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Abstract 

Background 

DNA sequencing of archived dried blood spots (DBS) collected by newborn screening programs 

constitutes a potential health resource to study newborn disorders and understand genotype-

phenotype relationships. However, its essential to verify that sequencing reads from DBS 

derived DNA are suitable for variant discovery.  

Results 

We explored 16 metrics to comprehensively assess the quality of sequencing reads from 180 

DBS and 35 whole blood (WB) samples. These metrics were used to assess a) mapping of reads 

to the reference genome, b) degree of DNA damage, and c) variant calling. Reads from both 

sets mapped with similar efficiencies, had similar overall DNA damage rates, measured by the 

mismatch rate with the reference genome, and produced variant calls sets with similar 

Transition-Transversion ratios. While evaluating single nucleotide changes that may have arisen 

from DNA damage, we observed that the A>T and T>A changes were more frequent in DNA 

from DBS than from WB. However, this did not affect the accuracy of variant calling, with DBS 

samples yielding a comparable count of high quality SNVs and indels in samples with at least 

50x coverage.  

Conclusions 

Overall, DBS DNA provided exome sequencing data of sufficient quality for clinical 

interpretation. 
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Background 

Several countries routinely collect neonatal dried blood spot (DBS) samples as part of their 

newborn screening (NBS) programs. The blood is typically collected onto filter cards from the 

heel of newborns, air dried, and subsequently used in screening for diseases [1]. Archived 

collections of DBS samples stored desiccated at -20
o
 C provide a rich source of material for 

scientific inquiry aimed at establishing genotype to phenotype correlations. 

In collaboration with the California Department of Public Health (CDPH), we engaged in a 

project to assess the potential applications of whole exome sequencing (WES) in a NBS program 

to discover rare disorders in clinically asymptomatic children. Our initial pilot study used whole 

WES to identify metabolic disorders that were already being screened for in NBS programs 

using tandem mass spectrometry (MS-MS).  

To identify genetic variants associated with various diseases from the DNA extracted from DBS 

samples stored for several years, one has to first evaluate whether the quality of the extracted 

DNA sequences can provide exomes comparable to that derived from whole blood (WB) DNA. 

This is especially important for studies of rare Mendelian disorders, for which analysis involves 

locating a single causative genetic variant across the whole exome. Sufficient DNA needs to be 

extracted to provide adequate coverage of regions of interest, as each DBS sample contains 
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only about 50 µl of blood [2]. Furthermore, any DNA damage to the DBS samples could 

potentially impact variant calling and needs to be examined. 

A previous study compared pairwise variant concordance rates as a similarity measure between 

matched DBS and whole blood samples [3], concluding that whole genome amplified DNA from 

DBS gave comparable WES to whole blood (WB). The cohort size of 22 was much smaller than 

ours, and the focus was on variant analyses; other metrics reported were minimal. Another 

study successfully used WES from DBS for identification of important genes in a specific 

disorder, bronchopulmonary dysplasia, using case and control data [4]. A retrospective clinical 

study developed a targeted gene panel and variant processing pipeline to demonstrate utility 

for NBS [5]. However, these studies did not extensively compare the quality of WES from DBS 

versus WB and had smaller cohort sizes than our study. 

Our study evaluated the exome quality of DNA from DBS for use in screening for monogenic 

autosomal recessive Mendelian disorders in which two rare variants in a single gene must be 

found to explain the disease. Hence, the individual variant level quality needs to be good for 

every sample, since missing a variant because of low quality data can lead to misdiagnosis of a 

life-threatening condition. In the absence of matched samples, we focused on an extensive set 

of metrics that span the entirety of the process of variant calling starting from raw sequence 

reads. We compared metrics from two datasets: i) 180 DBS samples (DBS_2006) archived 

between the years 2006 and 2013; and ii) 35 WB samples collected, extracted and sequenced 

between 2013 and 2014. In addition, we evaluated a set of 8 anonymous DBS samples 
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(DBS_1980) archived between 1980 and 1982 for the same set of parameters (Additional file1; 

DBS_1980 metrics section). 

