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Thousands of targets of nonsense-mediated mRNA decay revealed by 
transcriptome analysis o�er clues to the mechanism in human, �sh, and �y
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GOALS:

The canonical model of de�ning a premature termination codon in mammals is 
the 50nt rule: a termination codon more than 50 nucleotides upstream of an 
exon-exon junction is premature and triggers degradation by NMD. In other 
animals, a 3’ UTR intron is not required for NMD. There is also evidence that a 
longer 3’ UTR triggers NMD in plants, �ies, and mammals. 

The importance of each mechanism appears to vary between species, and it is 
currently unclear which is the major mechanism at work in human cells. We used 
RNA-seq analysis done on cells with inhibted NMD to determine the features 
associated with degradation in human and in �y.

CONCLUSIONS:

Thousands of alternatively spliced genes (>20%) produce 
transcripts that fall into our strict set of NMD targets in human.

Hundreds of alternatively spliced genes (10-30%) produce 
transcripts possibly degraded by NMD in �y and zebra�sh.

The 50nt rule is a strong predictor of NMD in human and also 
appears to have a role in �y and zebra�sh.

3’ UTR length has little correlation with NMD in human, �y, and 
zebra�sh.

Splicing factor genes are enriched in human NMD targets.

Extensive protein-mRNA interactions reveal the potential for 
pervasive regulation of splicing factors through alternative splicing 
coupled with NMD.

There is little evidence of a hierarchy with “master regulators” of 
splicing factors.

REFERENCES:

How pervasive is alternative splicing coupled with NMD 
across eukaryotes?

What features de�ne a premature termination codon in 
di�erent species?

What is the architecture of the network of alternative 
splicing coupled with NMD regulation for splicing 
factors?
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50nt rule 3’ UTR length

The 50nt rule is a strong predictor of NMD in human, zebrafish and fly while
a longer 3’ UTR has a limited effect

Thousands of genes produce alternative isoforms degraded by NMD in human
and fish and fly have hundreds
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We infer that a gene produces an alternative 
isoform that may be degraded by NMD if the 
gene has at least one isoform that increases 
>2x when NMD is inhibited and at least one 
isoform that does not increase.
Thousands of genes fall into this category for 
human. Zebra�sh and �y have hundreds 
(PURPLE).
Ribosomal and translation genes are enriched 
in these NMD targeted genes for �y, and 
intracellular signaling genes are enriched in 
zebra�sh (Fisher’s exact test, FDR<0.05).
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Fraction of genes with >1 isoform (FPKM>1) 
that are potential NMD targets

Since an intron su�ciently downstream of the 
termination codon is known to trigger NMD in 
human (50nt rule), we de�ned a strict set of 
probable NMD targeted genes that are required 
to have an isoform that follows the 50nt rule 
(contains a 3’ UTR intron) and increases >2x 
(after controlling for transcriptional changes) 
when NMD is inhibited.
Over 20% of alternatively spliced genes are 
targeted by NMD in human (RED). These genes 
are enriched for splicing genes in human and in 
�y (Fisher’s exact test, FDR<0.05).
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Fraction of alternatively spliced genes that 
are in our strict set of NMD targets

Potential NMD target gene set Strict NMD target set

50 nts

Fly

Transcripts with an exon-exon junction over 50nts downstream of a stop codon (left) are 
signi�cantly more likely to increase when NMD is inhibited in human, �y, and zebra�sh
(K-S test: p < 2x10-308, p = 2x10-21, p = 1x10-79, respectively).
Each point is the mean distance and fold change of 200 isoforms. 

no fold change on average
(not a�ected by NMD)

~4x increase on 
average

(degraded by NMD)

When only looking at transcripts that cannot be a�ected by 50nt rule, we see only a 
slight correlation between 3’ UTR length and an increase when NMD is inhibited in 
human and no correlation in �sh or �y (K-S test: human p = 3x10-11, �sh p = 0.13, �y 
p = 0.81). Each point is the mean length and fold change of 800 isoforms.

Only transcripts without introns more than 50nts downstream of stop codon
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Highly connected splicing factor network suggests extensive
auto- and cross-regulation by alternative splicing coupled to NMD
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Grey edges: protein-mRNA interaction 

Blue edges: Negative regulation by 
alternative splicing coupled to NMD, 
observed in human 
(Purple edges: Observed in mouse)

Black outline: CLIP-seq performed 
on this factor
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Literature-based splicing factor interaction network

Nonsense-mediated mRNA decay (NMD) is an RNA surveillance system that 
degrades aberrant isoforms containing a premature termination codon. This 
pathway is conserved throughout eukaryotes and protects against the 
production of harmful truncated proteins. Additionally, NMD coupled with 
alternative splicing is a mechanism of post-transcriptional gene regulation that 
a�ects the mRNA levels of thousands of genes in human. 

Numerous RNA-binding proteins, including all the human SR splicing factors, are 
regulated by alternative splicing coupled to NMD, in conjunction with highly- or 
ultra-conserved elements. This suggests a complex auto- and cross-regulatory 
network exists, controlling the expression of splicing factors. 


