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FOREWORD

This book contains the abstracts of the posters presented at the eighth Annual International
Conference on Research in Computational Molecular Biology (RECOMB 2004), an ACM
SIGACT.  The conference was organized by the San Diego Supercomputer Center (SDSC),
University of California San Diego (UCSD) and the International Society for Computational
Biology (ISCB). There were 292 posters accepted within the following areas of research:

Combinatorial libraries and drug design (A) Molecular evolution (H)
Computational genomics (B) Molecular sequence analysis (I)
Computational proteomics (C) Protein structure (J)
Gene expression (D) Recognition of genes and regulatory elements (K)
Gene networks (E) Structural and functional genomics (L)
Genomics (F) Complex systems and simulation (M)
Microarray design and data analysis (G) Methods (N)

The conference held two poster sessions. The even numbered posters were presented 
on March 28-29 and the odd numbered on March 30-31. The poster abstracts were limited 
to two pages. They are listed in the book according to the section letter and the number 
assigned within each section. Due to withdrawals subsequent to the initial poster id 
assignment, occasional gaps appear in the sequence of numbers that form the poster 
id. Poster abstracts were published without detailed peer review or copy editing. The 
conference organizers take no responsibility for the originality of the material. 

These abstracts can be found on-line at http://recomb04.sdsc.edu./poster_sched.html. 

The poster editorial team would like to thank first the authors for their effort in submitting 
the poster abstract in the format that we requested. We also thank a number of people who 
assisted us in setting and managing the poster database and the whole submission process: 
Lynn Fink, Kyle Wright, Wayne Townsend-Marino and Dana Jermanis. Finally, we wish to 
thank Applied Biosciences Inc. and Microsoft Inc. for their support with the organization of the
poster session, printing the poster book and providing funds for a “best poster” prize.

Apostol Gramada
Philip E. Bourne

San Diego, March 2004

Dana Jermanis
Foreword

Dana Jermanis


Dana Jermanis
i

Dana Jermanis





CONTENTS

Foreword i 
Table of Contents iii 

COMBINATORIAL LIBRARIES AND DRUG DESIGN

A1. Pharmacophore Multiplets in Combinatorial Library Design: A Novel 1
Approach to Generation and Storage
Edmond J. Abrahamian, Robert D. Clark, Peter Fox, Inge Thøger 
Christensen, Henning Thøgersen

A2. The Docking Mesh Evaluator 3
Roummel F. Marcia, Julie C. Mitchell, Susan D. Lindsey, 
J. Ben Rosen

A3. Using MEGA to Predict Molecular Bio-Activity 5
Arun Qamra, King-Shy Goh, Edward Y. Chang

A4. Structure-Based Design of HIV Entry Inhibitors 7
Hepan Tan, Jiang Zhu, Wayne A. Hendrickson

A5. Shape Signatures, A New Approach to Computer-aided Ligand- 9 
and Receptor- Based Drug Design
Lifeng Tian, Randy J. Zauhar

COMPUTATIONAL GENETICS

B1. Distributions of time to coalescence under stochastic population 11 
growths: application to MRCA dating
Krzysztof A. Cyran, Marek Kimmel

B3. Analysis of Sorting by Transpositions based on Algebraic Formalism 13
Cleber Valgas Gomes Mira, João Meidanis

B5. An Integrated Tool for Investigating Genetic Disorder-Relevant 15
Tandem Repeats in Human Genome
Feng-Mao Lin, Ming-Yu Chen, Hsien-Da Huang, Jorng-Tzong Horng

B6. Search Space Reduction via Clustering for Haplotype Reconstruction 17
Jinghua Hu, Weibo Gong, Patrick A. Kelly

B7. Reconstructing Phylogenetic Trees from Dissimilarity Maps 19
Dan Levy, Francis E. Su, Ruriko Yoshida

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
v



B8. Global optimization in QTL analysis 21
Kajsa Ljungberg, Sverker Holmgren, Örjan Carlborg

B9. The Portable Cray Bioinformatics Library 23
James Long

B10. Before SNP mapping: Data preprocessing by fixed length genomic 25
sequence patterns
Chia-Hao Ou, Ming-Jing Hwang

B11. Efficient method for Inferring Hierarchy of Clonal Complexes from 27
Multi-Locus Sequence Types
Wasinee Rungsarityotin, Mark Achtman, Homayoun Bagheri-Chaichian, 
Alexander Schliep

B12. Description of Haplotypes and their Ancestry Structure from SNP Data 29
Jonathan Sheffi, Itsik Pe'er, David Altshuler, Mark J. Daly

B13. From  Resource to Research: MGI and GO 31
Mary E. Dolan, Judy A. Blake, Janan T. Eppig, Martin Ringwald, 
Carol J. Bult, Joel E. Richardson

B14. A Pattern Discovery-Based Method for Detecting 32 
Multi-Locus Genetic Association
Zhong Li, Aris Floratos, David Wang, Andrea Califano

B15. Algebraic Statistical Genetics: Affected Sib-Pair Linkage Analysis 34
Ingileif Hallgrimsdottir

COMPUTATIONAL PROTEOMICS

C1. BOMP: a program to predict integral beta-barrel outer membrane proteins 36
encoded within genomes of Gram-negative bacteria
Frode S. Berven, Kristian Flikka, Harald B. Jensen, Ingvar Eidhammer

C2. Motif Finding and Multiple Alignment through Vector-Space Embedding 38 
of Protein Sequences
Arnab Bhattacharya, Tamer Kahveci, Ambuj K. Singh

C3. Long-Duration Molecular Dynamics Simulation on Constructed 40
Nacrein Structure
Frank Chang, Samson Cheung, Ming Wong, Cathy Bitler, Andrew Palma

C4. Gene Finding With Proteomic Data 42
Kristen Dang, Michael Giddings, Edward Collins

C5. A Unified Representation of Multi-Protein Complex Data for Modeling 44
Interaction Networks
Chris Ding, Xiaofeng He, Richard F. Meraz, Stephen R. Holbrook

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
vi



C7. Which pathways cannot be reconstructed using protein phylogenetic profiles? 46
Yohan Kim, Shankar Subramaniam

C8. The Protein Mutant Resource: Visual and Statistical Analysis of Mutation 48
with Implications for Homology Modeling
Werner G. Krebs, Philip E. Bourne

C9. OrthoMCL: application of a graph cluster algorithm to comparative 50
genomics and genome annotation 
Li Li, Christian J. Stoeckert, David S. Roos

C10. Tandem MS Analysis and An Emerging Genome: The Sea Urchin Sperm 52
Plasma Membrane Proteome
Anna T. Neill, Terry Gaasterland, John R. Yates III, Victor D. Vacquier

C11. Characterizing protein function by integrating interaction data and 53
domain information
Kinya Okada, Md. Altaf-Ul-Amin, Hirotada Mori, Shigehiko Kanaya, 
Kiyoshi Asai

C12. The Encyclopedia  of Life: A New Web Resource for Domain-based 
Protein Annotation Data 55
Greg Quinn, Mark Miller, Kim Baldridge, Ilya Shindyalov, Wilfred Li, 
Dmitry Pekurovsky, Robert W Byrnes, Kristine Briedis, Vicente Reyes, 
Adam Birnbaum, Coleman Mosley, Yohan Potier, Celine Amoreira, 
Julia Ponomarenko, Stella Veretnik, Philip E. Bourne

C13. Support Vector Machine approach to Active Sites Prediction using 56
Local Sequence Information
Dariusz Plewczynski, Leszek Rychlewski, Adrian Tkacz

C14. Mechanisms for Antagonistic Regulation of AMPA and NMDA-D1 58
Receptor Complexes at Postsynaptic Sites
Gabriele Scheler, Johann Schumann

C15. Do Sense-Antisense Proteins Really Interact? 60
Ruchir R. Shah, Todd J. Vision, Alexander Tropsha

C16. Predicting Co-Complexed Protein Pairs Using Genomic and Proteomic 62
Data Integration
Lan V. Zhang, Sharyl L. Wong, Oliver D. King and Frederick P. Roth

C17. Structal: A software for optimizing structural and sequence alignments 64
Herve Seligmann, Neeraja M. Krishnan

C18. An alternative to the SEQUEST cross-correlation scoring algorithm for 66
tandem spectra identification through database lookup: the Luck measuring 
scoring function, and the probability of an unrelated spectra match model
Tema Fridman, Jane Razumovskaya, Nathan VerBerkmoes, Greg Hurst 
and Ying Xu

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
vii



C19. Cross-species Peptide Mass Fingerprinting Database Searching And 68
Conserved-Domains
Heming Xing

GENE EXPRESSION

D2. GOMER: Predicting Gene Regulation by Modeling Binding Sites 69
Joshua A. Granek, Neil D. Clarke

D3. Discovery of Tumor-Specific Alternative Splicing Sites 71
Fang Rong Hsu, Chia Yang Cheng

D4. Adaptive evolution of E. coli on lactate leads to convergent, 73
generalist phenotypes
Andrew R. Joyce, Stephen S. Fong, Bernhard O. Palsson

D5. Principal Component Analysis combined with probabilistic analysis 75
of Gene Ontology as applied to neuroblastoma gene expression data
Alexei L. Krasnoselsky, Jun Wei, Sven Bilke, Quinrong Chen, Craig 
Whiteford, Javed Khan

D6. Discretization Methods for Expression Data 77
Sonia Leach

D7. Suitability of Spherical SOM for Gene Expression Analysis 79
Hirokazu Nishio, Ken-nosuke Wada, Yoshiko Wada, Md. Altaf-Ul-Amin, 
Shigehiko Kanaya

D8. In Silico Identification and Analysis of Tissue-Specific Genes using 81
the Database of Human Expressed Sequence Tags
Sheng-Ying Pao, Ming-Jing Hwang, Win-Li Lin 

D9. Regulation of NF-kappaB responsive genes in a single cell 83
Pawel Paszek, Tomasz Lipniacki, A. Brasier, B. Tian, B. Luxon, M. Kimmel

D10. Stochastic Models Inspired by Hybridization 85
Zhijin Wu, Rafael Irizarry 

D12. ESTmapper: Efficiently Clustering EST Sequences Using Genome Maps 87
Xue Wu, Woei-Jyh (Adam) Lee, Damayanti Gupta, Chau-Wen Tseng 

GENE NETWORKS

E1. Improving Extreme Pathway Computations 89
Steven L. Bell, Bernhard O. Palsson

E2. Analysis of Heterogeneous Regulation in Biological Networks 91
Irit Gat-Viks, Amos Tanay, Ron Shamir

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
viii



E3. CAMP - a computational system for Comparative Analysis of 93
Metabolic Pathways
Chun-Yu Chen, Chuan-Hsiung Chang

E4. Converting KEGG pathway database to SBML 95
Akira Funahashi, Akiya Jouraku, Hiroaki Kitano

E6. An Integrated Platform to Construct Transcriptional Network from Gene 97
Expression Data
Tao-Wei Huang, Hwa-Sheng Chiu, Ming-Hong Lin, Han-Yu Chuang, 
Chi-Ying F. Huang, Cheng-Yan Kao

E7. Path Finding and Topology Correction in Biological Networks 99
Ryan Kelley, Astrid Haugen, Bennet Van Houten, Trey Ideker

E8. Predicting cis-Regulatory Elements and Regulatory Networks 100
Stefan Kirov, Bing Zhang, Denise Schmoyer, Oakley Crawford, Jay Snoddy

E9. Towards Automated Explanation of Gene-Gene Relationships 102
Waclaw Kusnierczyk, Agnar Aamodt, Astrid Lægreid

E10. Linkage by context: Discovering functional linkages between proteins 104
from their known interactions
Insuk Lee, Edward Marcotte

E11. Learning Context-sensitive Boolean Network from Steady-state 106
Observations and Its Analysis 
Huai Li, Jon Whitmore, Edward Suh, Michael Bittner, Seungchan Kim

E12. Stochastic regulation of NF-kappaB pathway 108
Tomasz Lipniacki, Pawel Paszek, A. Brasier, B Luxon, M. Kimmel

E13. Probabilistic Representation of Gene Regulatory Networks 110
Linyong Mao, Haluk Resat

E14. Non-exclusive Gene Groupings using SVD: A Critical Approach 112
Subashini Ramalingam, Rajagopalan Srinivasan, Jonnalagadda Sudhakar

E15. Vector PathBlazer 1.0: A New Pathway Analysis And Visualization Tool 114
Feodor Tereshchenko, Valeriy Reshetnikov, Artur Karpov, David Pot

E16. Simulation mammalian molecular circadian oscillators by 116
dynamic gene network
Yanhong Tong, Hava Sieglemann 

E18. The EcoTFs Web Site: Escherichia Coli Transcription Factors and Signals 118
William S. Hlavacek, Michael L. Blinov, Michael A. Savageau, Michael E. Wall

E19. Discovering Activated Regulatory Networks in the DNA Damage Response 120
Pathways of Yeast
Chris Workman, Scott McCuine, Ryan Kelley, Trey Ideker

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
ix



E20. Parallel Data Mining of Bayesian Networks from Gene Expression Data 122
Longde Yin, Chun-Hsi Huang, Sanguthevar Rajasekaran

E21. Discovery of Gene-Regulation Pathways in Mouse Asbestos Using 124 
Background Knowledge
Changwon Yoo, Mark Pershouse, Elizabeth Putnam

E22. On Some Choices in Bayesian Network Learning for Reconstructing 126
Regulatory Networks
Xuesong Lu, Xing Wang, Ying Huang, Wei Hu, Yanda Li, Xuegong Zhang

E23. PathBLAST 128
Silpa Suthram, Taylor Sittler, Trey Ideker

E24. Learning kernels from biological networks by maximizing entropy 130
Koji Tsuda, William Stafford Noble

GENOMICS

F1. Phylogeny of Tumor Progression from CGH Data 132
Sven Bilke, Qingrong Chen, Javed Khan

F2. Human transcript clustering 134
Ronghua Chen, Archie Russell, Guoya Li, Nicholas Tsinoremas, Guy Cavet

F3. Massively Parallel DNA Sequencing using Single Molecule Array Technology 136
Anthony J. Cox

F4. Clann: Software for phylogenomic investigation and analysis of horizontal 138
gene transfer using supertrees
Christopher Creevey, James McInerney

F5. Monte Carlo Estimation and Graphical Analysis of Likelihood Landscapes 140
(of the Population Structure of Shotgun Libraries)
Ben Felts, James Nulton, Joe Mahaffy, Peter Salamon, Forest Rohwer, Mya 
Breitbart, Beltran Rodriguez Brito, David Bangor

F6. Using local alignment to discern haplotypes from optical maps 142
Steve Goldstein, Susan Reslewic, Scott Kohn, David C. Schwartz

F7. Bayesian Inference of Protein Function Using Homology, Pathway, and 144
Operon Data
Michelle L. Green, Peter D. Karp

F8. A Novel Method to speed up Multiple-Use PCR Primer Design 146
Yu-Cheng Huang, Huai-Kuang Tsai, Han-Yu Chuang, Chun-Fan Chang, 
Cheng-Yan Kao

F9. Building a Laboratory Information Management System for FP-TDI 148 
Genotyping Research
Daniel C. Koboldt, Pui-Yan Kwok, Raymond D. Miller

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
x



F10. Combinatorial chemistry discriminating analysis of complex microbial 150
systems with restricted site tags (RST)
Alexey Kutsenko, Veronika Zabarovska, Lev Petrenko, Tore Midtvedt, 
Ingemar Ernberg, Eugene R. Zabarovsky

F11. Aligning Optical Maps 152
Yu-Chi Liu, Michael S. Waterman, Anton Valouev, Lei Li, Yu Zhang, Yi Yang, 
Jong-Hyun Kim, David C. Schwartz

F12. Unsupervised Learning of Biological Sequences and Its Applications 154
in Genomic DNA Sequence Annotation
Jing Liu, L. Ridgway Scott, John Goldsmith

F13. Characterization of Retroid Agents in the Human Genome: An 156
Automated Approach
Marcella A. McClure, Rochelle A. Clinton, Hugh S. Richardson, Vijay A. 
Raghavan, Crystal M. Hepp, Brad A. Crowther, Angela K. Olsen, Eric F. Donaldson, 
Aaron R. Juntunen

F14. MGAW : a Microbial Genome Annotation Workbench under Web-based 158
Analysis Interface
Hwajung Seo, Hyeweon Nam, Daesang Lee, Hongseok Tae, Kiejung Park

F15. A Bioinformatics Approach Toward Identification of Genes involved in 160
Hematopoiesis and Leukemia
Twyla T. Pohar, Hao Sun, Sandya Liyanarachchi, S. James S. Stapleton, 
Ramana V. Davuluri

F16. The complete genome sequence of Rickettsia typhi and comparison 162
with other rickettsial genomes
Xiang Qin, Michael P. McLeod, Sandor E. Karpathy, Jason Gioia , Sarah K. 
Highlander, George E. Fox, Thomas Z. McNeill, Huaiyang Jiang, Donna Muzny, 
Leni S. Jacob, Alicia C. Hawes, Erica Sodergren, Anita G. Amin, Rachel Gill, 
Jennifer Hume, Maggie Morgan, Guangwei Fan, Richard A. Gibbs, Chao Hong, 
Xue-jie Yu, David H. Walker, George M. Weinstock

F17. Providing an automatically derived high quality immunoglobulin V gene 163
sequence database
Ida Retter, Werner Muller

F18. The role of pre-mRNA secondary structure in splicing of Saccharomyces 165
cerevisiae
Sanja Rogic, Holger H. Hoos, B.F. Francis Ouellette, Alan K. Mackworth

F19. e2g - A Web-Based Tool for Efficiently Aligning Genomic Sequence to EST 168
and cDNA data
Alexander Sczyrba, Jan Krueger, Robert Giegerich

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
xi



F20. LinkageView: a powerful graphical tool for integrating statistical data 170
with the Ensembl Genome Browser
Judith E. Stenger, Hong Xu, Carol Haynes, Jeffery M. Vance, Margaret 
Pericak-Vance, and Elizabeth R. Hauser

F21. HMM-based System for Identification of Related Gene/Protein Names 172
L. Yeganova, L. Smith, W. J. Wilbur

F23. A New Tool for Enumerative Combinatorics? 174
James Nulton, Ben Felts, J. Mahaffy, M. Breitbart, B. Rodriguez Brito, 
D. Bangor, F. Rohwer, and P. Salamon

MICROARRAY DESIGN AND DATA ANALYSIS

G1. A Latent Process Decomposition Model for Interpreting cDNA Microarray 176
Datasets
Simon Rogers, Mark Girolami, Colin Campbell

G3. Discovering Statistically Significant Clusters by Using Genetic Algorithms 178
in Gene Expression Data
Hwa-Sheng Chiu, Han-Yu Chuang, Huai-Kuang Tsai, Tao-Wei Huang, Cheng-Yan Kao

G4. J-Express - an integrated tool for processing and analyzing microarray gene 180 
expression data
Bjarte Dysvik, Kjell Petersen, Inge Jonassen, Trond Hellem Bø, Kristin Sandereid

G5. Sorting Points Into Neighborhoods (SPIN): a novel data organization and 182 
visualization tool
Ilan Tsafrir, Liat Ein-Dor, Dafna Tsafrir, Or Zuk and Eytan Domany

G6. Reproducibility, Variance Stabilization, and Normalization in CodeLink 184
Data with Application to Cancer in Rats
Sue Geller, David M. Rocke, Danh Nguyen, Raymond Carroll

G7. ChipQC: Microarray Artifact Visualization Tool 186
Peter A. Henning, Paul K. Tan, Tung Yu Chu, David A. Stiles, David Wheeler, 
Pushkar Mukewar, Margaret C. Cam, and May D. Wang

G8. A Database Aiding Probe Design System for Virus Identification 188
Feng-Mao Lin, Pak-Leong Chan, Yu-Chung Chang , Hsien-Da Huang , 
Jorng-Tzong Horng

G9. Quickly Choosing Choice SNPs for Chips 190
Earl Hubbell, Teresa Webster, Hajime Matsuzake

G10. Genome-wide statistical analysis of gene coexpression: application to 192
GATA transcription factors in Arabidopsis thaliana
Chih-hung Jen, David Robert Westhead

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
xii



G11. Using the Human Genome as a Framework for Sequence Clustering 194
and Microarray Design
Barbara Lin, Tim Burcham

G12. Programs for the Inference and Analysis of Gene Influence Networks 196
Gary Livingston, Liwu Hao, Guangyi Li, Xiao Li

G13. Analysis of Microarray Time Course Data 198
Tanya Logvinenko, David Schoenfeld, Douglas Hayden

G14. GOArray: Interpreting microarrays with GODB 200
Michael V Osier, David Tuck, Kevin P. White, Christopher E. Mason, 
Hongyu Zhao, Kei-Hoi Cheung

