primer pair producing the greatest number of genus classifications is shown.
Primers and primer pairs were excluded when they produced genus classifications that
were less than 95% accurate with respect to GreenGenes annotations on the original
full-length sequences.
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6 Benefit of paired-end sequencing

Paired-end sequencing often, but not always, allows accurate classification of a greater
proportion of a sample to the genus level. Tables S4 and S5 compare classification
rates between single-and paired-end experiments for the same total read length,
highlighting those cases where paired-end sequencing provides a benefit.

Maximum achievable genus classification rate, 80% estimated accuracy
single vs. paired-end

normal =single-ended reads
bold = paired-end reads
=no improvement over shorter reads
light green = paired-end performs better than single for same total read length
saturated green = more than 3% better
light red = paired-end performs worse than single for same total read length
=more than 3% worse

2 7 -
- - m — — ',:'
m o ~ =) ~N
- N o =3 - -
—_ 5 < g & ] =
g = H 3 = < < s
~N " w o E-1 c >
wn o £ o E 3 = [c]
m el o £ 3 o w
c 2 £ 3 & 5 o &
Single-end Paired-end 8 w 2 £ 1 E 2 E
read length read length <1 S z & :‘,3, 2 a 2
32 41 32 0 39 57 35 60 83
48 55 a4 28 49 75 66 73
64 32 s9 | 6a | 57 EEM 42 S0 53 | 78 77 @ | 77 79
80 63 64 59 58 78 78
96 a8 68 67 | 61 58 | 64 83 82 | 80 | 92 | 80 B0
112 77 69 87 81
128 64 75 76 | 52 HEM 72 88 87 | 8 94 | 85 86
80 65 75 92 95 87
96 78 93 88
112 78 79 9%
260 128 91 86
400
260 81 94 89
800 400 66
800
Maximum 78 81 65 78 94 96 89 83
Max(single 96, pair 48) /|
Max(all)]  87% 83% 94% 82% 88% 96% 90% 100%

Table S4: Maximum achievable genus classification rate, 80% estimated accuracy,
comparing paired-ending with single-ended sequencing. The classification rate shown
in each cell is the maximum value observed for any choice of primers at each respective
read length.
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Maximum achievable genus classification rate, 95% estimated accuracy
single vs. paired-end

normal = single-ended reads
bold = paired-end reads
= no improvement over shorter reads
light green = paired-end performs better than single for same total read length
saturated green = more than 3% better
light red = paired-end performs worse than single for same total read length
=more than 3% worse
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= 2 = = g ] a
® = = 3 : = = <
~N w v o - 1= 3
n o E ] E 3 3 [c]
m n = c 5 [C) >
s 2 o = & H et &
Single-end Paired-end g w 3 @ 3 £ % E
read length read length S 3 z & & 2 a 2
32 41 12 0 0 55 33 60 83
48 50 0 21 39 73
64 32 59 64 35 28 45 25 34 78 77 41 20 77 79
80 63 44 49 78
96 43 66 56 57 83 82 62 92 80 80
112 49 27 87
128 64 75 44 57 65 88 87 86 94 85 86
80 52 65 92 95 87
96 55 93 &8
112 78 77 96
260 128 76 77 55 91 86
400
260 80 94 89
800 400 66
800
Maximum 78 80 65 77 94 96 89 83
Max(single 96, pair 48) /|
Max(all) 85% 55% 86% 74% 88% 96% 90% 100%

Table S5: Maximum achievable genus classification rate, 95% estimated accuracy,
comparing paired-ending with single-ended sequencing. The classification rate shown
in each cell is the maximum value observed for any choice of primers at each respective
read length.

7 Precision vs Accuracy; ‘“‘confident” predictions

Prior authors have often reported the extent to which a classification can be made at
all (i.e., precision), without regard for whether that classification is actually correct
(accuracy). An obviously problematic case is one in which all of the database hits to a
sequence agree on a genus (corresponding roughly to a 95% OTU), but these hits are
more than 5% divergent over their full length from the query sequence—indicating
that the query sequence is in fact not a member of that OTU. It is not straightforward
to limit the taxonomic level of the predictions on the basis of the observed %id of a
sequence fragment, however, because the identity threshold associated with each level
is variable throughout the sequence, and different fragments would give inconsistent
results.
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We therefore used annotations on the query sequences, where available, to evaluate
the accuracy of the taxonomic predictions at each level. Within each query dataset, for
each primer and read length, and for each taxonomic level, we computed the
proportion of predictions that proved correct, out of those sequences that were
annotated at that level at all. We term this “estimated accuracy” because it is
computed using only a subset of the query set (Table S6). We then applied two
thresholds, 80% and 95%, to determine which primer/read length combinations
produce trustworthy classifications under the given circumstances. We then removed
all predictions that were deemed unreliable; for instance, a genus-level prediction for
some sequence might be truncated to the order level, because more detailed
predictions were found to be wrong more than 20% of the time for the given primer,
read length, and environment.

8 Ranking of primer pair and read length
combinations (Figure 1)

Because each panel of Figure 1 contains 9678 vertical bars (which are not resolvable
in the image), it was necessary to sort the bars on the X axis in such a way that similar
colors were adjacent; otherwise the plots became visually uninterpretable. The
classification rates do not correlate well enough between different ranks to solve this
problem by a simple sort at one rank: for example, when we sorted by genus
classification rate, the proportions associated with other ranks remained a jumble. We
found by trial and error that sorting by a weighted mixture of the proportions at
different ranks produced comprehensible plots, though some degree of scrambled
appearance inevitably remains. The function was:

sortorder = 8 x strain + 8 x species + 8 x genus + 4 x family +2 x order + 1 x class +
1 % phylum + 1 xdomain+ 0.1 x noclassification

where the proportion at each rank excludes that at lower ranks (e.g., here family
means “family but not genus”).

This sort was performed for each panel independently, so the resulting order is not
consistent between panels.

9 Choice of representative optimal primers (Table 1)

We exhaustively computed the classification rate for thousands of combinations of
primer, read length, experiment type, environment, taxonomic level, and estimated
accuracy level. We found that some choices of primer and read length provided more
classifications (at a given estimated accuracy level) than certain other choices across
all environments tested. Our results suggest, for example, that one should not use
primer E1046F with 128nt reads for taxonomic classification, because primer E517F
with 80nt reads is always at least as informative at the genus level (and usually much
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more so). In fact, for phylum level classifications, reads of only 32nt from E533R are
substantially more informative. We filtered the results tables to exclude choices of
primer and read length that were uniformly less informative than others of the same or
shorter read length. We further filtered them, for the sake of tractable presentation, to
include only primers that achieve at least 90% of the optimum classification rate (per
read length) in at least one environment.

In a few cases, several choices provided nearly equivalent classification performance,
particularly involving closely related primers such as ES17F and U515F. We
considered two choices to be equivalent (for a given taxonomic level and estimated
accuracy level) if they provided classification rates within two percentage points in all
environments. In these cases we list each alternative but report the classification
performance of the representative with the best average performance.

The entries that remained after this filter was applied highlight the trade-offs inherent
in the choice of primer and read length. Each remaining entry is optimal according to
some criterion. For instance, for genus predictions from 128 nt reads, U519F
classifies more of the ocean sample than does E341F, but E341F is able to classify
sequences from the termite gut sample, where US19F makes few confident
predictions; and neither of them are near optimal on the dust and skin sample, where
E1406R produces substantially more confident predictions.
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