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A sensitive protein-fold recognition procedure was developed on the basis of iterative database search using the
PSI-BLAST program. A collection of 1193 position-dependent weight matrices that can be used as fold identifiers
was produced. In the completely sequenced genomes, folds could be automatically identified for 20%–30% of
the proteins, with 3%–6% more detectable by additional analysis of conserved motifs. The distribution of the
most common folds is very similar in bacteria and archaea but distinct in eukaryotes. Within the bacteria, this
distribution differs between parasitic and free-living species. In all analyzed genomes, the P-loop NTPases are the
most abundant fold. In bacteria and archaea, the next most common folds are ferredoxin-like domains,
TIM-barrels, and methyltransferases, whereas in eukaryotes, the second to fourth places belong to protein
kinases, b-propellers and TIM-barrels. The observed diversity of protein folds in different proteomes is
approximately twice as high as it would be expected from a simple stochastic model describing a proteome as a
finite sample from an infinite pool of proteins with an exponential distribution of the fold fractions. Distribution
of the number of domains with different folds in one protein fits the geometric model, which is compatible with
the evolution of multidomain proteins by random combination of domains.

[Fold predictions for proteins from 14 proteomes are available on the World Wide Web at ftp://ncbi.nlm.nih.
gov/pub/koonin/FOLDS/index.html. The FIDs are available by anonymous ftp at the same location.]

Knowledge of the three-dimensional structures of pro-
teins is indispensable for understanding biological pro-
cesses. Ideally, determination of the structures of all
proteins encoded in a genome should follow genome
sequencing promptly. In reality, the recent substantial
progress in experimental structural biology notwith-
standing, structures are being determined for only a
miniscule fraction of the gene products even for a bac-
terial genome containing a few thousand genes, not to
mention the human genome with its estimated
100,000 genes (Holm and Sander 1996). Fortunately,
however, considerable information on protein struc-
ture can be extracted by computer from sequence
alone. This stems from two related principles of pro-
tein sequence-structure relationships: (a) there is only a
limited number of distinct protein folds, perhaps no
more than 1000 altogether, and ∼400, presumably the
most common ones, are already represented by experi-
mentally determined structures (Dorit et al. 1990; Cho-
thia 1992; Hubbard et al. 1997); (b) proteins with simi-
lar sequences tend to have similar structures; in ho-
mologous proteins, structure is generally more
conserved than sequence, and therefore even subtle
but reliable sequence similarity is likely to signify struc-

ture conservation (Doolittle 1981; Holm and Sander
1996, 1997).

The latter principle is essentially a recast of the
Anfinsen’s postulate: A protein’s sequence determines
its structure (Anfinsen and Scheraga 1975). Theoreti-
cally, structure should thus be predictable from se-
quence. Currently, however, such ab initio prediction
is possible only for peptides and very small proteins
(Abagyan 1997; Ortiz et al. 1998). Therefore for typical
proteins, the only practical route to deriving structural
information from sequence is through similarity to
proteins with known structures, and success of struc-
ture prediction critically depends on the resolution
and robustness of the methods used to detect such
similarity. There are two basic categories of such meth-
ods: (1) sequence similarity analysis; and (2) sequence–
structure threading (Godzik and Skolnick 1992; Bryant
and Altschul 1995; Murzin and Bateman 1997). The
threading approaches have been designed to address
the problem of sequence-based structure prediction di-
rectly by assessing the compatibility of a given se-
quence with each known structure. These methods,
however, generally lack statistical rigor and are com-
putationally expensive (Lathrop 1994; T.F. Smith et al.
1997). Sequence similarity search is much faster, and at
least the most popular method, BLAST, has a solid sta-
tistical foundation (Karlin and Altschul 1990; Karlin et
al. 1991). The problem with these methods is that, as
shown by a recent extensive evaluation, they detect
only a small fraction of all homologous relationships
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that can be inferred from the comparison of the known
protein structures (Brenner et al. 1998).