G15. SVM Model Selection for Microarray Classification 202
David A. Peterson

G16. Stability Analysis of Gene Expression Data 204
J. Gebert, M. Lätsch, S.W. Pickl, N. Radde , G. W. Weber , Röbbe
Wünschiers, Bob Veroff

G17. Non-Unique Probe Selection by Matrix Condition Optimization 206
Sven Rahmann, Tobias Müller, Martin Vingron

G18. Incorporation of Target RNA Secondary Structure Parameter into 208
Synthetic Oligomer Probe Design
Vladyslava G. Ratushna, Jennifer W. Weller, Cynthia J. Gibas

G19. Identification of Transcribed Differentiating Genes in Brucella abortus, 210 
B.melitensis and B.suis
Vladyslava G. Ratushna, David M. Sturgill, Sheela Ramamoorthy, Sherry A. 
Poff, Nammalwar Sriranganathan, Stephen M. Boyle, Cynthia J. Gibas

G20. MeSH Key Terms for Validation and Annotation of Gene Expression Clusters 212
Andreas Rechtsteiner, Luis M Rocha

G21. Evaluation of Statistical Methods for cDNA Microarray Differential 214
Expression Analysis
Wei Sha, Keying Ye, Pedro Mendes

G22. How Noisy are DNA Microarray Data? 216
Suman Sundaresh, She-pin Hung, G. Wesley Hatfield, Pierre Baldi

G23. Identification of transcriptional programs along defined stages of human 218
carcinogenesis
Yuval Tabach, Michael Milyavsky, Zuk O, Shats I, Erez N, Tang X,
Goldfinger N, Ginsberg D, Pilpel T, Domany E, Rotter V

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
xiii



G24. Tight clustering: a method for extracting stable and tight patterns in 220
expression profiles
George C. Tseng, Wing H. Wong

G25. A Method for 3D visualization of Microarray Data 222
L. G. Volkert, M. Tamboli, P. Siddula, J. I. Maletic

G26. A Robust, Noise-Insensitive Variable Selection Algorithm for Molecular 224
Profiling Data
Michael Wagner, Zhongming Yang

G27. Finding biclusters in gene expression data by random projection 226
Stefano Lonardi, Wojciech Szpankowski, Qiaofeng Yang

G28. gMap: extracting and interactively visualizing nonlinear relationships of 228
genes from expression
Chaolin Zhang, Yanda Li, Xuegong Zhang

G29. Efficient Selection of Unique and Popular Oligos for Large EST Databases 230
Jie Zheng, Timothy J. Close, Tao Jiang, Stefano Lonardi

G30. Gene Co-regulation vs. Co-expression 232
Ya Zhang, Hongyuan Zha, James Z. Wang, Chao-Hsien Chu

G31. Deconvolution of cDNA Microarray Images and Significance Testing for 234
Gene Expression Levels
Hye Young Kim, Min Jung Kim, Yong Sung Lee, Young Seek Lee, Tae Sung 
Park, Ki Woong Kim, and Jin Hyuk Kim

G32. A New HMM-based Clustering Technique for the Analysis of Gene 236
Expression Time Series Data
Yujing Zeng, Javier Garcia-Frias

G33. A Novel HMM-based Cluster Validity Index for Gene Expression 238
Time-Course Data
Yujing Zeng, Javier Garcia-Frias

G34. Clustering of Time-Course Gene Expression Data 240
Ya Zhang, Hongyuan Zha, James Z. Wang, Chao-Hsien Chu

G35. Improving temporal gene expression profiles with probabilistic modes 242
Marta Milo, Neil Lawrence, M.C. Holley, M. Rattray and M. Niranjan

MOLECULAR EVOLUTION

H1. Approximating geodesic tree distance 244
Nina Amenta, Matthew Godwin, Katherine St. John

H2. Identification of interacting sites in protein families 246
Vijayalakshmi Chelliah, Simon Lovell, Tom L Blundell 

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
xiv



H3. Streamlining the Conserved Domain Database: A Taxonomic Approach 248
Praveen Frazer Cherukuri, Aron Marchler-Bauer, Lewis Y. Geer, 
Stephen H. Bryant 

H4. Heterogeneous Maximum Likelihood Methods for the Detection of 250
Adaptive Evolution
Jennifer M. Commins, Dr. Peter Foster, Dr. James O. McInerney

H5. Homogeneous Phylogenetic Models: Invariants and Parametric Inference 252
Nicholas Eriksson

H6. Structural RNA has lower folding energy than random RNA of the same 254
dinucleotide frequency
Peter Clote, Fabrizio Ferre, Evangelos Kranakis, Danny Krizanc

H7. Convergent evolution of domain architectures 256
Julian Gough

H8. Extracting the phylogenetic signal from Mutual Information estimates 258
Rodrigo Gouveia-Oliveira, Anders Gorm Pedersen

H9. Optimal, Efficient Reconstruction of Root-Unknown Phylogenetic Networks 260
with Constrained Recombination
Dan Gusfield

H10. Alu Clustering in the Human Genome: Origins and Consequences 262
Hackenberg Michael, Oliver José

H11. Pruned PDM Method for Detecting Recombination 264
Dirk Husmeier

H12. Phylogenetic analyses detect site-specific perturbations in asymmetric 266
mutation gradients in primate mitochondria
Neeraja M. Krishnan, Hervé Seligmann, Sameer Z. Raina, David D. Pollock

H13. Length distributions of exons and introns imply the evolutionary constraints 268 
for exon/intron length
Yiyu Jia, Yan Zhang, Chee Keong Kwoh, Vivek Gopalan

H14. Evaluating Indels as Phylogenetic Markers for the Prokaryotes 270
Timothy G. Lilburn, Yufeng Wang

H15. A triplet approach to approximations of evolutionary trees 272
Eva-Marta Lundell, Andrzej Lingas, Jesper Jansson

H16. Dual Multiple Change Point Model Leads to More Accurate 274
Recombination Detection
Vladimir N. Minin, Karin S. Dorman, Marc A. Suchard

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
xv



H17. Internal Gene Duplication Patterns in Transmembrane Protein Evolution 276
Hironori Mitsuke, Keisuke Noto, Masafumi Arai, Toshio Shimizu

H18. A liberal Supertree approach to test the Ecdysozoa hypothesis 278
Gayle K. Philip, James O. McInerney, Christopher J. Creevey

H19. Joint Bayesian Estimation of Alignment and Phylogeny 280
Benjamin D. Redelings, Marc A. Suchard

H20. Conservation Patterns of Human Phosphorylation Sites 282
Keith Robison

H21. Protein Structure and Evolutionary History Determine Sequence 284
Space Topology
Boris E. Shakhnovich, Eric Deeds, Charles Delisi, and Eugene Shakhnovich

H22. Minimal Convex Recoloring of Phylogenetic Trees 286
Shlomo Moran, Sagi Snir

H23. Evolutionary Study of Amino Acid Substitution Patterns Associated 288
with Accelerated Evolution in Endosymbiotic Bacteria
Jun-ichi Takeda, Takeshi Itoh, Tadashi Imanishi, Takashi Gojobori

H24. Genome comparison allowing complex rearrangements 290
Mariel Vazquez, Dan Levy, Rainer Sachs

H25. A Naïve Bayesian Classifier for Rapid Assignment of rRNA Sequences 292
into the New Bacterial Taxonomy
Qiong Wang, James R. Cole, George M. Garrity, James M. Tiedje

H26. Amino Acid Coevolution in COI 294
Zhengyuan Wang, David Pollock

H27. A Markovian model of genome evolution: distribution of paralogs 296
Jerzy Tiuryn, Damian Wojtowicz

H28. Retention of functionality in protein recombinants 298
Yanlong O. Xu, Randall W. Hall, Richard A. Goldstein, David D. Pollock

H29. Fitting nonreversible substitution processes to multiple alignments 300
Von Bing Yap

H30. A web of Prokaryotic Life 301
Stefan R. Henz, Daniel H. Huson, Alexander Auch, Vincent Moulton, 
Stephan C. Schuster

MOLECULAR SEQUENCE ANALYSIS

I1. Using HMMs to Identify the Druggable Proteome 303
Joanne I Adamkewicz, R. Glenn Hammonds

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
xvi



I2. Phylogenetic Relationship of Sessile Barnacles Based on Mitochondrial DNA 305
Rowshan Ara Begum, Toshiyuki Yamaguchi, Shugo Watabe 

I4. Resequencing the Human Genome using Short Sequence Fragments 307
Anthony J. Cox, Clive G. Brown, Lisa J. Davies 

I5. Detecting correlated amino acid substitutions using Bayesian phylogenetic 309
techniques
Matthew W. Dimmic, Melissa J. Todd, Carlos D. Bustamante, Rasmus Nielsen

I6. Scientific Workflows for High Resolution Genetic Sequence Analysis 311
Luke Ulrich, Elizabeth Marland Glass, Mark D'Souza, Praveen Chandramohan, 
Natalia Maltsev

I7. Anchors: Pre-Classification and its Effects on Hidden Markov Models 313
Jeremy Fisher, Alan Sprague

I8. Genome Organization Analysis Tool 315
Aaron Kaluszka, Cynthia Gibas

I9. Computing the Global Similarity of two Strings with a Vector Algorithm 317
Sylvie Hamel

I12. Exact Algorithms for Motif Extraction 319
Paul Horton, Wataru Fujibuchi

I13. An improved method of finding over-represented sequence motifs in 321 
sets of DNA sequences.
Tadashi Imanishi, Hiroki Hokari, Motohiko Tanino, Jun-ichi Takeda, Taichiro 
Sugisaki, Shin Nurimoto

I14. Exact algorithm for discovery of consensus sequences among 323
multiple sequences
Chul Hyun Joo, Hwisun Lee, Jinho Lee, Heuiran Lee, Yoo Kyum Kim

I15. GAME: Genome Alignment by Match Extension 325
Jeong-Hyeon Choi, Hwan-Gue Cho, Sun Kim

I16. Cumulative Local Cross-Correlation – an Algorithm for the 327
Decomposition of Sequence Patterns
Simon Kogan

I17. Predicting the modular domain architecture of a protein 329
Gulriz Kurban1

I18. A web-based tool for the identification of conformationally flexible 331
segments in protein sequences
Igor Kuznetsov, Byron Gerlach, S. Rackovsky

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
xvii



I19. In silico Analysis of LASS1 (LAG1 Longevity Assurance homology 1) 333
and Related Orthologs Using Target Identification Software Tools
Darryl Leon, Scott Markel

I20. Novel Gene Discovery with Sequence Profile Comparison 334
Weizhong Li, Lukasz Jaroszewski, Adam Godzik

I21. Clustering protein sequences with a novel metric transformed from sequence 336
similarity scores and sequence alignments with neural networks
Qicheng Ma, N. R. Nirmala, Gung-wei Chirn, Richard Cai

I23. A tool for constructing EST splice graphs and consensus sequence assembly 338
Ketil Malde, Eivind Coward, Inge Jonassen

I24. Evolutionary Analysis of Enzymatic Functions 340
Elizabeth Marland Glass, Tanuja Bompada, Jason C. Ting, Barnett 
Glickfeld, Natalia Maltsev

I25. Molecular characterisation of a versatile peroxidase from a novel 341
Bjerkandera strain.
Patrícia R. Moreira, C. Duez, A. Antunes, E. Almeida-Vara, F. Xavier Malcata, 
J. Cardoso Duarte

I27. Primer Designer for Site-Directed Mutagenesis 343
Alexey Novoradovsky, Vivian Zhang, Madhushree Ghosh, Holly Hogrefe, 
William Detrich, Joseph A. Sorge, Terry Gaasterland

I28. PLOC: Analysis of features for protein’s subcellular localization prediction 344
Keun-Joon Park, Paul Horton

I29. An Evolutionary Computation Approach for Detecting Repetitions 346
in Biosequences
Adam Adamopoulos, Katerina Perdikuri

I31. Euclidean Distance Measure of Markov Models for Genome Comparison 348
Without Alignment
Tuan Pham

I32 . HMMERHEAD - Accelerating HMM Searches On Large Databases 350
Elon Portugaly, Matan Ninio

I33. Understanding RNA Pseudoknotted Structures 352
Anne Condon, Beth Davy, Baharak Rastegari, Shelly Zhao, Finbarr Tarrant

I35. ELXR: A Resource For Rapid Exon-Directed Sequence Analysis 354
Jeoffrey J. Schageman, Alexander Pertsemlidis

I37. Effect of alternative splicing on structure and function of mouse 356
transcription factors
Bahar Taneri, Ben Snyder, Terry Gaasterland

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
xviii



I38. A Novel Approach for Efficient Query of Single Nucleotide Variations 358
in DNA Databases
Hsiao Ping Lee, Yin Te Tsai, Ching Hua Shih, Tzu Fang Sheu, Chuan Yi Tang

I39. Predicting Regulatory Motif based on Multiple Genome Sequences 360
Ting Wang, Gary D. Stormo

I41. Predictive Classification 361
Jialu Zhang, Francoise Seillier-Moiseiwitsch

I42. An Eulerian Path Approach to Local Multiple Alignment of DNA Sequences 363
Yu Zhang, Michael S. Waterman

I43. FastR: Fast database search tool for structured RNA 365
Vineet Bafna, Shaojie Zhang

I44. Transcription unit organization of prokaryotes 367
Gabriel Moreno-Hagelsieb, Warren F. Lamboy

I45. Performance Comparison of Multiple Sequence Alignment Programs 368
Using Nonparametric Statistics
Conrad Shyu, Luke Sheneman, James A. Foster

I46. Searching Bioinformatic Sequence Databases using UM-BLAST -- A 370
Wrapper for High Performance BLASTs
Xue Wu, Chau-Wen Tseng

I47. FastGroup II: A web-based bioinformatics platform for analyses of large 372
16S rDNA libraries
Yanan Yu, Pat McNairnie, Forest Rohwer

I48. Paradigms for Computational Nucleic Acid Design 374
Robert M. Dirks, Milo Lin, Erik Winfree, Niles A. Pierce 

I49. Modeling Phage Species Abundance 376
David I Bangor, Beltran Rodriguez Brito, Peter Salamon, James Nulton, 
Ben Felts, Joe Mahaffy, Mya Breitbart, Forest Rohwer

I51. Cyber Infrastructure for Phylogenetic Research 378
Fran Berman, Bernard Moret, Satish Rao, David Swofford, Tandy Warnow

PROTEIN STRUCTURE

J1. Cross-Link Analysis and Experiment Planning for Elucidation 380
of Protein Structure
Xiaoduan Ye, Janusz M. Bujnicki, Alan M. Friedman, Chris Bailey-Kellogg

J2. Analyzing protein structure using almost-Delaunay tetrahedral 382
Deepak Bandyopadhyay, Jack Snoeyink, Alexander Tropsha

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
xix



J3. Avoiding Local Optima in Single Particle Reconstruction 384
Marshall Bern, Jindong (JD) Chen, H. Chi Wong

J4. Discrete-event Simulation of Self-Assembly Systems 386
Sue Yi Chew, Rorianne Rohlfs, Russell Schwartz 

J5. A Dynamical Monte Carlo Algorithm to Study Protein Folding Pathways 388
Andres Colubri

J6. Assessment of Replica Exchange Method for Protein Structure Prediciton 390
Gelonia Dent, Ruhong Zhou, Ajay Royyuru, Prasanna Athma

J7. Predicting disulfide bond partners 392
Fabrizio Ferre, Peter Clote

J8. Visualization and Analysis of Eukaryotic Gene 394
Vivek Gopalan, Shang Liang, Tin Wee Tan, Shoba Ranganathan

J10. Modelling and Simulation Studies of the Intracellular Domains of the 396
Inwardly Rectifying K+ Channels
Shozeb Haider, Frances Ashcroft, Mark S P Sansom

J11. Hybrid Probabilistic Roadmap and Monte Carlo Methods for Biomolecule 398
Confomrational Changes
Li Han

J12. A Physical Scoring Function Based on the AMBER Force Field and the 400
Poisson-Boltzmann Implicit Solvent for Protein Structure Prediction
Mengjuei Hsieh, Ray Luo

J13. Mining Spatial Motifs from Protein Graph Databases 402
Jun Huan, Wei Wang, Deepak Bandyopadhyay, Jack Snoeyink, Jan Prins, 
Alexander Tropsha

J14. Molecular dynamics simulation of branch migration in RuvA tetramer - 404
Holliday junction DNA complex
Hisashi Ishida, Nobuhiro Go

J15. Flexible Docking of Peptides to MHC 406
Joo Chuan Tong, Shoba Ranganathan, Tin Wee Tan

J16. Protein Families Classification using Support Vector Machine 408
Tong Joo Chuan, Kong Lesheng, Joo Chuan Tong , Khar Heng Choo, 
Teck Kwong Lee, Soon Heng Tan, Tin Wee Tan, Shoba Ranganathan

J17. Combining structure and function information in a local alignment 410
search tool for sequence-sequence comparison
Maricel Kann, Paul Thiessen, Anna Panchenko, Alejandro Schaffer, 
Stephen F. Altschul and Stephen H. Bryant

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
xx



J18. Native and non-native oligopeptide fragments biased to alpha-helical formation 412
Gelena Kilosanidze, Alexey Kutsenko

J19. Web-based Prediction of Membrane Spanning b-strands in Outer Membrane 414 
Proteins
M. Michael Gromiha, Shandar Ahmad, Makiko Suwa

J20. Computational Studies of Thioredoxin Superfamily 416
Efrosini Moutevelis, Jim Warwicker

J21. Bounding a Protein's Free Energy in Lattice Models Via Linear Programming 417
Robert Carr, William E. Hart, Alantha Newman

J22. Protein Structure Alignment by Principle Component Analysis 419
Sung-Hee Park, Soo-Jun Park, Seon-Hee Park

J23. Protein Fold Recognition Using an Optimal Structure-Discriminative Amino 421
Acid Index
J. B. Rosen, R. H. Leary, P. Jambeck, C. X. Wu

J24. Catalytic and Structural Properties of Carp D-Amino Acid Oxidase 423
Md. Golam Sarower, Shigeru Okada, Hiroki Abe

J26. Introducing a new protein structure comparison website that reports 425
alternative alignments including structure permutations
Edward S.C. Shih, Richie Gan, Ming-Jing Hwang

J27. Comprehensive Protein Database Representation 427
Amandeep S. Sidhu, Tharam S. Dillon, Baldev S. Sidhu, Henry Setiawan

J28. Protein-protein recognition: relationship between domain and interface 429
cores in immunoglobulins
Vladimir Potapov, Vladimir Sobolev, Marvin Edelman, Alexander Kister, 
Israel Gelfand

J29. Protein Structural Repeats Revealed in alternative Alignments of Self 431
Structural Comparison
Ching-Shu Suen, Edward S.C. Shih, Ming-Jing Hwang

J30. Assignment of structural domains in proteins: why is it so difficult? 433
Stella Veretnik, Ilya N. Shindyalov, Phillip E. Bourne

J31. Training Hidden-Markov Models on Sequences of Local Structural 435
Alphabets for Protein Fold Assignment
Shiou-Ling Wang, Chung-Ming Chen, Ming-Jing Hwang

J32. A Probability-Based Similarity Measure for Saupe Alignment Tensors 437
with Applications to Residual Dipolar Couplings in NMR Structural Biology
Anthony Yan, Chris Langmead, Bruce Randall Donald

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
xxi



J33. When and where do protein folds come from? an evolutionary view 439
Song Yang, Phillip E. Bourne

J35. Hydrophobic Moment of Multi-Domain Proteins: Magnitude and 441
Spatial Orientational Bias
Ruhong Zhou, Ajay Royyuru, Prasanna Athma, David Silverman

J36. Analytical Model for the Prediction of NMR Methyl-Side Chain Order 443
Parameters in Proteins
Dengming Ming, Rafael Bruschweiler

J37. Significance of conformational biases in Monte Carlo simulations of 444
protein folding
Teresa Przytycka

J38. Structure-based assessment of missense mutations in the HMGB domain of 445
SRY identified in 46,XY females with sex reversal
Sharmila Banerjee-Basu, Andreas D. Baxevanis

J39. Sequence and Structural Templates For Protein Protein Recognition Motifs 446
Owen Lancaster, Simon Hubbard, Jo Avis

J40. Partition Function and Base-Pairing Probability Algorithms for Nucleic 447
Acid Secondary Structure Including Pseudoknots
Robert M. Dirks, Niles A. Pierce

J41. Profile--profile methods provide improved fold--recognition. A study of 449
different profile-profile alignment methods
Arne Elofsson, Tomas Ohlson, Björn Wallner 

RECOGNITION OF GENES AND REGULATORY ELEMENTS

K1. The Probability of Occurence in a Single Sequence 451
Ezekiel F. Adebiyi

K2. A Minimization Entropy-Based Bipartite Algorithm with Application to 453
PXR/RXRÉø Binding Sites
Chengpeng Bi, Carrie A. Vyhlidal, J. Steve Leeder, Peter K. Rogan