 

Results 

To assess the quality of the sequencing we evaluated three categories of quality metrics (Table 

1) across both data sets: 

• Read mapping to the reference sequence (Mapping Quality Metrics) 

• DNA damage in reads (DNA Damage Metrics) 

• Called variants (Variant Quality Metrics) 

Mapping Quality Metrics 

Successful variant calling requires raw reads to be mapped to the reference genome with high 

confidence and in sufficient numbers across all regions. We scrutinized parameters at 

nucleotide level and read mapping level. DBS_2006 data were in expected ranges and similar to 

WB values for unmapped reads; low quality bases; read pairs mapped across chromosomes; 

median insert sizes; and on-target, high quality read pairs (Additional file1; Mapping quality 

metrics section). 

Capture Coverage: Adequate coverage across the exome capture region is an indicator that 

sufficient quantity of high quality DNA was extracted to make confident variant calls. Coverage 

different from that expected from the library preparation and sequencing can indicate poor 
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mapping. We compared the median depth of coverage across the capture region as well as 

fraction of the capture region covered at various depth cutoffs ranging from 1x to 30x. We used 

high quality read pairs mapped to the capture region (Additional file1; High quality reads pairs 

section) for all coverage-related metrics unless otherwise specified. The WB set had a higher 

median coverage for most of the samples (Table 2; Additional file1, Figure S2A). The median 

coverage correlated strongly with the total number of reads for a sample (correlation 

coefficients- WB: 0.98, DBS_2006: 0.96; Additional file1, Figure S2C). The WB samples in our 

study had been sequenced to a greater depth and hence had on average higher number of 

reads than the DBS samples (Additional File1; Figure S1A). 

The DBS_2006 exhibited marginally better breadth of coverage compared to the WB set with 

fraction of the capture intervals covered at 1x being better (Table1; Additional file1, Figure 

S2B). The fraction of capture regions covered at 5x, 10x and 15x were comparable in both sets. 

Since the DBS_2006 was sequenced to a lower depth compared to the WB, comparisons could 

not be done beyond 30x. 

Uniformity of Coverage: Exomes are characterized by non-uniform regions of coverage 

compared to whole genome sequencing data [6]. Lower coverage at a particular locus can 

cause true variants to be missed. The uniformity of coverage was evaluated as follows: 

For each position in the capture, we defined deviation from mean coverage as 

��� � ����	
�� � 	
���	
��  100 
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where Covm is mean coverage across the capture region and Covp is coverage depth at position 

p. Hence, the fraction of positions with coverage within i% of Covm is  

	������ �
����
�� ���� ��� � �%�
��� ������� �
����
��  

where i = 10 to 90% deviation from mean, in steps of 10. 

We plotted the deviation from the mean coverage % and the corresponding fraction of base 

positions (median data across each set) for WB and DBS_2006. A steeper gradient implies more 

uniform coverage in the sample (Figure 1A), since for a given distance from the mean, this 

would translate to a larger percentage of bases within that coverage. We interpolated the data 

to calculate the uniformity of coverage as the maximum deviation from the mean coverage in 

50% of the base positions and compared the value for the two data sets. This was lower in 

DBS_2006 compared to the WB samples (Table1; Figure 1B). Five WB samples appeared to 

deviate significantly from the mean compared to the others.  

Another measure of uniformity of coverage is 

	
����	
����

 

where Coviqr is the inter-quartile coverage depth of all base positions in the sample and Covmed 

is the median coverage. The lower this value, the smaller the deviation from the median 

coverage and hence the more uniform the coverage. The inter-quartile coverage depth divided 

by median coverage also showed a similar trend with the DBS_2006 set having lower values 

compared to the WB data (Table 2; Figure 1C). 
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Gene Coverage: We examined base-wise coverage for exons from a set of 78 genes known to 

be associated with Mendelian inborn errors of metabolism as part of a study that examined the 

role of exome sequencing in new born screening [7]. The median coverage across all samples, 

20th percentile coverage and lowest coverage for all positions were plotted (Figure 2). Genes 

that were well covered in the WB set were also well covered in the DBS_2006 set. Data for two 

such genes, ACADM and CPT1A, are shown in the figure. Similarly, exons in some genes were 

observed to have low coverage in both WB and DBS_2006. Data for two such genes, BCKDHB 

and MLYCD, are shown in Figure 2, and are consistent with an artifact of the capture. 

Inferred Sex: The recorded sex of the individual submitting the sample was inferred by a 

chromosome coverage. Inconsistency of sex inferred from DNA versus sex recorded at the time 

of sample collection is an indicator that the DNA is poorly mapped and of insufficient quality. 