Accumulation of complete genome sequences
from several bacteria, archaea, and eukaryotes creates
new possibilities for assessing the phylogenetic distri-
bution of protein folds in connection to organism phe-
notypes. Clearly, such a survey will be meaningful only
if for each known fold, the majority of the representa-
tives are recognized correctly. Recently several at-
tempts have been made to analyze fold distribution in
the complete protein sequence database (Gerstein and
Levitt 1997) or in individual proteomes (Fischer and
Eisenberg 1997; Gerstein 1997). These efforts relied pri-
marily on standard methods for sequence comparison
whose relatively low performance in fold recognition
has been demonstrated (Brenner et al. 1998), with an
additional contribution from secondary structure-
based threading (Fischer and Eisenberg 1997). We
sought to increase the sensitivity of fold recognition by
using position-dependent weight matrices that are pro-
duced by the PSI-BLAST program concomitantly with
database search (Altschul et al. 1997). In several studies
on individual protein families, PSI-BLAST has demon-
strated its ability to detect subtle sequence similarities
that led to fold prediction, in part already confirmed
by experiment (Mushegian et al. 1997; Aravind et al.
1998a,b; Aravind and Koonin 1998). We reasoned that
matrices produced by PSI-BLAST could serve as sensi-
tive identifiers for protein folds and proceeded to de-
velop such identifiers for all folds present in the Struc-
tural Classification of Proteins (SCOP) database (Mur-
zin et al. 1995; Hubbard et al. 1997) and to apply them
for a comparative analysis of fold distribution in com-
plete proteomes of bacteria, archaea, and eukaryotes.

RESULTS AND DISCUSSION
The Fold Recognition Procedure

The starting material for our fold recognition protocol
(Fig. 1) was the set of protein sequences represented in
SCOP 1.35, in which individual structural domains
have been isolated. With the goal of increasing the
resolution power of the resulting profiles, these do-
main sequences were enriched with those of obvious

homologs from the nonredundant (NR) protein se-
quence database at the National Center for Biotechnol-
ogy Information (NCBI) and then clustered by se-
quence similarity to select representative sequences for
fold recognition (see Methods). The resulting 1193 do-
mains belong to significantly different proteins with
reliable fold assignment, classified by fold (fold repre-
sentative sequences or FRS). Each FRS was used as a
starting point for iterative PSI-BLAST search of the NR
database, producing significant hits to 77,279 proteins,
which comprises ∼27% of the entire database. Com-
pared to single-pass searches, the iterative searches re-
trieved a total of 26,275 extra hits corresponding to
228 out of the 284 folds. The current version of PSI-
BLAST has the option of saving position-dependent
weight matrices constructed during the iterative
search. Such a matrix contains information on all the
database sequences significantly similar to a FRS and
can be used to search another database, greatly increas-
ing the sensitivity and selectivity compared to a search
with a single query sequence. Thus the 1193 matrices
produced for each of the FRS by the PSI-BLAST searches
were stored for subsequent use as fold identifiers
(FIDs).

Under this approach, a fold may be represented by
one or multiple FIDs, depending on the number of FRS.
Cross-recognition between FIDs (in other words, over-
lap between PSI-BLAST outputs) within one fold mea-
sures the ability of the method to detect subtle simi-
larities that escape standard sequence comparison pro-
cedures. Of the 176 folds with more than one FRS, 74
(42%) showed perfect intrafold recognition (there was
overlap within each pair of outputs), 58 (33%) showed
partial intrafold recognition, and in the remaining 44
(25%), there was no recognition between different
FIDs.