K3. Identification of Regulatory Elements in Archaea using Self-Organizing Maps 455
Alan P. Boyle, John A. Boyle, Susan M. Bridges

K4. Gene finding in the presence of RNA editing 457
Ralf Bundschuh, Jonatha Gott

K5. Computational Identification of Noncoding RNA Genes through Phylogenetic 459
Shadowing
Kushal Chakrabarti, Daniel L. Ong

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
xxii



K6. Discovering Transcription Factor Binding Sites in the Yeast 461
Saccharomyces Cerevisiae
Xue-wen Chen, Jianwen Fang, Xinkun Wang

K7. Mammalian Promoter Database: Information resource of mammalian 463
gene promoters
Hao Sun, Saranyan K. Palaniswamy, Twyla T. Pohar; Ramana V. Davuluri

K8. From Motif-Finding to Promoter Structure 465
Chun Ye, Eleazar Eskin

K9. A Whole-genome Analysis of Transcription Factor Binding Sites for 467
Human and Mouse Orthologs
Caroline Finnerty, James McInerney

K10. Identification of Regulatory Controls for Sets of Co-expressed Genes 469
Shannan J. Ho Sui, James Mortimer, Brian P. Kennedy, Chris J. Walsh, 
Wyeth W. Wasserman

K11. Splign: a Hybrid Approach to Spliced Sequence Alignments 471
Yuri Kapustin, Alexender Souvorov, Tatiana Tatusova

K12. In silico studies of the transcriptional regulation of the genes coding for 472 
the novel IL28A, IL28B, and IL29 protein family: A computational screening 
approach applicable on a genomic scale.
William Krivan, Brian Fox, Emily Cooper, Teresa Gilbert, Frank Grant, 
Betty  Haldeman, Katherine Henderson, Wayne Kindsvogel, Kevin Klucher, 
Gary McKnight, Patrick O'Hara, Scott Presnell, Monica Tackett, David Taft, 
Paul Sheppard 

K13. Gene modeling using cDNA or amino acid to genomic sequence alignments 474
Roland Luethy

K14. Detecting Functional Modules of Transcription Factor Binding Sites in the 476 
Human Genome
Thomas Manke, Christoph Dieterich and Martin Vingron 

K15.  SHADOWER: A generalized hidden Markov phylogeny for multiple- 478
sequence functional annotation
Jon D. McAuliffe, Lior Pachter, Michael I. Jordan

K16. Longer sequence surrounding motif distinguishes regulatory elements from 480
false positives
Emily Rocke, James Thomas

K17. Gnomon – a multi-step combined gene prediction program 482
Alexandre Souvorov, Tatiana Tatusova, David Lipman

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
xxiii



K18. Experimental tools to determine DNA binding sites of KRAB zinc finger 483
proteins in their candidate target genes – a challenge in computational biology of 
transcriptional regulatory networks
Peter Lorenz, Sabine Dietmann, Christian Sina, Dirk Koczan, Steffen Möller and
Hans-Juergen Thiesen

K19. A Systematic Analysis of Stress Induced DNA Duplex Destabilization (SIDD) 485 
Sites in the E. coli Genome: Implications of SIDD Analysis for Promoter and 
Operon prediction in Prokaryotes
Huiquan Wang, Craig J. Benham

K20. Blind Operon Finding in Genomes with Insufficient Training Data 487
Benjamin Westover, Jeremy Buhler, Jeff Gordon, Justin Sonnenburg

K21. Bayesian Variable Selection to Identify Quantiative Trait Loci 489
Dabao Zhang, Min Zhang, Kristi L. Montooth, Martin Wells, Carlos 
Bustamante, Andrew G. Clark

K22. The Estimations of Motif Effects with Longitudinal Mixed Model in 490
Temporal Gene Expression Analysis
Jiuzhou Song, Jaime Bjarnason, Mike Surette

K23. Excess Information at T7-like Promoters and Classification of T7-like Phages 492
Zehua Chen, Thomas D. Schneider

STRUCTURAL AND FUNCTIONAL GENOMICS

L1. Analysis of Ataxin-2 and other Lsm domain proteins 494
Mario Albrecht, Markus Ralser, Hans Lehrach, Sylvia Krobitsch, 
Thomas Lengauer

L2. Secondary structure prediction of RNA pairs 496
Mirela Andronescu, Anne Condon 

L3. A comparison of transmembrane topologies greatly improves the 498 
comprehensive functional classification and identification of prokaryotic 
transmembrane proteins
Masafumi Arai, Kosuke Okumura, Masanobu Satake, Toshio Shimizu

L4. Insertions and deletions in protein alignment 500
Charlotte Deane, Gerton Lunter, Jacob Pedersen

L6. Predicted Secondary Structure Slightly Enhances Ortholog Detection 502
Ying Lin, John Case, Hsing-Kuo Kenneth Pao, Joan Burnside

L7. Application of Variable Order Markov Models to Identifying CpG Islands 504
Zhenqiu Liu, Dechang Chen, Jaques Reifman

L8. Using an RNA Secondary Structure Partition Function to Determine 506
Confidence in Base Pairs Predicted by Free Energy Minimization
David H. Mathews

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
xiv



L9. Annotation of 3D Protein Chains in PDB with GO terms via Structural Homology 508
Julia V. Ponomarenko, Philip E. Bourne, Ilya N. Shindyalov

L10. A target selection informatics resource for structural genomics 510
Ana Rodrigues, Guy G. Dodson, Roderick E. Hubbard

L11. Structural Kinomics - Structural Genomics of the Human Kinome 511
Kenneth D Schwinn, Christopher R Hansen, Ian M Miller, Shane Atwell,
Sean G Buchanan, J Michael Sauder

L12. The SWISS-MODEL Repository of annotated 3 dimensional protein structure 513 
homology models
Juergen Kopp, Torsten Schwede

L13. Quantifying Structure-Function Uncertainty: A Graph Theoretical Exploration 515
Into the Origins and Limitations of Protein Annotation
Boris E Shakhnovich, J. Max Harvey

L14. Use of limited suboptimal alignment in homology modeling 517
Christopher L Tang, Donald S Petrey, Marc Fasnacht, Mickey Kosloff, 
Emil Alexov, Barry Honig

L15. Contact Map Prediciton via Maximum Entropy 519
Degui Zhi, Charles Elkan

L16. Application of a Two-stage Method to Identify Protein-Protein 521 
Interface Residues
Changhui Yan, Vasant Honavar, Drena Dobbs

L17. High-Throughput 3D Homology Detection via NMR Resonance Assignment 522
Christopher James Langmead, Bruce Randall Donald

L19. Efficiently computing the landscape of locally optimal RNA secondary structures 523
Peter Clote

L20. Evidence for a subpopulation of alternative splicing events under selection 525
pressure for protein reading frame preservation
Alissa Resch, Yi Xing, Alexander Alekseyenko, Barmak Modrek, Christopher Lee

L22. Hardness of RNA Secondary Structure Design 526
Rosalia Aguirre-Hernandez, Holger H Hoos, Anne Condon

L23. Data Mining Atomic Motions from Computer Simulations of Nucleic Acids: 528
A Wavelet Study of the Differential Bending of d[GA4T4C]n and d[GT4A4C]n
Elijah Gregory, Thomas E. Cheatham, III, Julio C. Facelli

L24. The Alternative Splicing Gallery (ASG) – Visualizing Gene Structure and 530
Alternative Splicing
Jeremy Leipzig, Steffen Heber

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
xxv



L25. Computer modeling of DNA unknotting by type II topoisomerases 532
Barath Raghavan, Diana Nguyen, Javier Arsuaga, Mariel Vazquez

L26. Analysis of Shotgun Sequence Data from Microbial Ecosystems 534
Peter Salamon, Mya Breitbart, J. Mahaffy, J. Nulton, B. Felts, B. Rodriguez 
Brito, D. Bangor, and F. Rohwer

COMPLEX SYSTEMS AND SIMULATION

M1. A Full-length HIV-1 Integrase:Molecular Modeling and Molecular 536 
Dynamics Simulations
Atchara Wijitkosoom, Somsak Tonmunphean, Vudhichai Parasuk, Supot 
Hannongbua, Thanh N. Truong

M2. Large-Scale Biopathway Modeling and Simulation 538
Masao Nagasaki, Atsushi Doi, Kazuko Ueno, Eri Torikai, Hiroshi Matsuno, 
Satoru Miyano

M5. Monte-Carlo Simulation of Metabolic Fluxes: Implications for Making 540
Informative Experimental Measurements and Evaluating Systemic Impact of 
Enzymopathies
Nathan D. Price, Jan Schellenberger, Bernhard O. Palsson

M6. Dynamic Pathway Modeling of Sphingolipid Metabolism 542
Peter A. Henning, Geoffrey Wang, Alfred H. Merrill, and May D. Wang

METHODS

N1. Evaluation of a New Algorithm for Keyword-Based Functional Clustering 544 
of Genes
Ying Liu, Brian J. Ciliax, Alex Pivoshenko, Jorge Civera, Venu Dasigi , Ashwin 
Ram, Ray Dingledine, Shamkant B. Navathe

N2. A web-based approach to bio-informatics tool integration using 546
MVC design pattern
Sean Huang, Lang-Yang Ch'ang, Wen-Chang Lin, Chung-Shyan Liu

N3. Computational analysis of homologous chromosome pairing in fission yeast 548
Mineo Morohashi, Ding Da-Qiao, Ayumu Yamamoto, Yasushi Hiraoka, Shuichi 
Onami, Hiroaki Kitano

N4. Primary Human Hepatocytes – A Suitable Tool in Systems Biology 550
Dieter Runge, Dirk Koczan, Detlef Haase, Hilmar Christoph, Peter Lorenz, Peter
Kohlschein, Peter Schuff-Werner, Michael O. Glocker, and Hans-Jürgen Thiesen

N5. GO trees: Predicting GO associations from protein domain composition 552
using decision trees
Boris Hayete, Jadwiga Bienkowska

N6. Development of an Integrated LIMS for Microarray Facility Center 554
Jianchang Ning

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
xxvi



N7. Cooperative Biomedical Knowledge Inference 556
Chun-Hsi Huang, Sanguthevar Rajasekaran, Longde Yin

N8. A property-based model for lung cancer diagnosis 558
Alma Barranco-Mendoza, Deryck R. Persaud, Veronica Dahl

N10. Motif Preservation in Biochemical Pathways 560
Zachary Saul, Vladimir Filkov

Author Index 563

Keyword Index 575

Dana Jermanis
Table of Contents

Dana Jermanis


Dana Jermanis
xxvii





 
 

Pharmacophore Multiplets in Combinatorial Library Design: 
A Novel Approach to Generation and Storage 

 
Edmond Abrahamian1, Peter Fox1, Inge Thøger Christensen2, Henning 

Thøgersen2, Robert D. Clark1 
 
Keywords: pharmacophore multiplets, molecular fingerprints, molecular similarity 
 

1 Introduction.  
 
Pharmacophore triplets and quartets have been used by many groups in recent years, primarily as a 
tool for molecular diversity analysis [1, 2]. In most cases, slow processing speeds and the very large 
size of the bitsets generated have forced researchers to compromise in terms of how such multiplets 
were stored, manipulated and compared, e.g., by using simple unions to represent multiplets for sets of 
molecules. Here we report using bitmaps in place of bitsets to reduce storage demands and to improve 
processing speed. Here, a bitset is taken to mean a fully enumerated string of zeros and ones, from 
which a compressed bitmap is obtained by replacing uniform blocks (“runs”) of digits in the bitset 
with a pair of values identifying the content and length of the block (run-length encoding 
compression). High resolution multiplets involving four features are enabled by using 64 bit 
executables to create and manipulate bitmaps, which “connect” to the 32 bit executables used for 
database access and feature identification via an extensible mark-up language (XML) data stream. The 
encoding system used also supports simple multiplets, quartets in which a privileged substructure is 
used as an anchor point, and augmented triplets in which the fourth feature represents a hydrogen 
bond donor or acceptor extension point linked to the complementary acceptor or donor atom in a base 
triplet. It can readily be extended to larger, more complex multiplets as well. 
 
The system is set up to support hypothesis generation, which entails creation of consensus bitmaps 
built up from active ligands identified in preliminary screening. Rather than a simple union across 
bitmaps, a weighting scheme is used that gives greater weight to multiplets expected to be more 
discriminating.  Multi-conformer bitmaps can be obtained from pre-generated conformations or by 
random perturbation on-the-fly.  

 

2 Methods.  
 
The first step in encoding multiplets is to sweep through the molecules of interest and identify 
pharmacophoric features specified in the multiplet definition file. These may be point features or 
centroids of substructures or extension points. The features found are compiled into an ASCII file 
using the XML format, which is then passed on to a separate executable for generation of the desired 
bitmaps. The intermediate XML files constitute a “feature stream” which makes it possible to 
efficiently generate different “flavors” of multiplets in parallel, since feature identification is a 
relatively slow step in the overall process. 
 
An unambiguous, two-way, one-to-one mapping must exist between every possible pharmacophore 
multiplet and some position in the corresponding bitset. For triplets, the distances di are sorted in 
descending order and the vertex falling between the longest and shortest edges is assigned to the 

                                                 
1 Tripos, Inc., 1699 S. Hanley Rd., St.Louis MO 63117 USA. E-mail: edmond@tripos.com 
2 Novo Nordisk A/S, Protein Structure Research, Novo Nordisk Park, 2760 Måløv, Denmark 
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central position (f2) in the feature index. The first vertex (f1) is then set to match the feature connected 
to f2 by the longest edge (d1), whereas the third feature index (f3) is determined by the type of the 
feature connected to f2 by the shortest edge (d3; see Fig.1). In the event that different edges fall in the 
same distance bin, the tie is broken lexicographically, where feature priority is taken as the order in 
which features are specified in the configuration file.  Mapping for a quartet is more elaborate and 
takes chirality into account. 
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Figure 1: Multiplet encoding scheme  (A) Triplet , (B) Quartet 

 
3 Results 
 
Analysis was carried out on a set of 96 glycogen synthase kinase-3 (GSK3) inhibitors and analogs 
originally compiled for a quantitative structure-activity relationship (QSAR) analysis [3]. This 
included 70 active compounds and 26 inactive analogs included in the study for the sake of 
completeness. An additional 91 were drawn from the NCI anticancer screening database that exhibited 
a Tanimoto similarity of 0.65 or greater to the compounds in the training set with respect to standard 
UNITY [4] substructural fingerprints. Twenty-five conformers were produced for each of the 187 
compounds, and the triplet bitmaps so obtained were used for hierarchical clustering. The actives all 
cluster together to the right in the dendrogram, whereas the less active analogs are distributed among 
the unhighlighted nodes corresponding to decoy compounds from the NCI database. Results from 
other data sets are available as well [5]. 
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The Docking Mesh Evaluator

Roummel F. Marcia,1 Susan Lindsey,2 J. Ben Rosen,3 Julie C. Mitchell4,5

Keywords: protein docking, Poisson-Boltzmann equation, global optimization

1 Introduction

The Docking Mesh Evaluator (DoME) is a software for predicting a bound protein-ligand
docking configuration by determining the global minimum of a potential energy function.
Our present energy model is based on solvent effects defined implicitly using the Poisson-
Boltzmann equation, as well as a pairwise Lennard-Jones term.

2 Software

Our approach consists of two phases. The first involves scanning the energy landscape for
favorable configurations. This phase can be done once as a preprocessing step and need
not be done again. The second phase involves the iterative underestimation of successive
collections of local minima with convex quadratic functions, using the configurations from
the first phase as initial seed points for optimization. The minima of the underestimators
are then used as predicted values for the global minima. Both serial and parallel versions
of this “coupled” optimization have been successfully implemented. Preliminary results are
reported in [2].

Currently, our research is focused on optimizing parameters in the energy function, in
order to obtain the best accuracy in predicting known docking configurations. In particular,
we consider the benchmarking set of Chen et al. [1] for testing protein-protein docking
algorithms. Of the 59 test cases it contains, 22 are enzyme-inhibitor complexes, 19 are
antibody-antigen complexes, 11 are various diverse complexes, and 7 are difficult test cases
whose solutions have significant conformational changes. These optimized parameters are
expected to yield realistic results for biological problems whose solutions are unknown.

Flexibility in the protein-ligand model is being implemented using a hybrid of global op-
timization and rotamer search. Near the surface interface, subtle side-chain rearrangements
are often necessary to model induced fit between the receptor and the ligand. These rear-
rangements can be modeled using candidate residue conformations, called rotamers. Using
this approach, the protein backbone is held fixed while residues are allowed to take on vari-
ous configurations. Such pseudo-flexibility is a more viable alternative to full backbone and
side-chain flexibility, which requires inordinately many free variables, thus making the com-
putational cost prohibitively expensive. Local shape complementarity analysis performed
using the Fast Atomic Density Evaluator [3] will provide added efficiency by highlighting
regions in which shape mismatches occur.
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Structure-Based Design of HIV Entry Inhibitors  
 

Hepan Tan,1  Jiang Zhu,2   Wayne A. Hendrickson3 
 
Keywords: de no design,  flexible docking, genetic algorithm,  multiple copy stochastic molecular 
dynamics,  gp120-CD4 interactions,  lead discovery,  entry inhibitor,  receptor flexibility 
 

1 Introduction.  
 

            The acquired-immunodeficiency syndrome (AIDS)  has evolved into one of the major epidemics   
            worldwide,  Significant effort has been made in the development of antiviral therapy.  Actually all the  
            compounds that are currently used or under advanced clinical trial can be classified according to the  
            step of the viral life cycle which they target,  including those well known inhibitors of HIV reverse  
            transcriptase and protease.  However, drug resistance, toxicity,  tolerability,  latent viral reservoirs  
            are the imminent problems that need to overcome.  A new strategy for vaccine and  drug design that  
            complements existing cocktail therapy recipes is to  target HIV entry. It provides the advantages of  
            interfering with multiple intermediates in this multi-step process.  Consequently,  viral attachment,  
            co-receptor binding, and viral-cell membrane fusion provide promising targets for anti-HIV drug  
            discovery.  Our efforts are focused on the possible strategy to interfere with viral attachment, the very  
            first step of viral entry.  The enormous effort to develop small ligands that binds specifically to gp120  
            and trap it into an early fusion-inactive state has not been very successful until recently.    
 
            We therefore carried out a comprehensive computational study on the de novo design and the virtual  
            screening of gp120 inhibitors.  Genetic Algorithm controlled de novo design was carried out to  
            propose potential gp120 binders;  Virtual screening of NCI-3D compound was carried out using  
            incremental  construction algorithm and the resulting top hits were ranked and visualized for further  
            binding assay;  also we applied MCSMD approached to design ligands from common medicinal  
            chemistry building blocks.    

 
 

2 Materials and Methods. 
 
LigBuilder was used to design gp120 inhibitors [1].  Binding site analysis was carried out first to 
derive a 3D-pharmacophore.  Seed structures based on the phenyl ring of Phe43 from CD4 was 
used to initiate the building process.  The best binders from the calculations were clustered based 
on their theoretical LogP values. FlexX [2] was used to dock NCI-3D database to gp120-CD4 
binding site,  the binding site residues included in the  calculation were within a sphere of 20 Å of 
which the center is the geometric average of Phe43 phenyl ring and the side chain of Arg59 of CD4.  
The top 300 hits were clustered and visualized and 15 compounds were obtained for further study. 
DycoBlock and F-DycoBlock [3] were applied to carry out multiple copy stochastic molecular 
dynamics (MCSMD) simulation to search for binding sites of building blocks within gp120-CD4 
interaction site,  the resulting fragments were linked and refined on-the-fly,  solvent accessible 
surface area (SASA) was used to evaluate the best fit ligands. GOLD (Genetic Optimization of Ligand 
Docking) [4] and MCSMD methods mentioned above were also used to study ligand binding mode 
with gp120.  
 
1 ,2, 3 Department of Biochemistry and Molecular Biophysics & HHMI, College of Physicians and Surgeons, 
Columbia University,  630 West 168th Street,   BB259,   New York,  NY 10032.  E-mail:  ht149@columbia.edu , 
jz2106@columbia.edu  ,   wayne@convex.hhmi.columbia.edu 
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3 Results and Discussions. 
 
A panel of compounds were designed with LigBuilder and DycoBlock, and they were 
compared with the virtual screening results.   
 
 
 
 

 
 
 
 

 
 
 
 
 
 
                                      
                                  Figure 1: the best-ranked hits from the virtual screening of NCI-3D  

 
Compd Tot-E Bind-E eel elj sasa-b sasa-f

1843 -159.8 -474.5  -318.6 -155.8 128.7 335.2
2095 -421.8 -463.3  -295.1 -168.2 139.3 386.7
612 -490.3 -430.5  -276.3 -154.2 145.2 374.4

2444 -475.1 -427.2  -246.6 -180.6 136.9 402.6
555 -349.0 -419.1  -265.0 -154.1 131.5 372.3

1144 -217.4 -413.6  -334.5   -79.1 226.4 361.0
1219 126.8 -390.6  -231.4 -159.2 126.7 330.4
1808 -214.6 -389.8  -219.1 -170.7 212.6 429.5
2372 -597.4 -371.0  -265.1 -105.9 264.5 414.4
1115 -216.2 -364.3  -206.5 -157.8 222.8 427.1

 
Table 1:  Top 10 MCSMD designed ligands in terms of binding energy 

 
 

4   References. 
 
[4]  Jones G, Willett P, Glen RC, Leach AR, Taylor R.  1997.  Development and validation of a genetic algorithm 
for flexible docking.  J Mol Biol.  267(3): 727-48. 
 