We used chromosome wise coverage information across the capture intervals to infer the sex 

of the samples. The coverage metric for a chromosome i is defined as 

	� � ∑ 	�
�
�

���

∑ 
�
�
�

���

  

where Rl = Number of reads overlapped with the capture interval l in chromosome i, L = Length 

of capture interval, Ni = Number of capture intervals in I for the sex chromosomes and 2 

chromosomes with similar length of capture intervals, 4 and 15. Only non-PAR regions of the X 

and Y chromosomes were considered. 

The distance calculations were 
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2  

  and 

����������� �
� 	�	�� � 0.5!� �  	�	�� � 0.5!� " � 	�	� � 0.5!� �  	�	� � 0.5!�

2  

where CX, CY, C4 and C15 are the coverage coefficients for the respective chromosomes. The 

inferred sex for a given sample is assigned according to the minimum value of distancemale and 

distancefemale. The inferred sex in all cases agreed with the reported sex for the WB and 

DBS_2006 data sets.  

 

DNA damage metrics 

DNA damage involving chemical modification of the template nucleotides can lead to erroneous 

incorporations of nucleotides during the synthesis of the complementary DNA [8]. These base 

changes with respect to the reference genome are not true SNVs and impact the quality of the 

final call set, leading to a higher false positive variant call rate. Furthermore, if there is DNA 

damage on the reads with true variants, the confidence of the true variants is decreased as the 

mapping quality could be lower, thus leading to true variants being flagged as potential false 

positives during variant filtering. We evaluated the following metrics to assess degree of DNA 
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damage in the DBS sets and the WB samples. Both metrics were calculated using high quality 

read pairs (Additional file1; High quality reads pairs section). 

Reads with nucleotide mismatches with respect to the reference genome: DNA stored for long 

periods could potentially accumulate various base alterations. A previous study estimated DNA 

damage by comparing the number of mismatches in the aligned reads between germline and 

FFPE (formalin-fixed paraffin embedded) tumor samples and found that the proportion of reads 

with ≥1 mismatched base were greater in the FFPE tumor samples [9]. Following this approach, 

we calculated the fraction of mismatch bases as  

&���� �� ������� ���� � '��'������ ����� �
'����� �
 ��(������ )��
'��
��� ��'��� 
( ����� �� �������  

where n = 0, 1, 2 and ≥3 mismatches. We excluded variants called with high confidence that 

overlapped with the mismatch positions to ensure true variants were not counted as 

mismatches. 

Both datasets showed similar fractions of mismatch reads (Table 3). In both data sets, >80% of 

reads had no mismatches to the reference genome in most samples (WB, 88.6%; DBS_2006, 

99.4%, as shown in Figure 3). Reads with ≥3 mismatches were slightly more frequent in the WB 

set compared to the DBS_2006 data (Table 3). 

Nucleotide misincorporations by base change type (NMBC): Relative frequencies of different 

kinds of non-variant base changes have previously been studied in FFPE in comparison with 

frozen tissue samples as an estimate of DNA damage [10]. C>T and G>A transitions were found 

to be significantly more frequent than other changes in the FFPE set. The largest C>T difference 
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was seen in the dinucleotide CG>TG transitions. These changes could potentially result in 

erroneous variants being discovered by the variant caller.  

We calculated the frequency of the nucleotide misincorporations by base type for a sample as 

*+,	��� � *�'��� 
( � - . ����)�� �� ��� �����*�'��� 
( � ��(������ ����� �� ��� ����� 

where I,j = A, C, T, G and i≠j. For instance, the fraction of A>C changes was computed as the 

ratio of the number of times an A>C change was seen in the sample to the total number of A 

nucleotides seen. Similarly, we computed all possible base changes (A>C, A>G, A>T, C>A, C>G, 

C>T, ....T>G). Only high quality read pairs occurring in the capture region as described 

previously were considered, and reads with insertions and deletions were excluded. To 

distinguish nucleotide misincorporations from true variants, we excluded high confidence 

variants from the computation (Methods; Reads and variant selection for metrics computation). 