In contrast, recognition between different folds
typically is false; thus overlaps between the database
search results for FRS representing different folds
should be considered false positives for one or both of
the two folds involved. To estimate the error rates con-
servatively, both assignments were counted as false
positives. (Parenthetically, it should be noticed that
this may not be true in the rare cases in which certain
folds in the SCOP classification seemed to have been
split artificially. Thus it was noticed that two pairs of
folds, namely seven- and eight-bladed b-propellers and
two Rossmann-like nucleotide-binding folds, are in
fact related closely at the sequence level. These folds
were combined for the purpose of this analysis). Of the
284 folds included in our analysis, for 198 (70%), no
false positives were detected. For the remaining folds,
point estimates of the false-positive rates were ob-
tained after clustering the complete sets of hits and the
sets of overlaps, to account for nonindependent (ho-
mologous) sequences.Figure 1 The fold recognition procedure.
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A point estimate of the error rate may give false
confidence when the number of involved cases is
small. To obtain an interval estimate, we assumed that
clusters of database hits for each FRS were obtained
independently (a realistic assumption given the low
cut-off used for clustering; see Methods). A Bernoulli
model was then applied to find the upper limit for a
background error rate that may lead to the given num-
ber of independent false positives out of the given
number of independent clusters. The upper limits of
the 95% confidence interval of the false positive rate
for the most common folds are shown in Table 1. With
the exception of two cases, the maximum expected
error rate is well below 10%. This is in a good agree-
ment with the empirical results (see below).

Whereas the evaluation of the false-positive rate in
fold recognition is more or less straightforward, the
critical issue of false negatives (that is, how many pro-
teins with a known fold are missed) is much harder to
address. Some estimates, however, could be made con-
comitantly with a detailed analysis of the distribution
of predicted folds in complete proteomes as discussed
below.

Phylogenetic Distribution of Protein Folds

At the time of this analysis (April 1998), 13 complete
genome sequences were publicly available: Haemophi-
lus influenzae (Fleischmann et al. 1995), Mycoplasma
genitalium (Fraser et al. 1995), Mycoplasma pneumoniae
(Himmelreich et al. 1996), Synechocystis sp. (Kaneko
and Tabata 1997), Helicobacter pylori (Tomb et al. 1997),
Escherichia coli (Blattner et al. 1997), Bacillus subtilis

(Kunst et al. 1997), Borrelia burgdorferi (Fraser et al.
1997), Aquifex aeolicus (Deckert et al. 1998), Metha-
nococcus jannaschii (Bult et al. 1996), Methanobacterium
thermoautotrophicum (D.R. Smith et al. 1997), Archaeo-
globus fulgidus (Klenk et al. 1997), and Saccharomyces
cerevisiae (Goffeau et al. 1996). In addition, the pro-
teome of the nematode Caenorhabditis elegans that was
∼85% complete (Kuwabara 1997) also was included in
the analysis (Table 2).

Fold assignment was performed by searching the
sequences from each of these proteomes using the PSI-
BLAST program (a single pass), with each of the 1193
FIDs as the query. All hits with an e-value ø1012 after
an adjustment to the NR database size were considered
automatic fold assignments. For the 30 most common
folds, additional, case-by-case analysis was performed
by searching for the conservation of motifs typical of
known protein families in the outputs of the FID-
initiated searches (regardless of the statistical signifi-
cance). Additionally, all the sequences from complete
proteomes were searched against the NR database us-
ing PSI-BLAST and the outputs were examined in the
same fashion.

The results of this analysis (Table 2) show that the
fraction of false positives (erroneous fold assignments)
among automatic predictions typically was ∼1%–2%
(maximum 3.2%); the detected fraction of false nega-
tives (additional assignments made by the case-by-case
screening) was 9%–13% (maximum 13.3%). These
findings suggest that FIDs predict protein folds at a
genome scale with a reasonable reliability.

The overall fraction of proteins with fold assign-
ments in the proteomes typically varied in the range of
24%–35% with a few exceptions: the highly composi-
tionally biased proteome of B. burgdorferi and the in-
complete proteome of C. elegans, which was analyzed
only automatically, have the lowest fraction of pro-
teins with assigned folds (19% and 21%, respectively),
whereas the smallest known proteome of M. genitalium
has the highest (39%). This prediction rate is consid-
erably higher than those reported in the previous stud-
ies (Fischer and Eisenberg 1997; Gerstein 1997; Ger-
stein and Levitt 1997). Furthermore, the information is
now available for a greater number of genomes, at least
for bacteria and archaea. Thus, though the prediction
evidently is still incomplete, it was of interest to ex-
plore some patterns in the fold distribution.