[2] Rarey M, Kramer B, Lengauer T, Klebe G. 1996. A fast flexible docking method using an incremental 
construction algorithm.  J Mol Biol.  261(3): 470-89. 
 
[1]  Wang R.,  Gao Y., and Lai L.  2000.  LigBuilder: A Multi-Purpose Program for Structure-Based Drug Design. 
J.  Mol. Model.  6: 498-516. 
 
[3]  Zhu J, Fan H, Liu H, Shi Y.  2001.  Structure-based ligand design for flexible proteins: application of new F-
DycoBlock.  J Comput Aided Mol Des.  15(11): 979-96. 
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Shape Signature ,  a New Approach to Computer-aided
Ligand- and Receptor-Based Drug Design

Lifeng Tian1, Randy J. Zauhar1

Keywords: molecular surface, ray tracing, Shape Signatures

1 Introduction.

A unifying principle of rational drug design is the use of either shape similarity or complementarity
to identify compounds expected to be active against a given target. Shape similarity is the
underlying foundation of ligand-based methods, which seek compounds with structure similar to
known active, while shape complementarity is the basis of most receptor-based design, where the
goal is to identify compounds complementary in shape to a given receptor. These approaches can
be extended to include molecular descriptors in addition to shape, such as lipophilicity or
electrostatic potential.

We introduce a new technique, which we call Shape Signatures, for describing the shape
of ligand molecules and of receptor site. Shape Signatures is an approach for compactly encoding the
shapes of molecules and receptors [1]. This is achieved by a method much like ray tracing. We begin
with either a ligand molecule or a receptor site in a protein. In either case, we enclose the molecule in
its molecular surface [2,3]. A ray is initiated at a randomly chosen point on this surface, and is allowed
to propagate by the rules of optical reflection. If we are considering a ligand molecule, then the ray is
directed into the molecular interior, while for a receptor the ray is directed to the exterior of the
molecule and propagates in the volume of the binding site. For further analysis we retain the positions
of the reflection points, as well as the ray tracing segments (defined as the line segments that connect
reflection points). In addition, we may associate the reflection points with various properties computed
on the surface, such as the molecular electrostatic potential (MEP).

Given a completed ray tracing, we compute probability distributions based on the geometry
of the ray, and perhaps also properties computed on the molecular surface. Our “Shape Signatures” are
just these distributions, described as histograms. The simplest signature is the distribution of segment
lengths observed in the ray tracing. This distribution has a one dimensional domain (namely segment
length), and we refer to it as a “1D Signature”. Signatures with higher dimensional domains can be
defined as joint probability distributions that involve both ray tracing geometry and surface properties,
such as the molecular electrostatic potential (MEP). A “2D-MEP” signature encodes information
about both molecular shape and charge distribution.

Shape signatures can be generated from ray tracing of receptor sites in a manner identical to
ligand ray tracing. Where a match between 1D signatures of two ligands indicates they may have
similar shape, a match between a receptor-based query and a potential ligand indicates that they are
complementary in shape.

2 Application.

                                                  
1 Department of Chemistry & Biochemistry, University of the Sciences in Philadelphia, 600 S 43rd street,

Philadelphia, PA 19104. E-mail: lt0000@usip.edu, r.zauhar@usip.edu
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Searching Chemical Libraries for Lead Compounds. Shape Signatures can be used to scan libraries for
compounds similar in shape to a query compound (presumably a known active). Matches can be found
on the basis of shape alone (using 1D signatures), or shape combined with electrostatics (using 2D-
MEP signatures). The first approach casts a wider net, while the 2D approach will locate compounds
very similar to the query in both shape and electrostatic field.

Scanning Libraries for Compounds Complementary to a Protein Receptor. A special strength of the
Shape Signatures approach is that the handling of receptors and ligands is completely symmetrical – to
generate Shape Signatures for receptor sites or sub sites all that is required of the user is to select the
atoms that define the site, save these as a file in the query structure database, and use an alternate
script designed for receptor-based signature generation.

References
[1] Zauhar, R.J., Moyna, G., Tian, L.-F., Li, Z.-J., and Welsh, W.J. Shape signatures, a new approach to computer-
aided ligand- and receptor-based drug design, J.Med. Chem., accepted, 2003.
[2] Richards, F. M. Areas, Volumes, Packing and Protein Structure. Annual Review in Biophysics and
Bioengineering. 1977, 6, 151-176.
[3] Zauhar, R. J. SMART: a solvent-accessible triangulated surface generator for molecular graphics and boundary
element applications. J Comput.-Aided Mol. Des. 1995, 9, 149-159.
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Distributions of time to coalescence under stochastic 
population growths: application to MRCA dating 

 
Krzysztof A. Cyran1 and  Marek Kimmel2 

 
Keywords: coalescence distributions, MRCA dating, Markov branching processes, mtDNA, HVR 
 

1 Introduction 
 
In the last decade a lot of effort has been spent on inferring human population history from genetic 
diversity data [6, 7]. The majority of methods were based on the Wright-Fisher (W-F) model of 
genetic drift which assumes multinomial sampling scheme and thus (for large population) Poisson 
distribution of the number of progeny for any particular locus. Since this model is not always accurate, 
the question arises: What is the influence of the departure from W-F model on the distribution of the 
coalescence time and further analysis of genetic variation? To answer it we performed an extensive 
(forward direction) simulation study estimating the coalescence distribution for populations evolving 
according to various stochastic scenarios. We compared coalescence distributions of W-F type models 
and of the O’Connell (OC) model [4] (corrected in [1]) and the results allowed us to estimate the time 
to the most recent female common ancestor (MRFCA) of modern humans. For this purpose we used 
genetic data from HVRI and HVRII of mtDNA of modern humans and Neanderthal fossils. 
 

2 Coalescence distributions in Markov branching processes 
 
We modeled the population trajectories by the slightly supercritical Markov branching process. For 
such processes, the OC model predicts the asymptotic coalescence distribution to be independent of 
the type of offspring distribution with given mean and bounded variance. We used the OC model as a 
standard and checked how well the distributions obtained in various W-F (time-homogeneous) models 
would match it (Fig. 1a.). We also performed the Kolmogorov-Smirnov test for statistical comparison 
of distributions obtained with the standard (Table 1, last column), and performed simulations for 
(time-inhomogeneous) branching processes in variable environment (Fig. 1b.). 

 

 a. 

Distributions of coalescence time for 200,000 years of 
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Figure 1: Distributions of time to coalescence for different population histories: a. Distribution for the case of 
stochastic time homogeneous growth (progeny distributions: P- Poisson, LF-linear fractional, BF- binary 

fission), b. Coalescence distribution for the cases of stochastic time-homogeneous vs. time-inh. Poisson growth. 

                                                 
1 (a) Department of Statistics, Rice University, Houston, Texas, USA. E-mail: chrisc1@rice.edu  

(b) Institute of Computer Science, Silesian University of Technology, Gliwice, Poland 
2 Department of Statistics, Rice University, Houston, Texas, USA. E-mail: kimmel@rice.edu  
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Population 
trajectory scenario 

γ =  
E(Tc /T | N0=1) 

σ 2 =   
Var (Tc/T | N0 =1) σ 

Final pop. 
size 

Equal to OC 
distribution? 

OC 0.801 0.0253 0.159 107  –     
W-F with P 0.802 0.0253 0.159 107 Yes 

W-F with BF 0.735 0.0289 0.17 0.5×107 No 
W-F with LF 0.844 0.0243 0.156 2×107 No 

W-F with P, σe1  0.794 0.0289 0.17 107 Not sure 
W-F with P, σe2 0.699 0.0724 0.269 2×107 No 

 

Table 1: Relative time to coalescence γ  and its variance σ 2 for a pair of alleles for various demographic scenarios 
starting from a common ancestor. Two last rows are for randomly changing environment with std. dev. σe1 <σe2. 

 

3  Estimation time to mtEve 
 
In order to be able to date the MRCFA based on data from Table 1, we have to know the average 
genetic distance between modern humans davg, divergence rate δ and the duration of one human 
generation λ. After a series of successful sequencings of H. neanderthalensis mtDNA [2, 3] dated to 
live until about 40, 000 years ago [5], δ no longer had to be estimated from human-chimpanzee 
divergence. Assuming the infinite site model, relying on data from [2] and using H. neanderthalensis 
as an outgroup, we estimated δ to be about 1.2×10-7. For davg=1.8% [2] and λ=20 years this results in 
times to mtEve given in Table 2. For all stochastic trajectories we analyzed, the resulting time falls 
into the 95% confidence interval of the estimate reported in [2]. However, our results, with the 
average of 193 × 103 years, indicate a systematic shift of 30 × 103 years towards the past. We also 
showed in this paper that after changing the outgroup from chimpanzee to Neanderthals, genetic 
models with different assumptions tend to give similar (therefore mutually supporting) predictions. 
However, interestingly, the estimates in the deterministic growth models are systematically higher 
than those in the stochastic model. The computer program used for calculations of the coalescence 
distribution can be downloaded from web: www.stat.rice.edu/~kimmel/software/coalescence. 
 

W-F time-homogeneous W-F time-inh. P. W-F exponential growth  
OC. P BF LF σe1 σe1 ZT =109 ZT =108 ZT =107 ZT =106 

187 187 204 178 189 215 223 239 266 311 
 

Table 2:  Estimates of the time to mtEve E(Ta) in [103 years] for various population history scenarios. 
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An Integrated Tool for Investigating Genetic 
Disorder-Relevant Tandem Repeats in Human 

Genome 
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1 Introduction.  
 
Tandem repeats (TRs) and single nucleotide polymorphisms (SNPs) are associated with human 
inherited diseases, play an important role in evolution and in regulatory processes [1-3]. Because 
the biologists, who are investigating in genetic disorders, are also interested in TRs and SNPs with 
particular limits, and they will design primer sequence for experiment. Hence, the goal in this work 
is to develop an effective tool for observing the information about TRs, SNPs and genetic disorders. 
We establish a database to store gene information, TRs, SNPs and OMIM [4] data. The system 
facilitates the analysis of genetic disorders. We develop a primer design tool for identifying specific 
TRs or SNPs when users interested in specific disease features. Web user interfaces and graphical 
interfaces are designed and implemented. Accordingly, the relationship of genes and genetic 
disorders recorded in OMIM are found. The main contribution of this work is to provide a user-
friendly and effective tool for genetic disorders in the research of human inherited diseases. 
 
2 Materials and methods.  
 
The present system contains two parts. They are data processing and result display. From GenBank 
[5] the DNA sequences of Homo sapiens have been used for identifying tandem repeats, and the 
gene coding regions from GenBank have been used for retrieving gene location data. The 
relationship between human genes and genetic disorders from OMIM [6] has been retrieved. From 
the above steps, the information of tandem repeats mapping genes and genetic genes mapping 
disorders has been used for generating the association of tandem repeats with disease phenotypes. 
The part of result representation has been developed with a user-friendly interface in PHP. Users 
can access the database via graphical web pages. The mechanism of query-refinement helps users 
for browsing in tandem repeats efficiently. To provide primer sequence for experiment on user-
interesting genomic sequence regions, the primer design tool has been integrated into our system, 
and the primer3 has been applied to fit this purpose. Primer3 pick primers from a DNA sequence 
[7], and it can avoid choosing primers in transposable elements and can pick oligonucleotide for 
probe or primers. 
 
3 Results.  
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The possible tandem repeats have been searched in the human genome by Tandem Repeat Finder 
[8], and the occurrence of repeats in the genomic regions has been identified based on the 
annotation of the human genome sequence in the GenBank database. The expansion of repeats in 
the coding region of the gene has been found that being associated with genetic disorders in the 
OMIM database. These data was stored in our database, and a web site was designed for accessing 
these information. There are 24 chromosomes, which contain 26,179 candidate genes, 1,246,831 
distinct tandem repeat patterns and 34,263,072 tandem repeat sites. Most of these tandem repeat 
sites represented in non-genomic regions, only nearly 2% of them represented in such genomic 
regions as exons, introns, upstream and downstream of genes. Table 1 shows the distribution of 
these genes associated tandem repeat sites. 
 

Region Occr. Ratio
Exon 127,537    1.83%
Intron 6,574,552 94.37%

Upstream 127,519    1.83%
Downstream 137,212    1.97%

All 6,966,820 100.00%

 
Table 1. The distribution of tandem repeat sites which represented in various genomic regions. 

 
The existence of genetic disorders associated with the expansion of tandem repeats raises the 
interests of clinicians and experts who research in inherited diseases. As a tool, it may help 
clinicians and experts’ studies in observation of the relationship between tandem repeats and 
genetic disorders. With a graphical user interface, it integrates not only the information about 
tandem repeats, genes, and genetic disorders but also primer design tool. Generations of the 
genomic regions and tandem repeats sites have been done and they have been mapped to genetic 
disorders in this study. Observing on these data as users’ wish for retrieving tandem repeats that are 
associated with disorder-mapped genes can be reached via our tool, and then it provides primer 
sequences for experiment to verify the suspect. 
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1 Introduction.

The problem of haplotype reconstruction from phase unknown genotypes has been formu-
lated into two major categories. One is the Haplotype Identification(HI) problem that identi-
fies the haplotype set to explain the genotypes. Related algorithms include Clark’s parsimony
algorithm [1] and Gusfield’s Perfect Phylogeny [2]. The other is the Haplotype Frequency
Estimation(HFE) problem that seeks the optimal estimation on haplotype frequencies for
resolving the genotypes. Related algorithms include EM-based algorithm [3], Gibbs sampling
based algorithm [4], Partition-Ligation [5], etc.

One of the challenges for large scale haplotype reconstruction is the problem size that
grows exponentially with the number of heterozygous sites in genotype. Divide-and-Conquer
strategies have been applied in [5] and [6] to address the problem. Genotypes are broken
into short segments where haplotyping is easily performed, and then the partial solutions
are combined together to recontruct the full sequences.

This poster introduces our study on a new approach to problem size reduction for large
scale haplotyping. The goal of this approach is to systematically reduce the haplotype search
space while preserving the most possible solutions in the reduced space. The reduced search
space will then serve as the starting point for existing algorithms, such as EM, to complete
the haplotype inference.

The motivation is to examine the inter-correlations within the sample population. We
present the framework of applying clustering techniques on genotype data based on the
compatibility rules and proximity measures derived from genotype patterns. We examine
the quality of clustering results through the reduced haplotype pools constructed from the
clusters. Comparison is carried out on several performance indices, such as set coverage
rate, size reduction ratio, etc. Results from different clustering algorithms, as well as results
integrated from multiple clustering runs are collected for analysis.

Through experiments on simulated data sets, we demonstrate that our approach to search
space reduction, in combination with existing algorithms, would enable us to handle large
scale haplotyping problems more efficiently.

2 Search Space Reduction via Clustering.

The input of the algorithm is the genotype data matrix of size N × L, where N is the
population size, and L the length of genotype. The output is the haplotype pool constructed
from the clusters, i.e., the reduced pool. The framework consists of three stages.

1Department of Electrical and Computer Engineering, University of Massachusetts at Amherst,
Amherst, MA 01003, USA. E-mail: jhu@ecs.umass.edu
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1. Build compatibility and proximity matrices from input data.

2. Apply clustering algorithms on genotypes. Genotypes are assigned into clusters based
on compatibility and proximity.

3. Construct haplotype pools from clusters by keeping the haplotypes shared by all mem-
bers in a cluster. All partial pools are merged together as the final pool.

We adopt two indices for evaluating the quality of clustering results. Here the orig-
inal pool refers to the haplotype set created by enumerating all possible haplotypes from
genotypes, and the truth pool refers to the correct haplotype set.

• Set Coverage Rate: Percentage of haplotypes in the truth pool correctly preserved in
the reduced pool.

• Size Reduction Ratio: Ratio between the size of the original pool and the size of the
reduced pool.

The choice of proximity measures, clustering criteria, and clustering algorithms should
aim at the goal of constructing reduced haplotype pools of high coverage rates as well as
large reduction ratios.

3 Experimental Results.

The experiments are carried out on simulated data sets with the following observations.

• Efficient space reduction: A basic implementation of the sequential clustering algo-
rithm combined with randomized assignment of genotypes would yield an average set
coverage rate of above 80%, with an average size reduction ratio of 60 on data sets
L = 32, N = 32.

• Merged pools perform better: Merged pools from multiple runs of clustering yield bet-
ter quality at limited extra cost. Clustering algorithms may produce complementary
results that work better together.

• The quality of clustering results also depend on input data and the settings of clus-
tering algorithms. Further study on the relationship between input data patterns and
computational complexity is desired.

4 References and bibliography.
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Reconstructing Phylogenetic Trees from
Dissimilarity Maps

Dan Levy, 1 Francis E. Su, 2 Ruriko Yoshida 3

Keywords: Phylogenetic tree, dissimilarity map, four point condition

Algorithms for reconstructing a phylogenetic tree from sequence data typically rely on
first finding a distance matrix; a set of values indicating the dissimilarity for each pair of
elements [1] [2] [9] [11]. However, one may choose to consider instead the dissimilarity of
groups of elements. If we let [n] denote the set {1, 2, ..., n} of leaves and

(
[n]
m

)
denote the

set of all m-element subsets of [n], we may define an m-dissimilarity map as a function
D :

(
[n]
m

)
→ R≥0. This may be thought of as a measure of how dissimilar a set of m

elements are or, in terms of the tree, as the sum of the edge weights of the subtree spanned
by those leaves. Pachter and Speyer gave theoretical conditions under which a tree may be
constructed from its dissimilarity map; in particular a tree may be reconstructed from its
m-dissimilarity map iff n > 2m − 2 [5]. Their method proceeds by first finding the splits,
recovering the topology from the splits using Buneman indices, and then using the distances
and topology to determine the edge weights.

In contrast, our method constructs the topology of the tree and determines the edge
weights simultaneously. We achieve this result through an analogue of the four point con-
dition [3] [9] for m-dissimilarity maps. We say that a pair of leaves (i, j) is a sub-cherry in
the subtree T iff i and j are in T and there is only one vertex of degree 3 on the unique
path from i to j in T . We call this intermediate vertex the sub-cherry node. Our four point
condition for m-dissimilarity maps locates sub-cherries in subtrees with m + 2 leaves and
determines the distance from the sub-cherry node to the rest of the subtree. By locating
sub-cherries and determining sub-cherry node distances, we may reconstruct both the tree
and the edge weights provided that n > 2m− 2.

In the case that m = 3, we have exploited certain symmetries to provide a fast algo-
rithm for reconstructing phylogenetic trees from 3-dissimilarity maps. This algorithm has a
time complexity of O(n2). We have also written and tested a C++ implementation of this
algorithm.

Phylogenetic tree reconstruction from m-dissimilarity maps may provide a more accurate
approach to determining the maximum likelihood tree by utilizing the more accurate m-
subtree weights as opposed to pairwise distances [6] [10]. As demonstrated by the case
m = 3, these algorithms are computationally competitive with distance based methods and
may serve as a viable alternative to neighbor joining or quartet reconstructions.
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[9] Simöes-Pereira, J.M.S. 1969. A note on the tree realizability of a distance matrix. Journal of
Combinatorics Theory, 6. pp.303-310.

[10] Strimmer, K. and von Haessler, A. 1996. Quartet puzzling: A quartet maximum likelihood
method for reconstructing tree topologies. Molecular Biology and Evolution, 13. pp.964-969.

[11] Zaretskii, K.A. 1965. Constructing trees from the set of distances between pendant vertices.
Uspehi Matematicekih Nauk, 20. pp. 90-92.

Dana Jermanis
Computational Genetics

Dana Jermanis
20

Dana Jermanis




Global optimization in QTL analysis

Kajsa Ljungberg1, Sverker Holmgren1, Örjan Carlborg 2

Keywords: genetic mapping, quantitative traits, QTL, epistasis, global optimization

1 Introduction and problem formulation.

Many phenotypes of medical, economical and general scientific importance can be measured
quantitatively. Quantitative traits are often affected by the joint effect of multiple genes and
the environment, and one way to dissect the underlying genetic architecture is to identify
quantitative trait loci, QTL, in the genome [2]. A QTL is a chromosomal region, locus,
harboring one or several genes that affect the trait under study. Ten or more QTL can
influence a single trait. Real examples show that the QTL can interact in nonlinear ways,
and therefore it is desirable to simultaneously model their effects. A simultaneous search for
n QTL can be regarded as a global optimization problem in n dimensions.