We might expect to see more C>T changes in the DBS data as compared to the WB samples, 

given that deamination of cytosine and subsequent conversion to thymine is a recognized 

source of spontaneous mutation [11]. However, the C>T misincorporations were comparable 

among both sets. The A>T and T>A changes were higher in the DBS_2006 set compared to the 

WB, whereas A>G, A>C, C>G, G>C, T>C and T>G changes were higher in the WB set compared 

to the DBS_2006 samples (Additional file2, Table S2B; Figure 4). 

Variant Calls 

This set of metrics assessed the quality of the variants ultimately called by the variant caller. 

High quality variants (Methods; Reads and variant selection for metrics computation) were 
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analyzed for both data sets. These were categorized into common variants, with a minor allele 

frequency ≥0.001, and rare variants, with a minor allele frequency <0.001 in the 1000 Genomes 

database (phase3) [12]. Only variants in the regions defined in the Nimblegen capture array (v3) 

[13] bed file were considered for the analysis.  

High quality variants not present in the 1000 Genomes variant set, but present in more than a 

few samples in our study cohort were likely false positives. These could arise from systematic 

sequencing errors or through DNA damage.  

Confident Sites: We compared the reference and variant sites called confidently by the variant 

caller as a fraction of the capture region between the DBS_2006 and WB sets. A higher fraction 

of such confident calls would increase confidence in downstream variant interpretation. For 

each individual sample, the Genomic VCF (GVCF) files generated by the Haplotype Caller from 

GATK was used. All sites with genotype quality ≥30 were counted as confident and the total 

fraction of such sites with respect to the all the sites in the capture region was computed. The 

WB and DBS_2006 data had fractions of confident sites in similar ranges (Table 3; Additional 

file1, Figure S3A).   

Variant Counts: The count of common and rare variants were compared between the WB and 

DBS sets. These were further categorized Single Nucleotide Variations (SNVs) and Indels. To 

compare the variants, the WB, DBS_2006 and DBS_1980 samples were called together (223 

samples). 

The counts of high quality, common SNVs were comparable in the WB and DBS_2006 data 

(Table 4; Figure 5). The rare SNV frequencies were also comparable. Common indels were more 
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frequent in the WB set, while rare indels were similar in frequency. In addition, to mitigate the 

influence of each data set on the other in calling variants, WB and DBS data were called 

separately – 35 WB samples together and 180 DBS_2006 samples together. The variants were 

compared in these two sets (Additional file 1; variants – additional call sets section).  

Hiqh quality potentially false variants: Variants that were called with high confidence and not 

found in 1000 Genomes, yet shared by more than 2 samples were likely to be false positives 

that could be caused by systematic DNA damage to some sites. Excessive counts of such likely 

false positive (LFP) variants in DBS compared to WB samples could indicate systematic 

sequencing errors or alterations induced by DNA damage. Here, we examined only those 

variants that were marked as high quality post filtering and were likely false positives in the WB 

and DBS_2006 samples. There were fewer LFP SNVs in the DBS_2006 samples (Table 4; 

Additional file1, Figure S3B) and similar counts of LFP indels compared to the WB set 

(Additional file1, Figure S3C). 

Transition/Transversion ratios: As a measure of the quality of the filtered variant set, we 

compared the Transition/Transversion ratios categorized on variant frequency in the DBS_2006 

data with those observed in the WB set. The transition to transversion ratios were comparable 

between the WB and the DBS_2006 datasets for both common and rare SNVs (Table 4; 

Additional file1, Figures S3E and S3F) and in a similar range observed in 1000 Genomes phase 3 

data for Nimblegen capture region (range - 2.36 to 2.50) 
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Discussion 

Several quality metrics demonstrated that DNA isolated from DBS stored for prolonged periods 

at -20
o
 C under desiccation is suitable for WES and clinical interpretation. The percentages of 

unmapped reads and low-quality bases in DNA from our DBS samples were comparable to DNA 

from our control WB set. While a lower percentage of on-target high quality read pairs was 

observed in the DBS_2006 set because of higher duplicate reads and lower on-target reads, 

sufficient numbers of high quality read pairs were available in the DBS_2006 samples to provide 

a median coverage proportionate to the raw reads. Uniformity of coverage is a critical 

parameter in exome sequencing projects, and despite the lower median coverage, the 

DBS_2006 samples yielded comparable or better uniformity of coverage to exomes from WB. 

Similar trends were observed for poorly covered and well covered exons in a selection of genes 

of interest, boosting confidence in DBS exomes for clinical use. DBS stored appropriately for >30 

years showed value ranges similar to the more recent ones (data not shown). 