Figure 2 shows the distribution of predicted folds
in the three superkingdoms of life, Bacteria, Archaea,
and Eukarya. Almost one-half of the folds are univer-
sal. It is remarkable that nearly all folds found in ar-
chaea belong to this ubiquitous set, whereas a very
small number is shared by archaea with bacteria or
eukaryotes, to the exclusion of the third superking-
dom. By contrast, over 20% of the recognized folds are
shared by bacteria and eukaryotes, but not by archaea,

Table 1. Upper Limit of 95% Confidence Interval
for False-Positive Rate

Folda

False-positive
rate
(%)

b-propeller 2.1
PLP-dependent transferases 2.5
a/b-hydrolase 2.8
SAM-methyltransferases 3.0
Zn-b-lactamases 3.3
Periplasmic-binding II 3.4
Ferredoxin-like 3.7
ATP-pyrophosphatases 4.3
TIM-barrel 5.3
P-loop NTPases 5.6
RNase H-like 5.8
NR-ligand binding 6.1
Rossmann-like 6.2
Protein kinases 6.3
Flavodoxin-like 7.6
Rossmann-fold 9.6
ATP-grasp 17.1
Class II aaRS and biotin synthetases 23.9

aAbbreviated SCOP 1.35-fold names.
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most likely caused by the transfer of bacterial genes
from organellar genomes to the nuclear genomes of
eukaryotes, and perhaps to additional horizontal trans-
fer events. Whereas major gene exchange has most
likely occurred also between bacteria and archaea (Koo-
nin et al. 1997), it appears that these events involved
primarily genes encoding proteins with ubiquitous
folds, for example., central metabolic enzymes. The
near absence of archaea-specific folds, which contrasts
the considerable and almost equal number of specifi-
cally bacterial and eukaryotic folds, probably reflects
the currently insufficient structural characterization of
archaeal proteins.

In all three superkingdoms, the most common
fold is the P-loop NTPase. Four folds, namely P-loop
NTPases, TIM barrels, ferredoxin-like domains, and
Rossmann fold domains, are present in all three top 10
lists (Table 3). The abundance of each of the common
folds, but particularly P-loop NTPases and SAM-
dependent methyltransferases (the third and fourth-
ranking fold in bacteria and archaea, respectively),

seems to have been underestimated in the previous
studies (Gerstein 1997; Gerstein and Levitt 1997). The
P-loops have not been detected as the most common
fold in any genome or taxonomic division, whereas the
methyltransferases never made the top 10 list at all,
apparently because of the relative difficulty of their
recognition. In agreement with the previous findings
reported for a small set of complete genomes (Gerstein
1997), all top folds in bacteria and archaea, and 8 out
of the top 10 folds in eukaryotes belong to two struc-
tural classes: a/b and mixed a + b proteins.

The distributions of the most common folds in
bacterial and archaeal proteomes are very similar (8 of
the top 10 folds are the same; Table 3), though the
much higher abundance of ferredoxin-like proteins
and metallo-b-lactamase-like proteins and the under-
representation of the Rossmann fold in archaea are no-
table. Eukaryotes show a different ranking of folds—
five of the folds among the eukaryotic top 10 hits are
not in the bacterial or archaeal top 10 lists, and one,
namely the ligand-binding domains of nuclear recep-
tors, is unique for eukaryotes (Table 3). In bacteria and
archaea, the most common folds correspond to en-
zymes involved in genome replication and expression
(e.g., ATPases and GTPases) and metabolic enzymes.
Particularly notable is the abundance of methyltrans-
ferases (Table 3; see above), most of which are involved
in modification of nucleic acids and proteins. By con-
trast, among the eukaryotic top 10 folds, proteins in-
volved in regulation and signal transduction, such as
protein kinases and b-propellers, are prominent; it is of
further note that in the multicellular eukaryote C. el-
egans, protein kinases are the most common fold
(Table 3). Perhaps unexpectedly, in spite of the great
importance of methylation in the regulation of eukary-

Figure 2 Distribution of the recognized folds in bacteria, ar-
chaea, and eukaryotes. The number of recognized folds is indi-
cated for each part of the diagram.