We consider QTL mapping in experimental populations. The exact form of the opti-
mization problem depends on the choice of mapping method. With the widely used linear
regression parametric method, searching for n QTL is equivalent to finding the n-element
vector x̄, representing the combination of n QTL positions, that minimizes

f(x̄) = min
b
‖A(x̄)b− y‖22,

where A is a matrix of indicator variables depending nonlinearly on x̄ and of fixed effects
coefficients used to remove the influence of non-QTL factors. The number of rows in A
equals the number of individuals in the population. The vector y contains the phenotype
values, and b is a vector of regression variables. Other common parametric methods result
in a generalized least squares problem for every x̄ [4].

2 Methods.

There are two parts to the computational problem. The first is the kernel problem, i.e. to
solve the (generalized) least squares problem of the objective function for a given x̄. In [4] we
show how the special structure of the least squares problem can be efficiently exploited in an
updating algorithm. We compare our kernel algorithm with the library least squares solver
routines used in standard software. The relative gain in arithmetic operations, compared to
the most suitable of the library routines, is roughly proportional to (kfix/k)2, the square of
the ratio of the number of fixed columns in A to the total number of columns.

The second part of the computational problem is the global problem, i.e. finding the
x̄ that minimizes f(x̄). The standard way of finding the global optimum of the objective
function, i.e. the most likely positions of the QTL given a mapping method and model,
is to perform an exhaustive search in a dense grid covering the search space. This ensures
that the global optimum is found, but the method is computationally slow, and in practice
infeasible for analyses in more than two dimensions. Already in two dimensions it is very
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time-consuming to perform the thousands of searches required to obtain robust empirical
significance thresholds for statistical evaluation of the results. In higher dimensions a more
efficient global optimization algorithm is essential. In [5] we adapt an optimization algorithm
called DIRECT [3] to the QTL search problem. We compare DIRECT with exhaustive search
and with a genetic optimization algorithm previously used for QTL search [1].

3 Results.

We test DIRECT in 2-6 dimensional searches. To verify that the global optimum is found
when testing on real data sets, an exhaustive search is performed in two and three dimensions.
We also analyze simulated data with known QTL locations in up to six dimensions.

2D search, 191 pigs 3D search, 850 chickens
Global search Kernel algorithm (kfix/k)2 ≈ 0.78 (kfix/k)2 ≈ 0.03
method [seconds] [seconds]
Exhaustive search Library routine G02DAF 150,000 1,140,000,000
Exhaustive search Library routine SQRDC 4,800 14,800,000
Exhaustive search New updating algorithm 1,500 11,400,000
Genetic algorithm New updating algorithm 40 8600
DIRECT New updating algorithm 4 360

Table 1: Approximate CPU time in seconds required for one search to find the global optimum.

In Table 1 we show examples of results for searches in two and three dimensions using
two farm animal real data sets. The reported CPU times are approximate, and the times for
exhaustive search using G02DAF in 2 and 3 dimensions and SQRDC in 3 dimensions have
been extrapolated from shorter runs. The kernel updating algorithm gives a substantial gain
when the number of fixed columns in A is large compared to the total number of columns.
The library routine G02DAF, used in standard software, is very slow due to several extra
computations not needed for QTL mapping purposes.

Using DIRECT for the global optimization results in a one order of magnitude speed-up
compared to the genetic optimization algorithm using a carefully tuned parameterization.
DIRECT is 2-3 orders of magnitude faster than exhaustive search in two dimensions, and
4-5 orders of magnitude faster in three dimensions. This enables routine searches in at least
three dimensions, including derivation of empirical significance thresholds.
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The Portable Cray Bioinformatics Library

James Long1

Keywords: benchmarking, bioinformatics, compression, endian, library

1 Introduction.

The original Cray Bioinformatics Library (CBL) is a low level set of library routines using
proprietary Cray hardware to implement some common nucleotide/protein sequence manipulations
typical in a bioinformatics context. Written in Fortran and Cray assembly language (most are
callable from C), the original CBL was coded and optimized on a Cray SV1 vector machine. Cray
also has a port for their new X1™.

The Portable CBL is the open source version [1] written in C that implements the computational
primitives in a generic fashion with little regard to specific hardware. The CBL routines facilitate
performance by operating on compressed data whenever possible. In the case of nucleotide data, for
example, it is sufficient to represent each of the four nucleotides with only two bits, and thus a 64-
bit word can contain a sequence of 32 nucleotides instead of the normal 8. The CBL search routine
compares whole words of a compressed query against a compressed database, realizing a
significant performance increase. In addition to 2-bit compression, CBL supports 4 bit and 5 bit
levels for larger alphabets. The CBL will continue to grow as additional biological computational
primitives are identified and implemented [2 ] .

2 Version 1.0 Routines.

cb_amino_translate_ascii - translate nucleotides to amino acids
cb_compress - compresses nucleotide or amino acid ASCII data
cb_copy_bits - copy contiguous sequence of memory bits
cb_countn_ascii - counts A, C, T, G, and N characters in a string
cb_fasta_convert - restructure the memory image of a FASTA file
cb_free - frees memory allocated with cb_malloc in Cray version
             - simply calls free() in portable version
cb_irand - generates an array of random bits
cb_malloc - allocate block aligned memory region in Cray version
                  - simply calls malloc() in portable version
cb_read_fasta - loads data from a FASTA file into memory arrays
cb_repeatn - find short tandem repeats in a nucleotide string
cb_revcompl - reverse complements compressed nucleotide data
cb_searchn - gap-free nucleotide search allowing mismatches
cb_uncompress - uncompress nucleotide or amino acid data to ASCII
cb_version - returns the version number of libcbl
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3 Performance.

A benchmark option in v1.0 exercises seven of the routines. Platforms used:

800 MHz Cray X1, running in both MSP and SSP mode
1.3 GHz Intel Itanium 2, 1.5 MB L3, intel 7.1 (icc) and gcc 2.96 compilers
1.4 GHz AMD Athalon MP 1600+, 256 KB cache, intel 7.1 and gcc 3.2.2 compilers
1.7 GHz IBM P4, 32 MB shared L3, 64-bit mode
2.8 GHz Intel Xeon, 512 KB cache, intel 8.0 and gcc 3.2.2

                          |  Cray CBL   |                                      Portable CBL                                             |

CBL
Function

  800 MHz
       X1
MSP   SSP

  800 MHz
       X1
MSP   SSP

  1.3 GHz
 Itanium2
 icc     gcc

 1.4 GHz
   AMD
icc      gcc

1.7 GHz
   IBM
     P4

2.8 GHz
   Xeon
icc    gcc

cb_amino_tran   8        27  90      156  31      46  63      87      36 25      64
cb_compess/un   5        10  44       56  24      59  64      70      38 31      39
cb_copy_bits   3         4    1        1   8       27  45      45      10 19      18
cb_count_ascii   4        15    5       23  16      44  59      62      23 23      27
cb_repeatn  45       55 122     142  42      55  48      49      26 25      27
cb_revcompl   3        12   19      33  20      80 148    138      35 53      63
cb_searchn  23       85   36      65  92      94 129    167      40 78    127

Table 1:  Benchmark times in seconds.

4 Roadmap.

The Portable CBL will follow the roadmap for Cray’s implementation (now at 2.0). Developers
interested in contributing to the roadmap should consult the author.

Coming in version 1.1:
  cb_swa_fw - compute Smith-Waterman cell scores with ASCII input

Coming in version 1.2
  cb_isort & cb_isort1  - unsigned integer radix sort with and w/o index array
  cb_cghistn - histograms of cg density in a string
  cb_swn_fw & cb_swn4_fw- same as cb_swa_fw, except with 2- or 4-bit nucleotide input
  cb_nmer - creates up to 64-bit-length short sequences from each starting point in the input string.

Coming in version 2.0
  cb_sort – multi-pass sort routine for compressed data
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Before SNP mapping: Data preprocessing by fixed 
length genomic sequence patterns 
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1 Introduction.  
 
How to map SNP sequences onto their genomic positions and evaluate the mapping reliability is an 
issue of interest in current bioinformatics researches. The conventional approach to this problem is 
to use sequence alignment tools, such as BLAST [1], to evaluate the mapping results [2], but 
sequence alignment process demands a great deal of computational power, and repetitive DNA, 
such as repetitive elements and segmental duplications, could significantly complicate sequence 
alignment. Our previous work, the UniMarker (UM) method [3], employed an alignment-free 
sequence mapping program and achieved a high agree rate, 99.73%, with NCBI mapping results on 
dbSNP. To further improve on the efficiency and reliability of this method, in this work, we used 
hits of fixed length (14 base pairs) genomic sequence patterns as a data cleaning indicator to assign 
each SNP record to its most likely chromosomes and delegate only those of a low hit ratio to be 
mapped against all the chromosomes. This simple prescreening method was shown to identify some 
erroneous assignments of NCBI. 
 
2 Methods.  
 
When a SNP record is completely aligned to a genomic fragment, both sequences should share 
common subsequences. If there are mutations or indels in the SNP record, its hit rate (number of 
identical subsequent fragments) should be much lower than records that can be completely aligned. 
Since we can find unique sequences in most of the SNP records, we can use the hit ratio of each 
chromosome to find each SNP record’s chromosome quickly and reliably.  
 
In this work, we used a 14-mer overlapping window to generate 14-mer sequence patterns of each 
chromosome, with 50 arrays to store the segment patterns from all positive and negative strands of 
chromosomes. After that, we scanned each SNP record by the same 14-mer overlapping window 
and keep a chromosome-specific pattern count when there is a hit. Subsequences that contain an 
alphabet other than ATCG, such as N, will be counted by not_ATCG counter. After scanning a 
SNP sequence, each chromosome’s 14-mer hit ratio is calculated by the following equation: 
 
 Hit ratio (%) = Chromosome hits*100 / (SNP sequence length – not_ATCG count – 13)  
 
3 Results.  
 
It takes 30 minutes to generate the 50 arrays that contain every chromosome’s 14-mer patterns and 
another 4 hours to generate the hit ratio results for 3,365,561 SNP records (dbSNP build 115, the 
files named rs_chNotOn.fas, rs_chMulti.fas and rs_chMasked.fas were excluded). We use the 
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following strategies to process the results: (1) Keep the chromosome identity for the SNP when the 
hit ratio is higher than 99%. (2) Keep the chromosome identity with the highest hit ratio (larger 
than 70%) when each hit ratio is lower than 99%. The results showed that 99.8% SNP records 
contain the same chromosome identity with the NCBI assignment. For SNP records satisfying 
either condition, the difference in the rate of the best and the second hit rate larger than 10% is 
83.9%. Only 275 records (out of total 2,824,219 records) have chromosome assignments different 
from NCBI when the hit rate difference is larger than 10%. Checking with BLAST, BLAT, and 
SSAHA, we have found, for many of these records, the results of these three alignment based 
methods agreed with our pre-screening assignment and not with the assignment of NCBI.  
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Complexes from Multi-Locus Sequence Types
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1 Introduction.

In 1998 multi-locus sequence typing (MLST) was proposed as a nucleotide sequence based approach
that could be applied to many bacterial pathogens [4]. In brief, MLST consists of identifying specific
loci on the genome that code for neutral (and hence conserved) house-keeping genes. For each locus,
a fragment of approximately 500bp is sequenced, and each unique sequence is assigned an arbitrary
allelic label. Hence, given� loci, each individual MLST entry consists of a vector

�
of length �

(for example����� for E. coli), whereby each vector component��� is an integer corresponding to
the allele number. An MLST data set consists of an ordered set of vectors of type

�
. Each unique

vector 	 is also given a label and referred to as a sequence-type or ST (eg. ST1). High-throughput
sequencing technology facilitates large scale collection of MLST data and thus causes a need for a
portable, reproducible, and scalable typing system that reflects the population and evolution of bacterial
species. Perfect phylogeny may not work on MLST data because in practice there are not enough
loci. Even if nucleotide sequences of isolates are available, it is still difficult to reconstruct a perfect
phylogeny due to a high rate of recombination in bacterial pathogens [1, 5].

2 Algorithm.

Existing programs such as BURST [2], though simple to implement and visualize, do not provide an
analytical method to infer relationship between groups of sequence types — clonal complexes. In this
paper we examine an algorithm for finding
 -way partitioning of a fully connected weight undirected
graph which can be efficiently approximated with a generalized eigenvalues problem of the Laplacian
matrix [3]. This methodology allows us to infer groups of clonal complexes, using only pairwise similar-
ity. In brief, the algorithm is testing some objective functions for splitting, perform recursive bipartition
of a vertex set of a graph. To decide which partition can be cut further, we order splits by their signifi-
cance, considering the cost of the cut and number of clusters. The order in which the successive splits
occur imposes a hierarchy of groupings, allowing to infer relations among complexes at varying levels
of resolution. To confirm this hypothesis, more comparative result between simulation data and real
data from bacterial species will appear in a future paper.

1Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestraße 63–73, D-14195
Berlin, Germany. E-mail:rungsari@molgen.mpg.de

2Max Planck Institute for Infection Biology, Schumann Straße 21/22, D-10117 Berlin, Germany. E-
mail:achtman@mpiib-berlin.mpg.de

3Max Planck Institute for Infection Biology, Schumann Straße 21/22, D-10117 Berlin, Germany.
4Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Ihnestraße 63–73, D-14195

Berlin, Germany.

Dana Jermanis
Computational Genetics

Dana Jermanis
27

Dana Jermanis


Owner
Text Box
B11.



References
[1] Achtman, M. 2002. A phylogenetic perspective on molecular epidemiology.Molecular medical microbiology

1:485–509. London: Academic Press.

[2] The Multi Locus Sequence Typing website. http://www.mlst.net.

[3] Shi, J. and Malik, J. 2000. Normalized Cuts and Image Segmentation.IEEE Transactions on Pattern Analysis
and Machine Intelligence 22(8):888–905.

[4] Urwin, R. and Maiden, C.J. Martin. 2003. Multi-locus sequence typing: a tool for global epidemiology.
TRENDS in Microbiology, 11(10):479–487, October, 2003.

[5] Wang, L., Zhang, K. and Zhang, L. 2001. Perfect phylogenetic networks with recombination.J. of Comp.
Biology, 8:69-78, 2001.

Dana Jermanis
Computational Genetics

Dana Jermanis
28

Dana Jermanis




 
 

Description of Haplotypes and their Ancestry 
Structure from SNP Data 

 
Jonathan Sheffi1, Itsik Pe’er2, David Altshuler3, Mark J. Daly4 

 
Keywords: haplotypes, perfect phylogeny, hidden Markov models, ancestral recombination graph 
 

1 Background. 
 
Understanding the patterns into which SNP alleles combine along the genome is one of the major 
challenges in contemporary genetics. Such a description of haplotype variation holds the promise 
for more powerful association studies. Many current approaches to this modeling problem devise a 
Hidden Markov Model (HMM) that steps along the chromosome, emitting a symbol (allele) at each 
polymorphic site. States of this HMM correspond to haplotype fragments that give rise to the 
observed samples, with transitions representing recombination of these fragments. 
Distinct implementations of the HMM paradigm differ in the meaning of the model haplotypes, in 
the manner they are manifested as samples, and the assumption ob haplotype blocks. Standard 
software [4] uses a block-free model, in which model haplotypes are the actual haplotypes observed 
in the sample data. Block-wise HMMs that optimize the Minimum Description Length (MDL) of 
the data, limit the model haplotypes to be single-block fragments. Such models are becoming more 
and more complex, starting from a model that just seeks to list common haplotypes within each 
block [3], through a model that attempts to minimize entropy of inter-block transitions [1], to a 
model that also tries to assign a realistic meaning to emission probabilities as chances for mutation. 
We devise a more general HMM-type approach for description of haplotype variation that tries to 
mimic real biological phenomena and entities by model components. Specifically, model 
haplotypes are explicitly parts of ancestral chromosomes. As time passed, these haplotypes 
underwent divergence, mutation, and recombination, all of which are explicit in our model. This 
expressive description aims at reconstructing the major lineages in the ancestral recombination 
graph, thus better capturing the statistical properties of the data, and better aiding in designing cost-
effective genetic studies. 

 
2 Model for Haplotype Variation. 
 
In the simplest case, data are haploid, i.e., comprise of a set O = { c1, …, cn } of chromosomes, 
each typed for each of |S| bi-allelic SNPs. X[c,s] is the observed bit at chromosome c∈O for SNP 
s∈S. Each SNP is labeled by its chromosomal location l[s]. Observed chromosomes are time-
labeled as contemporary, i.e. τ[c] = 0 for c∈O. We allow also diploid (phased or unphased) or trio 
(partially phased) data. 
The model includes a set of ancestral (hidden) chromosomes, or haplotypes, H = { c'1, …, c'n }. 
X[c',s] is the ancestral bit at haplotype c'∈H for each SNP s along the interval [sfirst(c')..slast(c')]⊆S 
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where c' is defined. Each ancestral chromosome c'∈H is time-labeled in the past τ[c'] < 0, and 
frequency-labeled 0< f[c'] <1. 
At each SNP s, all observed chromosome and haplotypes defined at s except one have a local parent 
haplotype Ps(c), defined at s. X[c,s] is identical to X[Ps(c),s] with probability 1-θcs where 
θcs=µs(τ[c]-τ[Ps(c)]), µj being a position-dependent mutation probability. This sets the emission 
probabilities. 
If Ps(c) is defined at s+1, then Ps(c)=Ps+1(c), and  with probability 1-rcs where rcs=ρs(ls+1–ls)(τ[c]-
τ[Ps(c)]), ρs being a position-dependent recombination rate. With probability rcs, Ps+1(c) is 
randomly selected from the ancestral chromosomes that are defined for the current position based 
upon their frequency. If Ps(c) is undefined at s+1, Ps+1(c) is randomly selected according to a 
prescribed probability table. 
 
3 Learning the Model. 
 
Algorithmically, we optimize the likelihood of the bottom model layer only (only between samples 
and their parents). Parameters are estimated using standard EM for HMM inference, while HMM 
topology (boundaries between which each haplotype is defined) are inferred by a local search. 
The haplotypes in the upper layers of the model are blockwise computed by perfect phylogeny 
reconstruction. They in turn, contribute to the next iteration of inference of the bottom layer by 
inducing a prior based on their phylogenetically-based MDL.  
 
4 Advantages of the Model. 
 
By explicitly assigning time and frequency labels to haplotypes, they acquire the meaning of 
ancestral haplotypes, and allow optimizing parameters for the real genetic processes, of mutation 
and recombination. Incorporation of local phylogenies to the MDL score realistically handles the 
process of divergence as well. Finally, our model is built over haplotypes that are defined along an 
arbitrary interval. These elements generalizes both blockwise and full-length models, overcoming 
the limitations of the formers, which ignore haplotype block structure, as well as the latter methods, 
which blindly rely on this structure. 
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The Mouse Genome Informatics (MGI) (http://www.informatics.jax.org) system provides a 
comprehensive public resource about the laboratory mouse that integrates information on 
sequences, maps, genes and gene families, expression, alleles and variants, strains and mutant 
phenotypes. The integration of such diverse data depends upon quality determinations of object 
identities and relationships and upon the use of defined, structured vocabularies (ontologies).  
 
The Gene Ontology (GO) Project provides structured, controlled vocabularies in the domain of 
molecular biology, which have been incorporated in various bioinformatics resources to aid 
biological annotations. The GO project model has been extended for the development of other 
ontologies and has fostered standardization among model organism database systems. MGI also 
incorporates several different classification schemes that enable a variety of query capabilities for 
our users. The Mouse Anatomical Dictionary and Phenotype Classifications provide the mechanism 
for annotation of aspects of gene expression, QTL analysis, and incorporation of information about 
experimental mouse mutants. 
 
The challenge for ontology developers is to construct fully documented, easily maintained 
ontologies that are accessible to the larger scientific community. Moreover, an important goal is to 
develop a semantic framework that not only adds meaning to the data but also, with the hierarchical 
structure of the vocabulary, can be used to create new information through inference. For example, 
the GO structure is a directed acyclic graph (DAG) in which each annotation node can have one or 
more child nodes and must have one or more parent nodes. Gene products are annotated at varying 
levels of detail based on experimental and computational evidence. Due to inference from the 
structure of the GO vocabulary, a gene product annotated to a finer level of detail is also annotated 
to any ancestor (coarser) level as well.   
 
We have developed and adapted a number of software tools to facilitate the use of MGI resources 
in a GO context and take advantage of the GO structure to use this valuable annotation resource as 
a research tool. A MGI-GO browser provides tree views and links to annotated data sets. Thus 
experimentally annotated sets of genes can be analyzed by function, process or component via their 
GO representations. We also provide several MGI GO tools, which permit a user to explore what 
any set of annotated genes, for example, a cluster of up-regulated genes, have in common. The MGI 
GO TermFinder tool compares annotations of the gene set with overall MGI gene annotations to 
find statistically significant overrepresentations of GO classifications. Similarly, the MGI GO_Slim 
Chart tool compares the distribution of the gene set in a predefined classification scheme with the 
overall MGI gene distribution. 
 