The inferred sex matched the stated sex in all DBS_2006 and WB samples, and mismatches with 

the reference genome were also comparable to those observed in WB. Further examination 

revealed similar patterns of individual nucleotide changes between the WB and DBS_2006 sets, 

with the exception of T>A and A>T, which were in higher frequency in the DBS_2006 set, 

although in the same ranges as observed in the WB set. 

To assess the impact of these differences for downstream analyses, high quality SNV nucleotide 

change frequencies were compared between the WB and DBS_2006 samples (Figure 6). All 

nucleotide changes were comparable between the WB and DBS_2006 sets except for C>T, 
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marginally higher in the DBS set (Additional file2, Table S3), but in the same overall range. A>T 

and T>A had a similar distribution with the WB set despite showing differences in the DNA 

damage comparisons. We also examined the DBS_1980 set for nucleotide misincorporations 

and noticed that most of the nucleotide changes were marginally higher than both the WB and 

DBS_2006 set although in similar ranges (Additional file 1, Figure S6; Additional file 2, Table 

S10a). This, however, did not impact the nucleotide changes in the high confidence variants, 

which were in the same ranges as WB and DBS_2006 (Additional file 1, Figure S7; Additional file 

2, Table S10b). We speculate that the longer storage time of the DBS_1980 samples (35 years 

versus 0 - 8 years) could have caused cumulative degradation resulting in higher rates of 

nucleotide misincorporation.  

High quality common and rare SNVs were comparable in the three sets. High quality common 

indels were slightly lower in the DBS_2006 set while rare indels were comparable in the both 

sets. We noted that the common indel counts before filtering were comparable between the 

WB and DBS_2006 sets (WB vs DBS_2006: P = 0.07; Additional file1, Figure S3D). Since coverage 

is also an important factor in determining variant counts, we performed a further comparison 

to rule out the effect of coverage on the indel counts. Samples with 50x to 80x median 

coverage were selected from the WB and the DBS_2006 sets and demonstrated comparable 

common and rare SNV and indel counts (Additional file 2, Table S9; Additional file1, Figure S4). 

False positive variant calls, which could result from base alterations due to DNA degradation, 

were identified with equal frequency for DBS_2006 and WB samples. Transition/Transversion 
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ratios, a measure of quality of SNVs called, were also comparable in both sets. 

 

Conclusion 

We explored several novel metrics to evaluate the quality of the DBS samples. These metrics 

are not restricted to the evaluation of DBS and have general applicability to exome sequencing 

data. Uniformity of coverage, which is independent of coverage depth, can be evaluated as a 

measure of confidence when yield of reads from sequencing is deemed insufficient. The 

coverage of the genes of interest in any study can be effectively reported visually with our gene 

coverage plots. Position-wise data across all exons is available at a glance with visual indicators 

to flag regions of poor coverage. The plots also highlight regions of exons not covered by the 

capture process. As an additional check of read quality, the sex of the sample can be inferred by 

our coverage, based sex identification approach. We have noted nonrandom distributions of 

nucleotide changes in our DNA damage metrics that are generalizable to other studies. Metrics 

such as confident sites and likely false positive variants give additional confidence to standard 

variant assessment practices. 

In summary, our results indicate that DNA extracted from dried blood spots generally yields 

WES of comparable quality to DNA isolated from whole blood. The initial filter criteria that we 

applied to select samples for the study (Methods, Sample section), proved sufficient to short-

list DBS samples for further analysis. Adequate quality coverage of the capture was achieved. 

Small differences in frequencies of nucleotide misincorporations did not impact the accuracy of 

variant calling. For DBS samples that have been archived for long periods, a preliminary 
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additional check for DNA damage is suggested to ensure that the ranges are similar to whole 

blood samples. Thus, DBS can be used to sequence exomes suitable for clinical interpretation. 

 

Methods 

Samples 

This study uses the following datasets for our comparisons: 

• 180 De-identified, residual DBS samples (DBS_2006) that were collected and archived 

between 2006 and 2013 at -20°C with desiccant. The de-identified DBS were obtained 

from the CDPH California Genetic Disease Screening Program (GDSP) under an approved 

IRB protocol. The DNA was extracted and sequenced in 2015 for the samples. 