Table 2. Fold Assignment in Complete Proteomes

Species
No. of

proteins
Automatically

predicted
Total

predicteda
False

negativesb
False

positivesc
No. of

recognized folds

M. genitalium 467 159 182 39.0% 24 13.2% 1 0.6% 81
M. pneumoniae 677 173 197 29.1% 26 13.2% 2 1.2% 84
B. burgdorferi 1,256 216 241 19.2% 32 13.3% 7 3.2% 94
A. aeolicus 1,521 481 530 34.8% 53 10.0% 4 0.8% 108
H. pylori 1,565 343 392 25.0% 50 12.8% 1 0.3% 112
H. influenzae 1,717 506 555 32.3% 53 9.5% 4 0.8% 144
Synechocystis sp. 3,169 826 894 28.2% 72 8.1% 4 0.5% 151
B. subtilis 4,099 1021 1124 27.4% 115 10.2% 12 1.2% 165
E. coli 4,289 1104 1212 28.3% 136 11.2% 28 2.5% 175
M. jannaschii 1,770 389 439 24.8% 56 12.8% 6 1.5% 98
M. thermoautotrophicum 1,893 459 509 26.9% 54 10.6% 4 0.9% 103
A. fulgidus 2,407 608 679 28.2% 75 11.0% 4 0.7% 112
S. cerevisiae 6,529 1462 1575 24.1% 148 9.4% 35 2.4% 165
C. elegans 13,743 2831 2831 20.6% N/A N/A N/A N/A 172

(N/A) Not applicable.
aPercentage of total prediction is indicated relative to the proteome size.
bPercentage of false negatives is indicated relative to total prediction figures
cPercentage of false positives is indicated relative to automatic prediction figures.
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otic gene expression, the methyltransferases are rela-
tively much less abundant in eukaryotes than in pro-
karyotes (rank 12; Table 3).

The fraction of proteins with the P-loop fold
strongly depends on the proteome size—the smaller
the proteome, the larger the share of P-loop-containing
proteins (Fig. 3). This reflects the fact that many
ATPases and GTPases are involved in housekeeping
processes (e.g., translation and replication), and their
loss is incompatible with life. The other common folds
do not show a similar distribution, and their contribu-
tion to a given proteome seems to depend more on the
respective organism’s lifestyle than on the total num-
ber of proteins. Thus the fraction of TIM barrels is the
greatest in heterotrophic bacteria with diverse metabo-
lism, for example, E. coli, whereas ferredoxins are most
prominent in autotrophs with long electron transfer
chains such as archaea and Synechocystis sp. Even more
specifically, in the free-living bacterium A. aeolicus,
whose proteome size is close to those of the parasites B.
burgdorferi and H. pylori, the folds involved in meta-
bolic functions, namely TIM barrels and Rossmann
fold domains, are clearly more abundant (Fig. 3). Some
observations, however, for example the obvious over-
representation of methyltransferases in H. pylori (Fig.
3), are not so easily explained and may hint at com-
pletely unknown aspects of the organism’s physiology.

Clustering of Organisms on the Basis
of Fold Composition

Even a superficial inspection of the distributions of the

top 30 folds reveals certain similarities between differ-
ent organisms (Table 3). To address the issue in a sys-
tematic manner, a matrix of correlation coefficients
between the fold distributions was constructed and
used to produce a similarity dendrogram (Fig. 4). The
dendrogram emphasizes the already mentioned dra-
matic difference in the fold composition between eu-
karyotes and prokaryotes (bacteria and archaea). Ar-
chaea form a distinct branch, whereas bacteria fall into
two clusters—free-living and parasitic ones. The hyper-
thermophilic bacterium A. aeolicus is close to the com-
mon branching point on the dendrogram, which may
reflect massive horizontal gene transfer from archaea,
resulting in a chimeric composition of its genome (Ara-
vind et al. 1998c).