MGI is funded by grants from NIH/NHGRI, NIH/NICH and NCI. The GO project is funded by 
NIH/NHGRI and by the European Union RTD program. 
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A Pattern Discovery-Based Method for Detecting Multi-
Locus Genetic Association 
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1 Introduction.  
Methods to effectively detecting global multi-locus genetic associations are becoming 

increasingly relevant in the genetic dissection of complex trait. Current approaches typically only 
consider a limited number of hypotheses, most of which are related to the effect of a single locus or 
of a relatively small number of loci co-localized on a chromosomal region, therefore do not 
accommodate the full range of genetic mechanisms that may contribute to a complex trait. We have 
developed a novel association analysis methodology (enGENIOUS) that is specifically designed to 
detect genetic associations involving multiple disease-susceptibility loci. Our approach relies on the 
efficient discovery of patterns comprising spatially unrestricted polymorphic markers and on the 
use of appropriate test statistics to evaluate pattern-trait association. Because markers within a 
pattern are not required to be in linkage (or even on the same chromosome), this method represents 
a truly global multi-locus association test. Power calculations using multi-locus disease models 
confirm the superior performance of out approach when compared to a frequency-based single 
marker analysis method. When applied on a real dataset, our method was successful in localizing a 
previously verified two-locus/gene interaction associated with Schizophrenia. In addition, we also 
identified a novel and less conspicuous association involving different markers on the same two 
genes, suggesting a role for genetic heterogeneity and population substructure in Schizophrenia. 

 

2 Results.  
enGENIOUS demonstrated better power than a single marker association test 
A simulation-based power calculation was performed to evaluate the power of the pattern 
discovery-based method on multi-locus association analysis. Power was computed for two disease 
models: dominant-recessive and recessive-recessive, each involving two loci (markers M1 and 
M2). For each disease model, we considered five genotype frequency settings for disease-affected 
markers and two sample sizes (250 cases/250 controls or 500 cases/500 controls) (Figure 1). For 
each combination of disease model, frequency setting, and sample size, 500 simulated datasets 
were generated. As shown in Figure 1, the pattern discovery-based method consistently 
outperformed the single marker χ2 test under both disease models (Figure 1A and 1B). As expected, 
power for both tests improved with larger sample size and higher genotype frequency. The power 
difference between these two methods demonstrates the advantage of using the pattern discovery-
based method on association detection, especially when affected genotype frequency is low. 
Because no constraint has been established on the physical distance between markers M1 and M2, 
the same results would have been obtained even if M1 and M2 were on different chromosomes, 
thus providing direct evidence that the pattern discovery-based method is indeed a global 
association test.  
Discovery of a novel gene-gene interaction in Schizophrenia patients 
enGENIOUS was applied to a dataset collected from a case/control association study on 
Schizophrenia. The dataset contained genotypes for 28 SNP markers spanning 115 kb at 12q24 (co-
localized with the DAO gene) and 266 kb at 13q34 (co-localized with the G72 gene). With the 
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association test rejection level for individual pattern as 9.49e-5 at the support constraint of 24, only 
two out of 5,952 identified patterns were found to be significantly associated with Schizophrenia. 
The most significant pattern (P=4.64e-5) included two markers, marker MDAAO-6 on 
chromosome 12, and M-22 on chromosome 13, the same two markers found to be associated with 
Schizophrenia in both genetic analysis and bioassay [1]. The second most significant pattern 
(P=7.33e-5) included seven markers, one marker (marker B-7) on chromosome 12, and markers B-
1, B-2, B-3, B-4, B-5, and B-6 (B-1~B-6) on chromosome 13. None of the markers in this pattern 
was significant by itself when evaluated with the single-marker χ2 test. To calculate the combined 
relative risk on DAO and G72 loci as characterized by Pattern A or Pattern B for Schizophrenia, we 
constructed a χ2 test in which individuals carrying either of the two patterns or none of the two 
patterns were counted in cases and in controls. A highly significant P value (P=8.67E-11) indicated 
that the genetic interaction between DAO and G72 is strongly associated with Schizophrenia and 
multiple molecular mechanisms might be responsible for the susceptibility on those two loci. 
 

3 Figures and tables.  
Figure 1 Power Comparisons between a Single Marker χ2 test vs. enGENIOUS. 
Powers were compared between a single marker χ2 test and the pattern discovery-based multi-locus 
association test under two disease models (dominant-recessive in A, recessive-recessive in B). A 
and B showed the power curves for both methods with two sample sizes (250 cases/250 controls 
and 500 cases/500 controls).  
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Algebraic Statistical Genetics
Affected Sib-Pair Linkage Analysis

Ingileif Brynd́ıs Hallgŕımsdóttir 1

Keywords: Algebraic statistics, linkage analysis, affected sib-pairs, IBD probabilities.

Linkage analysis, or gene mapping, is concerned with finding the chromosomal location
of disease genes. The genes for hundreds of Mendelian (one gene) disorders have already
been successfully mapped. Most common diseases are however not caused by one gene and
the challenge today is to solve complex diseases, diseases that are caused by many, possibly
interacting, genes and environmental factors.

The emerging field of algebraic statistics consists of the application of algebra and ge-
ometry to statistical models. We use algebraic methods to study the models used in linkage
analysis, hoping to gain new insights that will provide better understanding and interpreta-
tion of existing statistical tests, and help develop new tests for two-locus linkage analysis.
However the first step is to describe the model in this new language, and that is what we
are concerned with here.

The central observation of the emerging field of algebraic statistics is that many statis-
tical models are algebraic varieties, since the expressions for many discrete distributions are
polynomials in the parameters of the model. Although usually not presented as such, the
expressions for the identity by descent (IBD) probabilities, z0, z1, and z2 are polynomials in
the parameters of the model. Here zi is the probability that an affected sib-pair shares i
alleles IBD and the parameters of the model are the frequency, p, of the disease gene (allele)
in the population and the penetrances f0, f1 and f2, where fi is the conditional probability
for an individual of getting the disease given that (s)he carries i copies of the disease gene.

Using the tools of computational algebra we have derived an invariant describing the one-
locus model for affected sib-pairs. The invariant is a polynomial expression in the parameters
of the model and the IBD probabilities z0, z1 and z2, it has 13 terms and is a quartic in the
z’s. For any triplet z0, z1, z2 in the model the invariant vanishes. The first two terms are
given below:
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The term invariant is not used in the literature on linkage analysis and we have borrowed
it from phylogenetics. If f0, f1, f2 are non-decreasing the invariant given above vanishes on
all points that lie within the possible triangle [1]. However the invariant can be specialized
to certain models, e.g. for the strictly recessive model the penetrances are f0 = 0, f1 = 0
and f2 = f , where f ∈ [0, 1] and we recover the classical invariant:
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z2
1 − z0z2

,
known as the Hardy-Weinberg curve. For an additive model f0 = 0, f1 = f/2 and f2 = f

and the invariant becomes:
z0 − z1 + z2

which is equivalent to z1 = 1/2 since z0 + z1 + z2 = 1. These two invariants can be easily
derived from the equations for z0, z1 and z2. The invariant that describes a strictly dominant
model is more complicated and is presented here:
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Figure 1: Holmans’ triangle. The larger triangle is the probability simplex, z0 + z1 + z2 = 1

and the smaller triangle is the possible triangle for affected sib-pair IBD probabilities. The

curves on the left shows the recessive model and the one on the right the dominant model.

The invariants can be used to determine which disease model fits the data best, if we
plug the proportions of 0, 1 and 2 IBD sharing of affected sib-pairs into a model specific
invariant the invariant will vanish if the data fits the model (confirmed with simulations).
Similar invariants can be derived for the two-locus case, although, one obtains not one but
many invariants. Invariants for certain two-locus disease models have been derived and up to
30 invariants are needed to describe a model. We do not yet have a list of general invariants
for the two-locus case.

An attractive aspect of the algebraic point of view, is that the methodology provides the
natural setting for generalizing a number of well-known linkage results. Examples of this
are Holmans triangle [1], which admits natural higher dimensional analogues. Also, known
invariants for the simple disease models in the one locus case are easily recovered from the
general formalism.
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BOMP: a program to predict integral β-barrel outer 
membrane proteins encoded within genomes of 

Gram-negative bacteria 
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1 Introduction.  
 
The integral OM proteins (OMPs) of Gram-negative bacteria generally 
consist of β-structures, and form monomeric, dimeric or trimeric 
transmembrane (TM) β-barrels containing between eight and 22 TM β-
strands [1]. These proteins have proven difficult to predict mainly due to 
very short TM stretches of amino acids with highly variable properties [2]. 
Recent publications have described different approaches to recognize β-
barrel OMPs from polypeptide sequences [3-5], but none of the programs 
have been made available for public use. This work describes the 
development of a program that predicts whether or not a polypeptide 
sequence from a Gram-negative bacterium is an integral β-barrel outer 
membrane protein. The precision of the predictions was found to be 91% 
with a recall of 88% when tested on the proteins with SwissProt annotated 
subcellular localisation in Escherichia coli K 12 (788 sequences) and 
Salmonella typhimurium (366 sequences). BOMP is available at 
http://www.bioinfo.no/tools/bomp. 

 
2 Program components 
 

The program, called the β-barrel Outer Membrane protein Predictor 
(BOMP), is based on two separate components to recognize integral β-barrel 
proteins. The first component is a C-terminal pattern typical for many 
integral β-barrel proteins. The second component calculates an integral β-
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barrel score of the sequence based on to which extent the sequence contains 
stretches of amino acids typical for transmembrane β-strands. In order to 
limit the number of wrongly predicted integral OMPs (false positives), we 
developed a final filtering procedure based on a reference set containing 
polypeptide sequences with known subcellular localization. The relative 
abundance of Asparagine and Isoleucine was used as a discriminator 
between the integral OMPs and the sequences with other localization.  When 
an unknown protein is run through the filter, it is compared to the reference 
set by using a k-nearest-neighbor method with k=5 [7] to determine if the 
candidate is a true integral OMP. The input sequence is considered to be an 
integral OMP when having at least three integral OMPs as the nearest 
neighbors. As a supplement to the prediction methods outlined above, we 
added the possibility to include an automated BLAST search to be 
performed on the input sequence. The input sequence is used in a BLAST 
search against a database containing 10618 Gram-Negative polypeptide 
sequences with given subcellular localization in SwissProt release 42, in 
order to find the highest scoring alignment with an E-value above 10 e-10 and 
a length of between 80 and 120% of the input sequence [8]. The localization 
of the best database hit will either support or contradict the result from the 
prediction part of BOMP, and provide additional information about the input 
sequence to the user. 
 
 
3 References  
 

1. Tamm, K.L., A. Arora, and H.J. Kleinschmidt, Structure and Assemly of beta-barrel 
membrane proteins. The Journal of Biological Chemistry, 2001. 276: p. 32399-32402. 

2. Koebnik, R., K.P. Locher, and P. Van Gelder, Structure and function of bacterial outer 
membrane proteins: barrels in a nutshell. Mol Microbiol, 2000. 37(2): p. 239-253. 

3. Casadio, R., et al., Fishing new proteins in the twilight zone of genomes: The test case of 
outer membrane proteins in Escherichia coli K12, Escherichia coli O157:H7, and other 
Gram-negative bacteria. Protein science, 2003. 12: p. 1158-1168. 

4. Wimley, C.W., Towards genomic identification of beta-barrel membrane proteins: 
Composition and architecture of known structures. Protein science, 2002. 11: p. 301-312. 

5. Zhai, Y. and H.M.J. Saier, The beta-barrel finder (BBF) program, allowing identification 
of outer membrane beta-barrel proteins encoded within procaryotic genomes. Protein 
science, 2002. 11: p. 2196-2207. 

6. O'Connel, M.J., Search Program for Significant Variables. Computer Physics 
Communications, 1974. 8: p. 49-55. 

7. Ripley, B.D., Pattern Recognition and Neural Networks. Cambridge University Press, 
1996. 

8. Gardy, L.J., et al., PSORT-B: improving protein subcellular localization prediction for 
Gram-negative bacteria. Nucleic Acid Research, 2003. 31(13): p. 3613-3617. 

Dana Jermanis
Computational Proteomics

Dana Jermanis
37

Dana Jermanis




Motif Finding and Multiple Alignment through
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1 Algorithm

We introduce a vector-space embedding of protein sequences which will allow us to find the motifs
in a set of proteins. Our method can also be used for the multiple alignment of more than two
proteins. It is superior to the existing methods that depend on the order of proteins since we
consider all the proteins at once.
Our motif finding method consists of the following steps:

1. Protein subsequences are mapped to points in a multi-dimensional space.

2. Spatially tight clusters of these points are found such that most or all of these proteins are
represented in each cluster.

3. A dependency graph is constructed with the clusters as vertices and directed edges between
the non-conflicting vertices.

4. The longest path in the graph is chosen as the motif.

Our multiple alignment algorithm adds another step:

5. Use the motif found in step 4 as the backbone of the alignment and recursively invoke the
motif finding algorithm for each unaligned region.

We will now explain each of these steps in more detail.
Step 1: A window of length w is slid along the protein sequence. Each positioning of the window
produces a subsequence of w residues. A score vector is computed for each such subsequence as
the concatenation of the score vectors of each residue. Each row of a score matrix is considered
to be the score vector of the amino acid for that row. A score vector maps to a point in a multi-
dimensional space. A protein of length n will thus have n−w + 1 points in the vector space. We
typically choose w = 3. We refer the reader to [1] for further details on vector space embedding.
Step 2: All the clusters of points in the vector space are identified. A cluster is defined as a
set of points (at most one from each protein) which are within a radius of r from each other and
which represents at least p % of the total number of proteins. Here, r and p are the distance and
the membership (the percentage of proteins in the cluster) thresholds respectively. Typically, r =
1-2% of the dimensions of the search space and p = 80-100 %.
Step 3: A directed dependency graph is built on the clusters as follows. Each cluster is considered
to be a vertex in the graph. A directed edge from vertex i to vertex j is added if all of the protein
residue positions in i are strictly less than those in j. Such vertex pairs are called non-conflicting.
A weight is assigned to each vertex based on how tight it is. A vertex (i.e., a cluster) with less
inter-point distances gets a larger weight. Also, a vertex with a higher membership gets a larger
weight. A weight is assigned to each edge as well. Each edge corresponds to a pair of points from
each protein. The edges get a higher weight if the differences between the residue positions of each
pair of points are 1) small and 2) not much varied. These conditions demote the number of gaps.
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protein 3protein 1 protein 2

Figure 1: An illustration of the points of three proteins in a two-dimensional space. The
circles show the clusters (nodes of the dependency graph). The arrows show the edges of
the dependency graph. The dashed arrows show the largest weighted path.

Table 1: The motifs that we find for five proteins from the FMN-linked oxidoreductases
superfamily for w = 3. The bold letters show the backbone. The residue positions for the
motifs are (7, 141, 220, 270, 288) for 1al7:-, (81, 225, 284, 346, 348) for 1d3g:A, (9, 55,
108, 116, 118) for 1huv:A, (7, 97, 131, 178, 184) for 1icp:A, and (113, 184, 252, 336, 365)
for 1lco:B.

PDB id Motifs

1al7:- · · · VNE · · · LVR · · · LQT · · · LEE · · · GVR · · ·
1d3g:A · · · YKM · · · LVK · · · LST · · · LEA LL · · ·
1huv:A · · · VED · · · LVD · · · LST · · · IED LA · · ·
1icp:A · · · VEE · · · IVD · · · ISC · · · IEA · · · GVE · · ·
1lco:B · · · LKS · · · MLG · · · YQL · · · IEE · · · GVS · · ·

Step 4: Once the directed graph is built, each path on the dependency graph defines a motif.
This is because each vertex corresponds to a set of matching residues from the proteins, and the
directed edges of a path ensures that these matching residues do not conflict. We find the largest
weighted path in the graph. The weight of a path is defined as the sum of the weights of its
vertices and edges. Figure 1 illustrates the algorithm developed so far in two-dimensions.
Step 5: The motif found in Step 4 defines the backbone of the multiple alignment. We partition
the sequences by clipping the proteins from the residues in the motif. This produces sets of
subsequences whose end points are the two consecutive motif residues. Each of these sets are
then realigned using Steps 1 to 4 recursively until the length of the subsequences drop below a
threshold. These subsequences are then aligned using multiple alignment.

2 Results

In order to demonstrate the effectiveness of our method, we ran it on a number of proteins.
Table 1 shows the motifs found for the proteins 1al7:-, 1d3g:A, 1huv:A, 1icp:A and 1lco:B of
the FMN-linked oxidoreductases superfamily for w = 3. In this example, we find five motifs which
are shown in bold letters. The letters next to the bold ones are also similar with a high probability
since they are in the same window as the bold letters. For multiple alignment, the subsequences
between consecutive bold letters are aligned similarly.
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Long-Duration Molecular Dynamics Simulation on 
Constructed Nacrein Structure 
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1 Introduction 
 
Nacrein (pearl protein) is a water soluble protein and present in the mantle tissue of some mollusc 
species. Its function is believed to regulate aragonite or calcite polymorphism during 
biomineralization as in the processes of pearl formation [Miyamoto 1996]. Primary structural 
analysis of nacrein shows high homology to carbonic anhydrase II (CAII), a protein that regulates 
intracellular pH homeostasis during osteoclasts bone resorption [Teitelbaum 2000]. A distinct 
difference between nacrein and CAII is that nacrein has a long glycine-rich repeated sequence 
between its two carbonic anhydrase domains. The repeated sequence is homologous to that found in 
proteins of the collagen family.  

The role of nacrein in biomineralization has been hypothesized [Miyamoto 1996]; however, its 
tertiary structure has yet to be determined. We applied long-duration molecular dynamics (MD) 
simulation to construct the tertiary structure of nacrein protein from Pinctada fucata (Japanese 
pearl oyster). The constructed nacrein structure shows that spatial active sites are similar to CAII 
(Figure 1 and Figure 2).  

We are also interested in identifying the catalytic sites and calcium binding sites (EF-hand like 
motif) in the nacrein protein. To further investigate this nacrein protein, we will apply MD in an 
aqueous environment, and this simulated tertiary structure would be the foundation for an in silico 
approach in developing nacrein applications in biomaterial, bone morphogenesis, and pearl 
formation.  

2 Methods 
 
The primary sequence of nacrein was obtained from an earlier report [Miyamoto 1996]. X-ray 
diffraction structure of carbonic anhydrase II (PDB ID 5CAC) was obtained from the Protein Data 
Bank. The tertiary structure of nacrein was constructed by a comparative modeling method using 
ROSETTA [Alm 1999].  
 
Molecular dynamics simulation of both tertiary protein structures were carried out with the NAMD 
version 2.5b2 and VMD 1.8.1 [Laxmikant 1999 and Humphrey 1999] on Origin 2000 and SGI Altix 
supercomputers at NAS facility in NASA [NASA-NAS]. Hydrogen atoms were added by using the 
guesscoord command in NAMD. Force field parameters were adopted from CHARMM22. The van 
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der Waals interactions were cut off at 12 Å and 107 steps (10 nanoseconds) of energy minimization 
were performed at 310 K. The nonbonded interaction was recorded every 1000 time steps. The 
trajectories at given conditions were considered to be the probable structures and were analyzed in 
details.  
 
3 Results 

 
Figure 1. Tertiary structure of nacrein is constructed and applied with MD (entire structure not 
shown). Nacrein has three domains; Domain 1 (residue 1 – 235) and Domain 3 (residue 314 – 447) 
are similar to CAII, and Domain 2 (residue 236 – 313) has similarities is similar to collagen family 
proteins. The figure above is a stereo view of Domain 1 active site in the constructed nacrein 
structure. The residues shown in the Domain 1 active site are HIS-149, HIS-151, and HIS-174. 
 

 
Figure 2. Stereo view of Domain 3 active site in constructed nacrein structure. The residues shown 
in the Domain 3 active site are HIS-324, HIS-326, and HIS-335. Note: variation of coordinates in 
Figure 1 and Figure 2 is to enhance visualization of the active sties.  
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Gene Finding with Proteomic Data

Kristen K. Dang1, Edward J. Collins2,  Michael C. Giddings3

Keywords: proteomics, mass spectrometry, genome annotation, Francisella tularensis

1 Introduction and Methods.

The sequencing technologies developed during the Human Genome Project and since have been
successful in speeding the process of genomic sequencing. As of January 2004, NCBI lists 149
completed microbial genomes, as well human, mouse, rat and several other genomes. Annotation
methods have also made major advances, but are still a limiting step in genome research. Additionally,
current methods still have some significant limitations, especially in their ability to identify genes in
diverse organisms. Many leading gene-finding methods use Hidden Markov Models or other machine-
learning techniques that require training on a set of known data. These methods are suitable for
phylogenetically related organisms, but their success rate on diverse organisms is likely to be lower
due to the differences in the genomes of the training and test data. Additionally, genes produced by
non-standard splicing are likely to be missed by annotation methods that rely on known genes.