• 35 de-identified WB samples (WB) were collected, extracted and sequenced between 

2013 and 2014. 

In addition, a smaller set of 8 anonymous DBS samples (DBS_1980) collected between 1980 and 

1982 by CDPH were evaluated for the same metrics (Additional file 1; DBS_1980 metrics). These 

samples were archived at -20°C with desiccant. 

This study was approved by the California Committee for the Protection of Human Subjects 

(project number 14-07-1650). DBS samples obtained from the GDSP as previously described [7] 

were used to prepare DNA for exome sequencing. DBS_1980 and DBS_2006 were archived by 

the GDSP and contained cases as well as false positives and controls for various metabolic 
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disorders screened by MS/MS. WB samples were clinical exomes from children that were part 

of a separate study, but sequenced at the same facility. 

Samples were selected to have a target capture coverage of at least 20x to ensure a minimum 

acceptable quality of exomes being compared. Contamination of the samples was estimated by   

the VerifyBamID tool [14] and samples with a freemix value >0.03 were excluded for the 

comparisons. A minimum fraction of 0.90 of high confident call sites (GQ≥30) across capture 

was ensured from the GVCF files. For the DBS_2006 set, this resulted in the selection of 180 out 

of 188 samples.  

Comparisons were performed on various metrics between the WB and DBS sets in two ways – 

with just the WB vs the DBS_2006 set and also between the WB set vs DBS_1980 and DBS_2006 

sets taken together. 

The total number of reads were higher on an average in the WB samples compared to the DBS 

sets (WB vs DBS_2006: P value = 9x10
-5

; WB vs DBS_1980 + DBS_2006: P value = 9x10
-5

; Figure 

1). There was more variability observed in the WB set and it should be noted that these were 

sequenced over multiple batches spread over 1.5 years. 

DNA Extraction, Target Enrichment and Sequencing 

For DBS_1980 and DBS_2006 samples, sample preparation and sequencing were done as 

described [15]. Briefly, two 3-mm punches of a DBS filter were used for DNA extraction, 

libraries were prepared and pooled, and exon capture was performed by SeqCap EZ Human 
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Exome Kit v3.0 (Nimblegen). Sequencing was done on a HiSeq 2500 (Illumina) sequencer to 

generate 100 bp paired end reads [16]. 

Alignment and Variant Calling 

Raw sequences were mapped to the reference genome (v37), using BWA mem algorithm 

(v0.7.10) [17]. Resulting SAM files were converted to binary format, sorted and lane merged 

using picard tools (v1.81) [18]. Duplicates were marked in the alignment files with Picard tools 

(v1.81). Next, realignment around known indels and base quality score recalibration were 

performed using GATK toolkit (v3.3) [19, 20]. Variants were called using the GATK Haplotype 

Caller function. The resulting VCF files were filtered using GATK VQSR function. Variant 

frequency and region annotations were added to the variant sets with Varant [21], an in-house 

annotation tool. 

All computational analyses were performed using in-house python scripts unless otherwise 

mentioned. 

Reads and variants selection for metrics computation 

Unless otherwise specified, only high quality read pairs (Additional file1; High quality reads 

pairs section) were used for analysis of the alignment and nucleotide misincorporation related 

metrics. Variant related statistics were reported for variants that were marked “PASS” and had 

a genotype quality ≥ 30 assigned by GATK Haplotype Caller. 
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Metrics and statistics computation: 

All metrics were computed with python scripts and python libraries numpy and pysam, 

available for download from https://github.com/dbsexomes/DBSpaper.  

Comparison of the various metrics between DBS and WB sets were done with Student T test 

(unpaired). Comparison was done two ways – i) WB vs DBS_2006 ii) WB vs DBS_1980 and 

DBS_2006 taken together. Since the parameter of comparison is source of DNA, DBS_1980 and 

DBS_2006 were not compared against each other. 

Additional files 

Additional file1: Supplementary methods and figures (.docx) 

Additional file2: Supplementary tables (.xlsx) 
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Figures 

 

Figure 1: Uniformity of coverage in WB and DBS_2006 

 

A: Fraction of total positions in capture (median value for each data set) is plotted on y-axis and 

maximum deviation from mean of that fraction on the x-axis. A) Red: WB, B) B) Black:  

DBS_2006. The DBS_2006 set, showed more uniformity of coverage, with the curve showing a 

steeper gradient. B: Maximum deviation from mean in 50% capture sites in WB and DBS_2006 

data sets. Deviation from mean was lower in the DBS_2006 compared to the whole blood 

dataset. C: Inter-quartile range coverage/Median coverage in WB and DBS_2006 data sets. This 

was lower in most of the DBS_2006 samples compared to the WB dataset. 