It should be emphasized that the observed cluster-
ing is clearly different from that observed in phyloge-
netic reconstructions; for example, such phylogeneti-
cally close bacteria as E. coli and H. influenzae (Fleis-
chmann et al. 1995) are in different branches of the
fold composition dendrogram. It appears that the ob-
served clustering of parasitic bacteria and their separa-
tion from the free-living ones reflects the elimination
of a similar subset of folds in the course of a genome-
scale adaptation to parasitism that has occurred inde-
pendently in different bacterial lineages.

Ranking and Diversity of Protein Folds in Proteomes

To explore the general features of protein-fold distri-
bution in all organisms, the unweighted average frac-
tion of each fold was calculated first within the super-
kingdoms and then between them (Table 3). This pro-
cedure gives equal weights to each proteome within a
superkingdom and to each superkingdom in the total
count, regardless of the sample size. A plot of the av-
erage fraction of the given fold representatives in a
proteome versus fold rank (Fig. 5) shows that at least 29
of the top 30 folds fit an exponent with a strong sta-
tistical support [P(x2) >> 0.1] (extending this plot to
the rest of the 239 folds detected in 14 proteomes is
statistically unfeasible since most of them are repre-
sented by only a few proteins). The first point that does
not fit the curve in Figure 5 corresponds to the top-
ranking P-loop ATPase fold, which is clearly over-
represented, given the exponential distribution. Com-
puter simulations based on very simple models of pro-

Figure 3 Distribution of the most common folds in selected
bacterial, archaeal, and eukaryotic proteomes. (ATP-PP) ATP py-
rophosphatases; (PK) serine–threonine protein kinases; (SAM-
MTR) S-adenosyl methionine-dependent methyltransferases.
(mg) Mycoplasma genitalium; (bb) Borrelia burgdorferi; (aa)
Aquifex aeolicus; (hp) Helicobacter pylori; (mt) Methanobacterium
thermoautotrophicum; (af) Archaeoglobus fulgidus; (ss) Synechocys-
tis sp.; (bs) Bacillus subtilis; (ec) Escherichia coli; (sc) Saccharomyces
cerevisiae; (ce) Caenorhabditis elegans. For each genome, the total
number of encoded proteins is indicated in parenthesis.

Figure 4 Clustering of proteomes by correlation between pro-
tein fold compositions.
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tein fold evolution (assuming a constant rate of
protein duplication within a fold and in time, but dif-
ferent rates for different folds) show that the fraction
versus rank plots fit exponent when the background
probability of protein duplication (i.e., the growth rate
of the number of fold representatives) is uniformly dis-
tributed among the folds (not shown).

The larger the proteome, the more different folds it
contains (Table 2; Fig. 6). This reflects the intuitively
obvious fact that proteomes of more complex organ-
isms show a greater structural diversity. On the other
hand, the increase of diversity follows from a purely
stochastic model that describes a proteome as a finite
sample from an infinite pool of proteins with a par-
ticular distribution of fold fractions (a bag of proteins).
A series of numerical experiments was performed,
simulating random sampling from a protein pool. The
pool contained an infinite number of proteins, with
fold fractions distributed exponentially except for one
special point (the top-ranking fold); the parameters of
the simulated distribution were optimized to fit the
exponential part of the distribution of the top 30 folds

from the 14 proteomes (Fig. 5). A comparison of the
simulated and observed data (Fig. 6) shows that,
whereas both real and simulated diversity seem to fol-
low the logarithm law, the stochastic model underes-
timates the number of different folds approximately
twofold. From the statistical viewpoint, these observa-
tions suggest that the distribution of lower-ranking
folds (that can not be assessed directly because of the
lack of statistically representative data) does not fit the
exponential distribution observed for the higher-
ranking folds (Fig. 5). In other words, the fold compo-
sition of the real proteomes does not seem to follow
the protein bag model; their higher than expected di-
versity is likely to be a product of natural selection.