A method of gene finding that is faster and more reliable for diverse organisms than current methods
would allow researchers to use unfinished sequence, without waiting for annotation. We have
previously reported a method for identifying genomic origins of proteins using only peptide mass
fingerprint data as input [1]. In the current work, we used this method to identify and characterize
protein samples from the bacterium Francisella tularensis, for which the genome is only partially
sequenced and annotated [2]. The microbe is also lacks well-studied close phylogenetic relatives [3].
The ability to identify genes directly from proteomic data, without prior computational interpretation
or annotation, provides a complementary tool to cDNA sequencing in the hunt for genes.

We analyzed 38 protein samples from F. tularensis using 2D SDS-PAGE, tryptic digestion, and
MALDI-TOF-TOF mass spectrometry. Resulting mass lists were submitted to our Genome-
Fingerprint Scanning method, which identifies a genome locus from which the observed spectrum
likely originated. The method performs an in silico simulation of a tryptic digestion, then computes
peptide weights for the resulting fragments and matches them against the observed mass list. If many
matching weights are found within close genomic proximity of each other, that region becomes a
candidate hit. The method also identifies ORFs that completely or partially encompass the hit region.
A multi-part scoring method that considers number of hits in a window, adjacency of peptides,
number of missed trypsin cleavage sites, number of in-frame stop codons, and duplicate mass matches
is used to evaluate hit quality. The genome hits were searched against the NCBI microbial database
using BLAST for a functional characterization.

2 Results.
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The GFS software produced well-scoring in-ORF hits for 29 of the 38 samples, some of which were
corroborated by tandem-MS data (not shown). Tandem MS data was not available for all samples,
and the scoring algorithm for such data in GFS is still in development. Software analysis was
conducted at mass tolerances of 100 and 200 ppm; results from both parameters tended to
corroborate the results of the other.

Number of samples 38
Samples with strong genome locus hits 29

Top hits with encompassing ORFs 30
ORFs with strong BLAST hits 30

Table 1: Results summary for samples submitted to GFS.

Based on these encouraging preliminary results, it appears that GFS can be useful in proteomics
projects where only a preliminary sequence or annotation is available. Several refinements are
under development for GFS, including probability-based scoring, faster digestion methods, and
more efficient computing distribution for faster results. GFS will be available to the public for use
at http://gfs.unc.edu.

3 References.
[1] Giddings, M.C., Shah, A.A., Gesteland, R., and Moore, B. 2003. Genome-based peptide fingerprint scanning.
PNAS 100: 20-25.

[2] Prior, R.G. et al. .2001. Preliminary analysis and annotation of the partial genome sequence of Francisella
tularensis strain Schu 4. Journal of Applied Microbiology 91: 614-620.

[3] Titball, R.W., Johansson, A., Forsman, M. 2003. Will the enigma of Francisella tularensis virulence soon be
solved? Trends in Microbiology 11: 118-123.

Dana Jermanis
Computational Proteomics

Dana Jermanis
43

Dana Jermanis




�
� �������
	����	�����	���	������������������ � !�"#�$�&%(')���*�$	��+�-,.��/0��"+	213 �����4�5�6��� �7��	�"+�8��90:;���$	����*<=�$�+�6�?>@	2�BAC����DE�
F6GIHKJMLONPJMQIRISUT�V7JMWYX(Z\[]Q�R_^�[`SaTcbPJedKGIWYHKfhgji�kl[mHnWYopSUTrq;s8[mt�G�[]Q b
i$^�X(uevIHnX;X(wIT
x�y5zp{}|]~+�B���������+���&���O���5�������8�����������&�]�����������&���*�������Y�������]�+�����������+���8�m�p�������]�O�+�m ����¡�&���m�\�������¢���
£$�m�r�¤���8���&���¥���n�������+���������¦�m���¨§$�+��©
�����&���&�n���c�����r�����������&������ªK�O«¬�8�6�m�m������\���+�]������®�&�&�����m�¢�����¤���8¯�&�&�������&°²±³���&�&�n�c���¤���������*�&�n���c�&�*�m���#´¤�¢���®���¢�8��¯µ�������8�m�8�m�m�¤�c�c�8���c�����&�������8�*���������E���m�+���8����������¶#�+¯���������$�]�#ªK�·���&���m�����#*���c�¢�+�����2m�+���+�������$�+«`���5´¤���������8�����#�8����´����&���&ª��+�n�$����������¯e�¤���8���&���*�&�8�*�m�����¤�&�&°B¸®����������&�n�c�P���m��¹]�#����&�¤���&���&�n���+�������º�8«��������ºm�����8�������c�m�8���#
���_�8�_���]¤������´������P���¢�m�+���������O�+���8�m��*�5����p���m�+�¡���=�+�r��¤ª��+�m�&���8�r���¤�¢�\�������*�*�5��&���·�8«»�������m���M§$�8��©�°$¼=���¡�m����¹]�#6���������&���&�n�������¢�8�E�8��¯���#§·�$«U�8��§��&�����n�����m�}�8«(�&�����m�&�������8�m�������M§$�&�&�������+���&���m�$���m�+���#c���c�*�8���³���m�8�c�����=�&�8�*�m�����c�+�$§$�&����8�I���¤���&���������2���m�·�m���������½���&ªK�&���8«Y�8�����8���¢¶&�+�������c���]���I�n���&�����;§·�m�&�j�������m���M§$�+��©}���½ª¤����§��#*�8�½�&�8��¯�����\�����m�*�8«½�¤���8���&���O�&�8�*�m�����¤�&�����]���¡���]�+�����&�8�*�������&�n���&°�£$�����¡���&�¤���&���&�n���+�����8�E�8�������8������§·�¡«U�+�³������8���m�����#�+�����8�O�8«»�����=�������8���8�m�=�������O�+�m ��¤�³�+���8�����&���m�\�������¢���*�8���8�8�������m�¾«U�+�·���m��¤���������*���]�����¢�8���+«���&���&ª8�8�n�·�����+���&���O�*�5������&�·�¢�����m�������¨§��8��©5�&°�¿5���+�����\�����#�+�¢��´����¢�8�m��¹]�&�8�n�³�8�m���8�������¢�8�m�¡�8«»���¢���\�������¡�¢����m�¡�����+���&����¯e�����+���&���c�8�mc�����*�m�����5¯e�&�8�*�m�����}�m���M§$�8��©��m�����m���������*�;«¬���8�À���m�=Á=�&���2¼=�n�������8�8´*�����8¯�����\�½���m�+�;���m���»�*�������5�§·�����m���$������«U����«¬�8�½���������m���n´¤���8�����&�����;�8���8���½�m�����m�+���8����������¶&�#��&�8�*�������&�n����8«B�����8�����¢���&���*���¢���������8�¡�m�����m�+���8����������¶&�#6���&�¢�����¢�8�m�����¢���³�����¨§$���&�O�����+���&���O�&�8�*�m�����¤�&�&°Â2~�|]Ã&y¤ÄUÅÇÆ�|�ÈPÉ»Ê¬y5ËÍÌ6Î�Ã&Î�ÏÐ|p�`y¤Ê¬y¤�_Îm��Î�Ñ}Ä¬ÉBÎ�~+Ã&Ä¬Ã&y�Ò�~�ÎmÉ»ÓÔ �����]�+���������*�+���8�m�®�]�8���M§$���M´��������+«��m�5¤�&�&Õ���¯e�m�5¤�&�����]������&���8���*�����+���&���m���8�mP��¯e���5��&�����]�������m�8���������8�����¢�P�&���*�������¤�&�&° Ô �����8�����¢�®�&���*���¢���
Öa��¯e�m�5��#×=�&�����m�&�����2���6�#�8�����+«��������&�����\���������&�n������+���&���m��Öa��¯e���5��&��×�° Ô �m���]�������������+���8���O���¡�������&��¹]�#��n´c�����¡���Ø��8���&�m��´��c�+��������Ù Ú²ÖaÛ&Ü Ý+×I§·�m�����

Û�Ü Ý=ÚßÞáà ��«;�¤���8���&���}â�Ü½���·���O�����+���&�����&�8�*�m������ã�Ýä �8���m����§·�¢���8° Ö à ×
£$�5�m�&�]�j�����8�����¢���&���*���¢�������·���&�����&�����5���&��n´O�j�&�8���m�*�����EÙÀ�8�]��j�����8�����¢�r���·���&���������&�n���#��n´6����#§¦����Ùc°B¸®�·�#�8�������m�����&�¢�+�����8�6�����M§$�&�����¤���8���&�����$�8�m*�&���*���¢�������&�K���&���������&�n���#*�5´}���m�¡�m���]������������8���+�m�p�¡�8�c���m�O�¤¯M�r�����¨§��8��©�°Ð¿5���������¢���®«¬���8�����m�O�¤¯M�r�����¨§��8��©��$§��7�&�8�¥�m�+�������+����´º���¤���8���_�����«U�8���¢�#§·���m�*�M§$�j�����¨§��8��©5�&°Â2~�|]Ã&y¤ÄUÅ_å�Â2~�|]Ã�y�Ä¬Å¦æ�ÅYÃ&y5~+Îmç�Ã#Ä¬|]ÅB�PèMÉ`å�É¦Å`y5Ã�{}|m~8é`ê¼=���=�m����¹m�#r���&�����&�����5�����������7���n�&������´n�8�]O���m�}�&���5ªK���5�����8�]�8�»���m��«U�+���*��´¤¯µ§��&�����n���#r�����+���&���P���n������¯�8�����¢�8�m�&°�£$�m�2���n�������+���������r�\�����&���8���������¨§$���&���¨§��j�����+���&���m�;â�Ü\ëaâ5Ý����ÖµÙ�Ù}ì`×\Ü Ý2ÚîíÀ�+«;�����+���&���O�&���*�������¤�&���&���n���+�¢�����m�j���+����â�Ü½�8�m}â5Ý Öeï8×ÖµÙ�Ù ì ×\ÜðÜ�ÚÀñ Ý Û&Ü ÝjÚh�5���������³�8«������8�����¢�E�&�8�*�m�����¤�&�2�����n���8���m�����6�¤���8���&����â�Ü\�Y�#�8�����#7������§��&�����n��8«]â Ü °Â2~�|]Ã&y¤ÄUÅÇÆ�|�ÈPÉ»Ê¬y5Ë�å�Â2~�|]Ã&y¤ÄUÅÇÆ�|�ÈPÉ»Ê¬y5Ëºò6�#�&|pçKÄ¬Î�Ã#Ä¬|�Å`�7è¨ç8å�çrÅ`y5Ã�{}|]~+é`ê£$�m�����n�������+���������O�\�����&���8���O�����¨§$���&�6�M§$�j�¤���8���&���O�&�8�*�m�����¤�&��ã�Ü�ë�ã\Ý����ÖµÙ�ìBÙ}×\Ü Ý2ÚîíÀ�+«;�����+���&���m�·���]�����#6�n´�ã&Ü½�8�m�ã�Ý Öµó�×ÖµÙ ì Ù}× Ý¨Ý ÚÇñ Ü Û Ü Ý ÚÐ�5�m���������8«;�¤���8���&���m�·�&�8�n���8���m�#����Oã Ý �m�#�+���¢�&6���m�=§��&�����n�³�8«»ã Ý °ô�õ�ö�÷½ø¨ù�úKû�ùýüBù�øMþ#ù�ÿ�ù����Iö����	�#únö&ÿ õ�ö�
��#ø\ö���#ø��� üBù�øMþ#ù�ÿ�ù�������������������� �! #"�ö���ÿ#$&%�')(�*�+-,�.�/10
2 (�34065�7)8-3�5�9�:10;<5�(>=�?<@�5�=�=<A�B�C�?<@>?1D#/�=�E

Dana Jermanis
44

Dana Jermanis
Computational Proteomics

Dana Jermanis


Dana Jermanis


Owner
C5.



�

£$�m����¯e�*�����¨§��8��©�Ù*�»���m�c��¯e�������¨§��8��©®Ù}Ù ì �8�]®�����c��¯e�������¨§��8��©�Ù ì Ù.�+���c���m�*�������&�c�c�+�¢��&�8�*�����m���5�����+«B���m�����m��¹]�&c���&�¤���&���&�n���+�����8��«¬���+�*��§$�+��©Y°Ï ÄUÅ`ÏÐÎmËBÆ��`Ã�Æ�Ê��B�&Ã&y5~+ÄUÅ����*y¤���BÊ¬Ã*ò�Å`ÎmÊ¬z`�#Ä¬�

0 0.2 0.4

Adh1

Vps1

Yef3

Hsc82

( 210 )

( ,3 , , 2 , ,2 ,12 )

Kap123

Gfa1

Gcn20

Clu1

( 125 )

( ,6 ,2 , 2 ,2 ,2 ,2 )

Ecm29
( 104 )

( 3 , , )
Rvb2
( 25 )

( , , , , )
Fks1
( 29 )

( , ,3 )
Pfk1
( 30 )

( , ,2 , )
Nip1
( 104 )

( ,2 , ,2 )
Cka1
( 66 )

( , , ,3 )

Smd2

( 121 )

( 6 )

Adh1

Vps1

Yef3

Hsc82

( 210 )

( ,3 , , 2 , ,2 ,12 )

Kap123

Gfa1

Gcn20

Clu1

( 125 )

( ,6 ,2 , 2 ,2 ,2 ,2 )

Ecm29
( 104 )

( 3 , , )
Rvb2
( 25 )

( , , , , )
Fks1
( 29 )

( , ,3 )
Pfk1
( 30 )

( , ,2 , )
Nip1
( 104 )

( ,2 , ,2 )
Cka1
( 66 )

( , , ,3 )

Smd2

( 121 )

( 6 )

10 20 30 40 50 60 70

10

20

30

40

50

60

70

Cell cycle
Cell polarity & structure
Intermediate & energy metabolism
Membrane biogenesis & traffic
Protein Synthesis & turnover
Protein/RNA transport
RNA metabolism
Signalling
Transcription/DNA maintenance

	�
������� �����`øMù��-��û��¨ù����Kø���¨ù���ú���� �5ù�ø¨û���"!�Kÿ�ù#"8ù$�!%ðû�ÿ&� ��Mù�ø�� �(' ��)Kù�û� aû2ú�ù��a÷��#ø¨þ+*�� ���#ÿ	�#ø¡øMù��Kø¨ù��¨ù�ú����¡ú-�#ø  
"�ö&ÿ	�&,�ù�� ��ú��¨ù�ø¨ö&û���	�#ú-� �¨øMù�ú+.���) �
/B�����¤����° à ���m�#§·�*���m�6�������m�����8«��������O���m ����c�&���m�\�������¢�������_��¯e���m���¨§$�+��©�°Ç ����m�\�������EÖa�#�+�¢���#º����¯�������&�8�*�m�����¤�&��×2�����*�ð�+���&���#®§·�����®���m���*���\��«¬���(05���&�n����´P�n���&���������m�r�¤���8���&�����}�+�]E���m�j�5�m�}�������+«£ Ô21 ¯¨�r¿P�¤���8���&�����&�8�*�m�����¤�&��§·�����®���&�¢�+���&��m���������8���#�8���¤���n�&�&�����&�&°rÁ=�&�m�6¼=�n���������+´��+�m���8���+�����8�m����m�#§����m�+�B�����������&�8�*�m�����¤�&�`���&�¤���&���&�n�B������¤�¢ª����������¨´��8«����n�������&�����m�&�����#����&���¢���¢�+�;�����n���&�����&�&°3/m�+�»����¯�\���8���&����Á�¼º�+�m���8���+�����8�m�B�8�������I�¢�������&�\�»�����������&�8�*�m�����jÖU�����½¹����\�`���¢���\�����»������§·������¹]�8������×Y���m���8�&�\����]�������}���m�&�8�*�]�8�������������*�m�����¤�&�����5ªK����ªK�&P���®�������8�c�+������5´��m�8�*���&�&�(�����8�m�������¢�¤�������]�+�I���&�8�m�¢�+�����8��8�m6���m�����¢�+�����8�(�]���&���`��´¤�&�����&�8�5�����8�a�5476 Ô ���&�����¢�&�+�������E�+�]������]�8���#�]�8�]��������]�+�(�����+�m��������������p°
�	��5	���	���<�	��
8 9#:�; �-� < �	�Kù��Iö&ÿ#� ����������=��>��Mù�"�ö�����û �&��ù�ú��� ?nû�ö����	�#ú �('��Kø���¨ù���újû���"!�Kÿ�ù#"8ù�� ��ú�@�ACBDB�E+A�FHGCI2JCBDKML2BDK$FNK$O�PQLDPARK


�� "�ö(�N�3�N�5ù�û��Mø���"�ù��Mø����STACUWV+FHK � 9$X $ 9$Y �� 9 ��Z��
8 � :\[ ö$]>��ú �-� �  � �	�+ù��½ö&ÿ#�>���������+^_�KúKû����	�#úKö&ÿ4�#ø�.�ö&ú-�&,�ö���	�#ú �('4�N)Kù ��ù�ö(� �`�Kø����Mù���"�ù 
��a� �+� �¨ù�"�ö����û$ö&únö&ÿ �>���&�

�('b�Kø����Mù���ú�û���"!�Kÿ�ù#"�ù��)��ScA�U�V>FHK � 9$X $ 9 � 9  9 ���>�
8 Z :�d ��ú .-�>� �������������Iúnö&ÿ �+��&�!�('�.#ù�úKù;ù#"+��ø¨ù�����	�#ú7�Kø��(?Kÿ�ù$�)$�û�ÿ�ö(���b�-�&�¨û��$]�ù�ø �2ö&ú+�2ÿ�ù�ö�'�ú��>�Kù �#ø���ù�ø��ú .-�RefFNG$B(g

h UEjiDk_UMl monbG�kMp$g`nqG�Isr5gutvG�m&guw3PWGRgfxWy3zTn3{�t\wb|�� � � � 9 ���$} 9 Z�~��
8 � :�d ��ú .-� � �	� ; ù��q� �	�q��)Kö�� ; �	� [ � �q� �Yö&ú ��=>�	" �#ú � ; � ����� 9 � " ��ú> 6"�ö�"*û�����ö&ÿ&.��#ø� ��)�"�' �#ø2.#ø¨ö(� )

�nö&ø�� ��	�#ú-��ú .�ö&ú �\�nö��\ö³û�ÿ&�+��Mù�ø��ú .-��efFNG$B(guiNzqz�z�iDk_UMl mqnbGCkMp�g��cACU�A!t�PQk_PQk>�-xWi(nu��ta|��+� � � 9 ���$} 9�9 �-�

Dana Jermanis
45

Dana Jermanis
Computational Proteomics

Dana Jermanis


Dana Jermanis




Which pathways cannot be reconstructed using
protein phylogenetic profiles?

Yohan Kim1,  Shankar Subramaniam1,2

Keywords: genomic context, protein networks, computational proteomics

1  Introduction 

Phylogenetic profile methods have shown that those proteins that share similar profiles are more
likely to have same functions than those that do not [1]. After fine-tuning of these methods, their
applications  on  a  number  of  complete  genomes  have  uncovered  novel  cellular  systems  [2,3].
However, what has received relatively little attention in these studies is providing explanations for
why phylogenetic  profile  based methods  cannot  confidently  assign  functional  relationships  to  a
significant number of those proteins that are annotated in the KEGG  database [4]. There are three
scenarios  that  fit  this  observation.  One scenario  is  that  the  number  of  complete  genomes from
which  profiles  were  derived  was  not  sufficient.  Consequently,  even  though  two  proteins  were
functionally related, their profiles did not have enough number of co-varying profile elements for
them to be considered similar. In the second scenario,  two proteins considered were universally
shared across genomes and thus the method could not pick up strong signals from comparisons of
their  profiles  to  assign  functional  relationships.  Finally  in  the  third  scenario,  a  profile  of  one
protein did show enough variations in its elements but there were no proteins with similar profiles
even  with  'sufficient'  number  of  sequenced  genomes  being  used.  In  order  to  better  assess  the
performance  of  protein  phylogenetic  profiles  based  methods,  pathways  for  E.  coli K12  in  the
KEGG database and those reconstructed using the methods are compared. It is our hope that by
identifying  which  types  or  classes  of  proteins  are  less  amenable  to  phylogenetic  profile  based
methods,  we are  more  likely  to  come up  with  a  new generation  of  algorithms  that  can  assign
functions to them with greater confidence.