In B and C, Individual sample values are plotted and adjacent box plots display the median (red) 

and interquartile ranges for the dataset, whiskers extend to the last data point within 1.5 times 

the interquartile range. Violin plots superimposed on the box plots show the data density and 

mean value (blue). 
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Figure 2: Median coverage for whole blood (WB) and recent dried blood spot (DBS_2006) 

samples. 

Row 1: Coverage plots for ACADM and CPT1A genes. Row 2: Coverage for CPT1A and BCKDH 

genes. Plot of log(base 10) of the median, 20
th

 percentile and minimum coverage for each 

coding exon across all samples for a given sample set. Dark grey: Median coverage, medium 

grey: 20
th

 percentile coverage, light grey: minimum coverage at that position respectively. 

Coverage quality of each exon is indicated by colored blocks beneath the exon. Coverage quality 

of each exon is indicated by colored blocks beneath the coverage plot. Red: Greater than 15% of

exon has less than 10x median coverage; green: 95% of the exon has minimum 20x coverage. 

UTRs that are part of the coding exons have a smaller indicator thickness. Regions of the   exon 

that overlap with the capture array are indicated in blue just below the coverage plot. Exon 

scale in bases is shown in each plot. The well covered and poorly covered genes showed a 

similar trend in all 3 datasets. ACADM and CPT1A are examples of well covered genes and 

BCKDH and MLYCD have poorly covered exons. The coverage trends were similar at exon level as

well. 
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Figure 3: Fraction of reads with 0, 1, 2 and 3 or more mismatches with the reference. 

Both WB and DBS_2006 datasets had similar ranges of fraction reads with 0, 1, 2, and 3 or more

mismatches at positions not called variants by GATK Haplotype Caller. 
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Figure 4: Fraction nucleotide misincorporations by base change (NMBC) for all single base 

changes. Box plots display the median and inter quartile ranges for the dataset, whiskers extend

to the last   data point within 1.5 times the interquartile range and outliers beyond this are 

shown as circles. Green: WB, Orange: DBS_2006. The A>T and T>A changes were slightly higher 

in the DBS_2006 samples compared to WB. 
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Figure 5: Hiqh quality variant counts from WB and DBS_2006 data. Individual sample values are 

plotted and adjacent box plots display the median (red) and interquartile ranges for the dataset,

whiskers extend to the last data point within 1.5 times the interquartile range. Violin plots 

superimposed on the box plots show the data density and mean value (blue). Common variants 

have a frequency  ≥0.001 and rare variants < 0.001 in 1000 genomes data (phase3). High quality 

is defined as marked PASS by VQSR and GQ≥30. All high quality variant counts were comparable 

except for common indels which were slightly lower in the dried blood set.  

 

 

 

 

 

 

 

 

0 

 

 

.CC-BY-NC-ND 4.0 International licensewas not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (whichthis version posted July 7, 2020. . https://doi.org/10.1101/2020.05.19.105304doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.19.105304
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

31

 

 

Figure 6: Frequencies for all single base changes in high quality. Box plots display the median 

and inter quartile ranges for the dataset, whiskers extend to the last data point within 1.5 times 

the interquartile range and outliers beyond this are marked with   circles. High quality is defined 

as marked PASS by VQSR and GQ≥30. All changes were comparable in the 3 datasets except for 

the C>T fraction which was marginally higher in the DBS_2006 set. 
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Tables 

Table 1. Metrics for comparison of DBS with WB DNA sequence data 

Category Metrics Description 

Mapping 

quality 

Unmapped reads 

 