Multidomain Proteins

Whereas most proteins contain only one recognizable
domain, complex, multidomain proteins are not un-
common (Doolittle 1995). Aggregation of different do-
mains within a single polypeptide chain obviously
serves the purpose of bringing several different activi-
ties into spatial proximity to ensure proper coordina-
tion and regulation. One could speculate that evolu-
tion favors the formation of such multidomain pro-
teins, or that their abundance should increase along
with increasing complexity of the cellular machinery.
To address these questions quantitatively, we exam-
ined the distribution of the number of domains in pro-
teins from the three superkingdoms. The number of
different folds predicted in each protein in the com-
plete proteomes was counted, and the unweighted av-
erage fraction of the proteins with each given number
of domains was calculated for each superkingdom (Fig.
7). Somewhat surprisingly, the three distributions do
not significantly differ from each other [P(x2) > 0.1 in
all comparisons between superkingdoms], indicating
that neither the proteome size nor the average protein
length [both of which are considerably greater in eu-
karyotes (Das et al. 1997)] affect the statistics of do-

Figure 5 Rank distribution of the unweighted average fraction
of the top 30 protein folds in proteomes. (Blue diamonds) The
observed unweighted average fractions of folds; (magenta line)
The best-fitting exponent approximation.

Figure 6 Observed and simulated fold diversity in complete
proteomes. (Blue diamonds) Observed number of different folds
in the proteomes, plotted against the number of proteins with
predicted folds (sample size). (Magenta squares) The results of
computer simulations under the stochastic model (see text).
(Dotted lines) The respective best-fitting logarithm approxima-
tions.

Figure 7 Distribution of multidomain proteins in complete pro-
teomes. (Blue diamonds) Bacteria; (magenta squares) Archaea;
(red circles) Eukarya. (Dotted line) Best-fitting exponent approxi-
mation (geometric distribution) for the data, averaged across the
three superkingdoms.
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main composition. All distributions show a very good
fit [P(x2) >> 0.1] to an exponential model (Fig. 7),
where each next class contains approximately seven
times less entries then the previous one. Such geomet-
ric distribution is typical of series of random indepen-
dent events with the same background probability.
This observation further supports the notion that the
selective forces that affect the formation of multido-
main proteins, if they exist, are well balanced by the
forces that favor splitting of such proteins.

General Notes and Conclusions

We developed a computer system for protein fold rec-
ognition that is based on position-dependent weight
matrices constructed using the iterative PSI-BLAST
methods, with structurally characterized domains
from the SCOP database as starting points. A collection
of 1193 position-dependent weight matrices that can
serve as fold identifiers was constructed and is available
for use. Folds were predicted for 20%–30% of the pro-
teins in each of the 13 analyzed complete proteomes,
with a greater prediction rate (39%) for the minimal
proteome of M. genitalium. After this analysis was com-
pleted, two independent studies have been published
that give a very close number of predicted folds for M.
genitalium using PSI-BLAST with proteins from this bac-
terium as starting points (Huynen et al. 1998;
Rychlewski et al. 1998). The congruence between the
two approaches suggests that PSI-BLAST is a reasonably
robust tool for fold prediction.

Given that another 20%–30% of each proteome
seem to be comprised by integral membrane proteins
and soluble nonglobular proteins (e.g., Koonin et al.
1997), 30%–50% of all predictable globular domains
may be covered by the present analysis. Although in-
complete, this coverage suggests that conclusions
drawn from the comparative analysis of fold distribu-
tions among different phylogenetic lineages may be
meaningful. These distributions show major differ-
ences between eukaryotes and prokaryotes (bacteria
and archaea) in terms of the predominant folds. The
most common folds in prokaryotes are those involved
in housekeeping functions, such as P-loop-containing
NTPases and TIM barrels, whereas the eukaryotic dis-
tribution is marked by the prominence of domains
with primarily regulatory functions, such as protein
kinases and b-propellers. Within the bacteria, there is a
remarkable correlation in the fold distributions be-
tween phylogenetically distant parasitic species as op-
posed to their free-living relatives.

