Revealing the hidden transcriptome: Analysis of
nonsense-mediated mMRNA decay targets reveal mechanistic insights
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Alternative splicing coupled to The EJC model is a strong predictor of NMD in humans and plays a role

nonsense-mediated mMRNA decay Jin other species while alonger 3' UTR has little to no effect in any species
regulates gene expression
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Transcripts with an exon-exon junction over 50nts downstream of a stop codon (left) are significantly When only looking at transcripts that cannot be affected by 50nt rule, we see only a slight
more likely to increase when NMD is inhibited in human, fly, and zebrafish correlation between 3' UTR length and an increase when NMD is inhibited in human and no
K-S test: p <2x10°%, p = 2x10', p = 1x10-", respectively). There also appears to be an effect in correlation in fish or fly (K-S test: human p = 3x10™", fish p = 0.13, fly p = 0.81). There also
(K-S 2x10°% p = 2x10', p = 1x107 ) ff f fly (K-S 3x10", 0.13,f 0.81)
mouse, frog, and Arabidopsis. appears to be no effect in mouse, frog, S. pombe and Arabidopsis. Each point is the mean
Each point is the mean distance and fold change of 200 isoforms. length and fold change of 200 isoforms.
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In different species.
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| | | Transcripts with a PTC,,,, are Longer 3 UTRs do not lead to
Using RNA-Seq to identity NMD - Ranriched in the monosome fraction enrichment in the monosome fraction
targeted transcrlpts To test the EJC model for NMD targeting, we examined the We next examined If the length of 3 UTRs affects the
S _ _ _ relationship between the last exon-exon junction position distribution of transcripts across the polysome fractions
NMD was inhibited in multiple species by knocking down or out relative to the stop codon and polysome fraction accumulation. PTC:, transcripts

UPF1, a core NMD factor. RNA-Seq was performed to identify
transcripts with altered expression after UPF1 depletion.
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Transcripts bound by ribosomes can be separated into 100%
fractions on a mass gradient and then sequenced. NMD
targets are known to be enriched in the monosome fraction
(bound by a single ribosome) and depleted from the polysome
fraction (bound by multiple ribosomes) in yeast and human
cells [3,4]. Using polysome fraction data from human cells [5],
we can determine if NMD targets are abundant in the
monosome fraction and use monosome fraction abundance to
Inform our understanding of the mechanisms of NMD
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