Percentage of reads not mapped to any 

location on the reference genome 

Reads mapped across different 

chromosomes 

Fraction of high quality reads with the pair 

mapped to a different chromosome 

Low quality bases Percentage of read bases with base quality 

score <20 

Median insert size Median value of distribution of start mapping 

positions of reads to end mapping position of 

paired read for high quality read pairs 

High quality read pairs Percentage of properly paired, non duplicate 

read pairs mapping to target with MQ≥20 

Median coverage Median coverage depth computed with high 

quality read pairs 

Fraction capture covered Fraction of the capture bases mapped  to by 

high quality reads 

Uniformity of coverage The coverage uniformity calculated with high 

quality read pairs in the capture region 

Gene coverage Batch wise median, 20
th

 percentile and 

minimum coverage of all exons and UTR 

regions in genes of interest 

Inferred sex Sex of the sample inferred by comparison of 

coverage in sex chromosomes and autologs 

DNA 

damage 

Reads with nucleotide 

mismatches with the reference 

genome 

Fraction of high quality reads with mismatches 

(variants excluded) with the reference genome 

Nucleotide misincorporations 

by base change type 

Nucleotide misincorporations of all possible 

types (variants excluded) as a fraction of the 

reference nucleotides in the capture regions 

Variant 

quality 

Confident sites Fraction of confident (GQ≥30) reference and 

variant calls by the caller 

Variant counts High confident variant counts categorized by 

frequency and type 

Likely false positive variants High confidence variant calls post filtering that 

are likely false positives 

Transition/Transverion ratios Ratio of Transition to Transversion changes in 

high confidence SNVs categorized by frequency 
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of occurrence 

  

Table 2. Coverage related metrics for WB and DBS_2006 datasets.  

Metric Median 1
st

 quartile 3
rd

 quartile p-value 

WB DBS_2006 WB DBS_2006 WB DBS_2006 

Median 

Coverage 

84 53 53.5 48 96.5 59.25 3E-06 

Fraction 

covered at 1x 

0.98111 0.98176 0.97955 0.980925 0.98228 0.9824725 0.01 

Fraction 

covered at 5x 

0.96707 0.969215 0.96516 0.9673875 0.97392 0.9705675 0.7 

Fraction 

covered at 10x 

0.95598 0.95702 0.954875 0.9536975 0.964 0.95949 0.009 

Fraction 

covered at 15x 

0.94721 0.943275 0.945935 0.9363 0.951705 0.9484125 0.002 

Fraction 

covered at 20x 

0.93739 0.92207 0.930955 0.9077575 0.94022 0.93356 0.005 

Fraction 

covered at 30x 

0.90245 0.841045 0.8606 0.805715 0.92105 0.878385 0.0009 

Uniformity of 

coverage 

34.6 31.9 32.3 31.1 35.8 32.8 7E-05 

IQR/median 

coverage 

0.72727 0.66667 0.67424 0.64706 0.75192 0.68421 0.0002 
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Table 3. Mismatch bases with the reference genome for WB and DBS_2006 datasets. 

Metric Median 1
st

 quartile 3
rd

 quartile p-value 

WB DBS_2006 WB DBS_2006 WB DBS_2006 

0 mismatches 0.90106 0.89756 0.88022 0.89152 0.90847 0.90478 0.1 

1 mismatch 0.07291 0.07792 0.0654 0.07145 0.07879 0.08276 0.2 

2 mismatches 0.01252 0.01283 0.01215 0.01187 0.01821 0.0142 0.2 

≥3 

mismatches 

0.01347 0.01163 0.01255 0.01003 0.01812 0.01487 0.01 
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Table 4 Variant statistics for WB vs DBS_2006 datasets.  

Metric Median 1
st

 quartile 3
rd

 quartile p-value 

WB DBS_2006 WB DBS_2006 WB DBS_2006 

Confident 

sites 

0.95161 0.9518 0.95023 0.94738 0.95851 0.95485 0.004 

Common 

SNVs 

69328 68905 68548 68110.3 70106 69564.3 0.1 

Rare SNVs 835 795.5 781 731.8 1026.5 929 0.05 

Common 

Indels 

5281 5148 5232.5 5094.8 5326 5223.3 9E-05 

Rare Indels 416 401 393.5 386.8 425.5 422.3 0.1 

LFP SNVs 1078 1031.5 1048 989.8 1113 1080.3 0.0009 

LFP Indels 1991 1984.5 1901.5 1939.5 2042.5 2041.3 0.5 

Ti/Tv -

Common SNPs 

2.56 2.55 2.54 2.54 2.56 2.56 0.9 

Ti/Tv - Rare 

SNPs 

2.42 2.46 2.35 2.3 2.52 2.61 0.5 
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