Computer simulation of the rank distribution of
folds, when compared to the actual observations, indi-
cates that the diversity of folds in each of the analyzed
proteomes is about twice as great as that predicted on
the basis of the exponential distribution seen among
the top 30 folds. It is speculated that structural diver-

sity may be selected for in the course of evolution. The
observed distribution of the number of multidomain
proteins fits the model of their origin by random do-
main combination. Further improvements in domain
recognition, together with the experimental identifica-
tion of new folds, will show how general these trends
are.

It should be kept in mind that our conclusions
may be to some extent affected by the existing biases
both in the database of protein structure and in the
available collection of complete genome sequences. In
particular, folds that are specific to archaea and to mul-
ticellular eukaryotes are likely under-represented. Nev-
ertheless, given that the most common folds are al-
ready clearly present in SCOP and that at least two
genomes from each of the three superkingdoms are
available, we do not expect that the ranking of the
most abundant folds changes significantly.

METHODS
Databases

The sequences of individual domains from the SCOP 1.35
database were used as the learning set for the fold recognition
procedure. All database searches were performed with the
NCBI NR database (288,947 protein sequences) in which the
regions with low compositional complexity have been
masked using the SEG program [window length 60, trigger
complexity threshold 3.4, extension complexity threshold 3.8
(Wootton 1994; Wootton and Federhen 1996)]. This version
of the NR database is available on request. Proteome sequence
data were extracted from the NCBI database of genomes
(http://ncbi.nlm.nih.gov/Entrez/Genomes/org.html).

Sequence Analysis

All searches were performed using the PSI-BLAST program,
version 2.0.4 (Altschul et al. 1997). The fold recognition pro-
tocol (Fig. 1) was developed using the domain sequences rep-
resenting 284 folds from SCOP 1.35. The nonprotein, oligo-
peptide, and coiled–coil folds were excluded for obvious rea-
sons; folds so far found only in viral proteins were irrelevant
for the analysis of proteomes of cellular life forms and were
not analyzed either; the immunoglobulin fold was excluded
because of the over-representation of immunoglobulin-like
sequences in the NR database that made the analysis of this
fold very computationally intensive. To purge redundant en-
tries, sequences belonging to each fold were clustered by a
single-linkage algorithm. The pairwise BLAST alignment score
divided by the length of the shorter sequence was used as the
linkage criterion) with the linkage threshold of 1.3 bit/
position; the longest sequence from each cluster was selected
for further analysis, and the remaining sequences were dis-
carded. With the goal of increasing the resolution power of
the procedure, the resulting sequence set was used to search
the NR database using the gapped BLASTP program. Database
entries with highly significant (e ø 1014) similarity to the
query sequences were considered to be indisputable ho-
mologs with the same structural fold. The portions of the
respective proteins that aligned with the query were extracted
from the database and clustered again using the linkage
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threshold of 0.5 bit/position. The longest sequence was again
retained and used as a query to initiate a PSI-BLAST search of
the NR database that was run to convergence or to a maxi-
mum of 10 iterations, whichever comes first; the cutoff for
inclusion of a sequence in matrix construction was set at
e ø 1012. In addition to the search results themselves, a po-
sition-specific weight matrix was saved for each search and
stored for subsequent use.

For the construction of fold composition dendrogram,
the matrix of correlation coefficients (r) between the species-
specific fold composition vectors was converted into a dis-
tance matrix using the 1 1 r2 transformation. The dendro-
gram was constructed from this distance matrix using the
FITCH program from the PHYLIP package (Felsenstein 1996),
which is based on the least-square algorithm of Fitch and
Margoliash (Fitch and Margoliash 1967).
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