2  Figures and Tables

total # of proteins 4311

# of protein  with  at  least  one  KEGG  pathway
entry 1153

total # of unique protein pairs that share at least
one KEGG pathway entry 38751

 
Table 1:  E. coli K12 statistics.
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Figure 1: Accuracy and coverage of pathway predictions for  E. coli K12 using protein phylogenetic profiles.
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The Protein Mutant Resource: 
Visual and Statistical Analysis of Mutation with Implications 

for Homology Modeling 
 

Werner G. Krebs1, Philip E. Bourne2 
 
Keywords: Protein Mutant Resource, PMR, PDB bias, structural bioinformatics, homology modeling, statistical 
inference, data-mining, functional annotation, GO, Gene Ontology, Encyclopedia of Life, EOL 
 
1 Introduction. 
 
Although databases of mutant gene products [1-3] as well as specialized databases of mutant protein structures have 
previously been developed [4-6], no comprehensive, PDB-wide database of mutant protein structures previously 
existed. The Protein Mutant Resource (PMR), a freely accessible database and associated tools, first addressed this 
need [7-9].The PMR systematically characterizes related artificially mutated structures from the Protein Data Bank 
(PDB) by grouping point mutations of the same structure. The PMR is available at http://pmr.sdsc.edu. 
 
2 Database and algorithms. 
 
The PMR illustrates the relationship between these mutated structures using morph technology [10,11] previously 
developed for the Macromolecular Motions Database (http://molmovdb.org). The PMR is intended to allow molecular 
biologists, protein engineers, and rational drug designers to analyze visually the apparent protein conformational 
change induced by mutation. In addition to accurately inferring mutant classifications in the Gene Ontology (GO) using 
an innovative, statistically rigorous data-mining algorithm with more general applicability [9], the PMR characterizes 
each entry by the number and type of artificially induced mutations found within the PDB. Comparison of the 
frequency of mutation in the PMR/PDB datasets against the accepted PAM250 natural amino acid mutation frequency 
indicates an inverse relationship, suggesting human efforts to engineer proteins with stable 3-dimensional structures 
involve processes statistically different from the exploration of structure space by evolution [7,8]. The PMR references 
nearly 20% of PDB chains and is updated via an automatic algorithm. 
 
3 Implications for homology modeling. 
 
Changes in PMR structures due to single-point mutations [7,8] are somewhat larger than is typically predicted by 
homology modeling, as the latter often does not take into account mutations’ possible effects on linker flexibility 
[10,11] or secondary structure. We suggest that it may be possible to more accurately model mutations involving 
changes in backbone configuration by applying distributions based on PMR data to our existing Encyclopedia of Life 
(EOL) [12] technology (Figure 1). 
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Figure 1: Diagram of PMR operation showing facilities, features, interactions with external databases, and proposed homology 

modeling facility via Encyclopedia of Life (EOL) project. 
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OrthoMCL: application of a graph cluster algorithm 
to comparative genomics and genome annotation  
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cluster 
 

1 Introduction  
 
Comparative genomics has become a valuable approach in gene identification, functional 
annotation and evolutionary analyses.  Orthology and paralogy are major concepts in molecular 
evolution and have been applied broadly in comparative genomics.  Orthologs are genes from 
different species that derive from a common ancestor by speciation, while paralogs are genes that 
derive from a single gene that was duplicated within a genome [1].  As orthologs are likely to retain 
identical function over evolutionary time, the identification of orthologs is an important tool for 
gene annotation. Recently, two terms, inparalogs and outparalogs were introduced to distinguish 
paralogs derived from gene duplication before speciation and those from after speciation [2].  In 
comparative genomics, the clustering of orthologous genes provides a framework for data 
integration, highlighting the divergence and conservation of biological processes.   
 
To cluster orthologous genes from eukaryotic genomes, however, complications arise from 
extensive gene duplication and functional redundancy, the multi-domain structure of many proteins 
and the predominance of incomplete eukaryotic genome sequencing.  Previously, we have devised a 
scalable approach called OrthoMCL for the identification of orthologous groups in eukaryotic 
genomes, utilizing Markov Cluster algorithm, which is based on probability and graph flow theory, 
to delineate the many-to-many relationships between orthologous and paralogous genes [3].  Here 
we will present two applications of this approach in comparative genomics and genome annotation.  
Firstly, we applied this approach to comparative analysis of eukaryotic genomes and genome 
annotation for malaria parasites Plasmodium.  Then we applied OrthoMCL to compare two separate 
gene finding efforts of human and mouse genomes, Ensembl [4] and Allgenes 
(http://www.allgenes.org).  While Ensembl provides automated genome annotation from genomic 
sequences, Allgenes construct gene models from EST and mRNA sequences. 

 

2 Results  
 
We applied OrthoMCL on publicly available eukaryotic genomes including human, mouse, fly, 
worm, mosquito, Arabidopsis, yeast, malaria parasites Plasmodium falciparum and Plasmodium 
yoelii with E. coli as an outgroup.  Data and results were stored in an object-oriented relational 
database, Genomic Unified Schema (GUS) (http://www.gusdb.org) and can be queried online 
(http://www.cbil.upenn.edu/gene-family/).  We identified 26681 clusters of putative orthologs and 
inparalogs, 7519 of which are species-specific inparalogs, probably due to lineage-specific 
expansion.  We then compared the orthologous genes of human and mouse identified by OrthoMCL 
with a curated dataset extracted from HomoloGene (http://www.ncbi.nlm.nih.gov/HomoloGene/).  
91% of the 7328 curated orthologous pairs were found in the same ortholog group identified by 
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OrthoMCL.  We also evaluated the consistency of the OrthoMCL clusters with EC annotation from 
the Enzyme Database (http://us.expasy.org/enzyme).  Of the 1012 OrthoMCL clusters that contain at 
least two EC-annotated sequences, 909 (90%) are consistent with EC annotation.  OrthoMCL 
clusters that contain Plasmodium sequences were incorporated into the Plasmodium genome 
database (http://www.plasmodb.org) to facilit ate genome annotation (see example in Figure 1), 
identification of novel gene families, differentiall y expanded paralog groups and taxa-specific 
genes.  75% of P. falciparum proteome and 52% of P. yoelii proteome were found to be 
orthologous, while 1964 groups were also specific to Plasmodium genomes, providing candidates 
for candidates for drug and/or vaccine development.      
                                                                                                                                                                                                                                         

 
Figure 1: A screen shot of ortholog group 762863 with P. falciparum gene MAL8P1.156 annotated 
as ‘hypothetical protein’ , whose function maybe inferred from orthologs from other species. 
 
To compare human and mouse gene models from Ensembl and Allgenes, we compared OrthoMCL 
clusters using human, mouse protein sequences from Ensembl with those using human, mouse 
protein sequences from Allgenes, using the same data from other species.  With orthologs as 
supporting evidence, we identify gene models that are consistent or complementary between these 
two databases.  
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Tandem MS Analysis and An Emerging Genome: The Sea
Urchin Sperm Plasma Membrane Proteome

Anna T. Neill1,  Terry Gaasterland2,  John R. Yates III3,  Victor D. Vacquier4

Keywords: sea urchin, fertilization, membrane protein, tandem MS, whole genome sequence

1 Introduction.

Fertilization is a fundamental cellular process involving signaling and recognition at cell surfaces.
Sperm plasma membrane proteins play key roles by mediating sperm motility, egg recognition, and
gamete fusion.  Phylogenetically, sea urchins lay at the base of the deuterostome lineage which leads
to the vertebrates. Pragmatically, sea urchins provide an excellent model for the study of fertilization
because large quantities of gametes are readily available.  Moreover, sperm plasma membrane
proteins are easy to isolate from the rest of the cell, and can be obtained separately from the head and
the tail (flagellum). Thus it is straightforward to study proteins in the context of their subcellular
location.

2 Approach.

We use micro liquid chromatography (m-LC) tandem mass spectrometry (MS/MS) to characterize the
sea urchin sperm plasma membrane proteome.  One way to interpret this type of MS data relies on
prior knowledge of target protein sequences. Sea urchin genome sequencing is currently underway but
in early stages. Consequently, the interpretation of sea urchin MS data requires methods to extract
protein information from unassembled or partially assembled genomic sequence.  Our approach is to
translate protein sequence fragments from all open reading frames in the raw genome sequence data,
and then to reduce and merge the fragments into a minimally redundant protein database, which is
then searched with the collected spectra using mass-to-peptide assignment software.
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Characterizing protein function by integrating 
interaction data and domain information 
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Kiyoshi Asai5 
 
Keywords: interaction partners, domains 
 

1 Introduction.  
 
Comprehensive protein interaction data may provide clues to protein function in complex 
biological networks. However, these data contain a lot of ‘noise’ such as false positives and false 
negatives. This problem can be overcome by integrating other ‘-omic’ resources, such as 
transcriptome profiling data [1]. In addition, we find in this study that the integration of protein 
interaction data and domain information is a rational approach not only to reducing error rates, but 
also to finding other aspects of protein function. 

 
Domains are thought to be related to biologically important functions because they are 

evolutionally conserved units of proteins [2]. It is therefore likely that a functionally important 
domain contributes to deciding a protein’s interaction partners. An example is reported in [3]. 

 
Similarity in the structural and functional properties of proteins is reflected by both domains and 

protein interaction partners. For characterizing protein function, we focus in this study on proteins 
which have both the same interaction partners and the same domains. Here we report the evaluation 
of this strategy and the functional characterization of proteins in Escherichia coli. 

 
2 Method.  
 
Protein interaction data were generated by pull-down assays. In this method, individual proteins in 
E. coli are tagged and allowed to be pulled down with interacting proteins, which are then analyzed 
by mass spectrometry. To obtain information about domain-protein relationships in E. coli, we 
downloaded Swisspfam, the domain structure database of SWISSPROT and TrEMBL proteins, 
from http://pfam.wustl.edu. Integrating protein interaction data and domain information, we 
extracted pairs of proteins which have the same protein interaction partners and the same domains 
by a graph-theoretical method. A typical protein pair satisfying these conditions is represented in 
Fig.1.  
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Figure 1: Proteins A and B have the common domain d and 

A Bd d

 the same interaction partners (filled circles). Lines represent interactions. 
 

3 Result and Discussion.  
 
We obtained 13,176 interaction pairs among 3,035 proteins of E. coli. Among the extracted paired 
proteins having the same interaction partners and the same domains, we found that protein pairs 
interacting with three or more common interaction partners do not occur randomly. We therefore 
examined the protein pairs satisfying this condition. All the pairs could be classified into 55 common 
partner networks consisting of 175 proteins. One of these networks is shown in Fig.2. 
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Dmitry Pekurovsky1, Robert W. Byrnes1, Kristine Briedis1, Vicente Reyes1, Adam 
Birnbaum1, Coleman Mosley1, Julia Ponomarenko1, Yohan Potier1, Celine 
Amoreira1, Stella Veretnik1, Philip Bourne1,2

Keywords: pipeline, domains, annotation, gui, visualization, datawarehouse, dhtml, svg, jboss 

1 Introduction 

The explosion in the availability of putative protein sequence data from DNA sequencing projects has provided a 
challenge to the research community: how to analyze this vast amount of data and then present these annotations 
in an easy-to-navigate web-based graphical user interface (GUI). Using a unique and highly benchmarked 
software pipeline, the Encyclopedia of Life (EOL) provides the researcher with domain-based annotation for all 
publicly available protein sequence data. Scientists will be able to uncover the prevalence of a given protein across 
all kingdoms of life, molecular interactions with that protein, and whether the function of the protein varies across 
species. 

2 The Software Pipeline 

Core to the EOL project is the integrated Genome Annotation Pipeline (iGAP), a suite of programs that annotate 
protein sequences for their putative structure and biological function. Performing this analysis with iGAP on data 
from a whole genome is a CPU-intensive process which requires the use of powerful GRID computing resources, 
mainframe supercomputers and computer clusters. The iGAP analysis includes calculating three-dimensional 
models and assigning biological function for all recognizable proteins in all currently known genomes.  

3 An Intuitive Web Interface  

Key to EOL being the vital scientific resource intended is that its data is made available through an intuitive and 
highly functional web interface. The interface uses the JBoss application server to connect a datawarehouse which 
stores the EOL data in a query-optimized schema to the book metaphor web interface; this optimized design 
makes browsing and drilling down to data very fast and simple. Powerful keyword and protein sequence search 
functions enable the researcher to quickly locate data and annotations of interest. Dynamic HTML (HTML) is 
used extensively to provide the end user with a rich browsing and visual experience, and Scalable Vector Graphics 
(SVG) – based applets are used to present structural mapping of domain region matches.  

4 A Collaborative Effort 

EOL is an open collaboration led by the San Diego Supercomputer Center, and includes the work of researchers 
from the Singapore Bioinformatics Institute, Tokyo Institute of Technology, UFCG in Brazil, Belfast E-Science 
Center and Monash University in Australia. Other computational groups are invited to join in the effort to provide 
researchers with the best possible protein annotation resource.  

      1San Diego Supercomputer Center, University of California San Diego, La Jolla, CA 92093 
       2Department of Pharmacology, University of California San Diego, La Jolla, CA 92093 
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Support Vector Machine approach to Active Sites 
Prediction using Local Sequence Information.  

 
Dariusz Plewczynski1, Adrian Tkacz1 , Leszek Rychlewski1*  

 
Keywords: kinase substrate prediction, nearest neighbor, sequence similarity, database of active 
sites, Swiss-Prot database, support vector machine 
 

1 Introduction.   
 
The AutoMotif Server (AMS) predicts functional patterns in proteins. A list of possible functional 
motifs for a given query protein is predicted using only query protein sequence and the database of 
proteins annotated for certain types of biological processes by Swiss-Prot database [1]. All short 
segments of a query protein sequence sites are compared with the annotated sequence fragments 
using the support vector machine SVM approach [3]. Various methods are used here for building 
models based on different representations (in total 10 different embeddings) of known instances  
[4]. In order to estimate the efficiency of the classification for each type of functional site and the 
prediction power of the method the leave-one-out tests are used [2]. User can access all sites 
annotated by Swiss-Prot database (version 4.2), add new proteins with instances, or new annotation 
information. All data, constructed models and automatic predictor are updated after each major 
upgrade of the Swiss-Prot DB. 
 
2 Software and files.  
 
The method is available as an internet server at http://automotif.bioinfo.pl/. The whole database of 
annotated segments (positive instances), parent proteins (with detailed biological information 
included) is implemented as https://mysql.bioinfo.pl/ as the mySQL database with phpMyAdmin 
web interface. 

 
3 Tables.  
 
Table I. The prediction efficiency for various types of phosphorylation. The results are obtained 
using SVM learning with polynomial kernel ((s a*b+c)^d). Data is collected from Swiss-Prot DB 
annotation tables (without BY SIMILARITY, PREDICTED, PROBABLE, POTENTIAL or 
PARTIAL annotations). The first column in the table gives the number of positives and negatives 
for each type of activation process. The first row describes the dimension for each embedding 
method.  
Results are collected for 8 different methods for preparing SVM input vectors representing each 
segment (with length 9 or 13 amino acids). The first one is the simplest BIN  method uses binary 
representation of amino acids in the SVM input vector. The BIN+LOOKUP includes additional 
vector of 9 or 13 values (depending on the size of the segments) of frequency ratios between 
positives and negatives for these particular amino acid found in the input segment and the position 
in each predicted segment. The SPARSE method puts instead of 1 the value of frequency ratio 
between positives and negatives for these particular amino acid found in input segment and the 
position in each predicted segment. The SPARSE+LOOKUP includes also the frequency ratios for 

                                                 
1 BioInfoBank Institute, Limanowskiego 24A/16, 60-744 Poznan, Poland, Tel: +48-61-8653520, Fax: 

+48-61-8643350, E-mail: darman@bioinfo.pl 
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segments. The LOOKUP vector uses only frequency ratios for amino acids found in a query 
segment. The BLOSUM+LOOKUP method prints also values for various types of amino acids 
rescaling them by BLOSUM62 coefficients of the similarity between each type of amino acid and 
particular type of amino acid found in a query protein. The SUM_PROF uses only sum over the all 
frequency ratios (dot product of them), and the BLOSUM+SUM_PROF adds also BLOSUM62 
similarity matrix. The last two methods uses the whole frequency information calculated on the 
both (positives and negatives) datasets with, or without separate LOOKUP information.  
The most stable method is profile PROF+LOOKUP, SPARSE+LOOKUP or BLOSUM+LOOKUP 
methods. Other types of methods have lower efficiency (recall / precision). 

 
      Recall 
 
precision 

Number of 
positives/ 
negatives 

BIN BIN 
+LOOKUP  

SPARSE SPRASE 
+LOOKUP  

BLOSUM 
+LOOKUP  

LOOKUP  BLOSUM 
+SUM_ 
PROF 

SUM_ 
PROF 

PROF PROF 
+LOOKUP  

Dim  
(9/13 frag) 

 180 
264 

189 
273 

180 
264 

189 
273 

189 
273 

9 
13 

189 
273 

9 
13 

180 
264 

189 
273 

86/14353 11.63% 43.02% 36.05% 37.21% 41.86% 41.86% 39.53% 37.21% 41.86% 41.86% PKA 
(9)  76.92% 58.73% 55.36% 74.42% 69.23% 85.71% 80.95% 68.09% 75.00% 76.60% 

56/14368 1.79% 16.07% 14.29% 14.29% 17.86% 0% 0% 0% 17.86% 17.86% PKC 
(9)  100% 42.86% 44.44% 40.00% 90.91% 0% - - 83.33% 62.50% 

41/14375 0% 29.27% 21.95% 24.39% 24.39% 21.95% 0% 0% 9.76% 17.07% CDC2 
(9)  - 31.58% 23.68% 33.33% 28.57% 69.23% - - 20.00% 28.00% 

83/6426 39.76% 39.76% 38.55% 39.76% 46.99% 38.55% 13.25% 7.23% 48.19% 57.83% SULF 
(9)  97.06% 75.00% 74.42% 73.33% 76.47% 72.73% 100% 100% 86.96% 78.69% 

4/10846 0% 100% 100% 100% 100% 100% 75.00% 75.00% 50.00% 75.00% ABL  
(13)  - 100% 100% 100% 100% 100% 100% 100% 100% 100% 

62/11746 0% 17.74% 19.35% 20.97% 12.90% 14.52% 0% 0% 11.29% 12.90% CK2 
(9)  - 47.83% 44.44% 39.39% 50.00% 100% - - 53.85% 53.33% 

85/11739 0% 10.59% 11.76% 12.94% 8.24% 5.88% 0% 0% 9.41% 9.41% CK 
(9)  - 36.00% 35.71% 40.74% 63.64% 71.43% - - 57.14% 36.36% 

129/1304 0% 27.13% 6.98% 30.23% 11.63% 34.88% 0% 0% 3.10% 8.53% ABLpept 
(13)  0% 61.40% 64.29% 63.93% 71.43% 77.59% - - 57.14% 61,11% 

Table 1:  The prediction efficiency for predicting phosphorylation by various types of  kinases. 
 
4  References. 
 
[1] Bairoch A, Apweiler R. 1999. The Swiss-Prot protein sequence data bank and its supplement TrEMBL in 1999. 
Nucl Acids Res. 27, pp. 49-54. 
 
[2] Joachims, T. (2000). Estimating the Generalization Performance of a SVM Efficiently. Proceedings of the 
International Conference on Machine Learning, Morgan Kaufman. 
 
[3] Vapnik,V.N. (1998). Statistical Learning Theory. Wiley, New York. 
 
[4] Zavaljevski, N., Stevens, F.J., Reifman, J. (2002). Support vector machines with selective kernel scaling for 
protein classification and identification of key amino acid positions. Bioinformatics. vol. 18(5), pp. 689-696.  
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Mechanisms for Antagonistic Regulation of AMPA and
NMDA-D1 Receptor Complexes at Postsynaptic Sites

Gabriele Scheler,1 Johann Schumann2

Keywords: synaptic plasticity, receptor upregulation, AMPA, dopamine, striatum, D1

1 The problem: Maintenance of stable states
The difficulty of clearly establishing a mechanism for LTP/LTD has been sometimes analyzed as stem-
ming from its definition as an electrophysiological phenomenon corresponding to a number of different
molecular components of both presynaptic and postsynaptic plasticity regulation.

Here we present a hypothesis on the pathways under-

cortico−
striatal

synapse

NMDA−D1 AMPA

LTD LTP

Figure 1: Two stable states for post-
synaptic receptor regulation

lying AMPAR/D1R regulation derived from an ongoing
project on modeling membrane receptor plasticity3. We
assume that the maintenance of brief or repetitive input
signals at membrane receptors necessary to achieve lasting
receptor upregulation is mainly supported by the interac-
tive dynamics of the intracellular system, rather than being
located in individual switches. Here we suggest specifi-
cally a bifurcation into two stable states for a simulated
cortico-striatal synapse (Fig. 1). This model incorporates
the important role of calcium dynamics and the CaMKII
autophosphorylation switch but emphasizes the increased computational power achieved by cAMP-
calcium interaction and dopamine D1 receptors (or other G-protein coupled receptors located at post-
synaptic sites).

2 cAMP-dependent modulation of calcium signals
The interaction of cAMP and calcium is a major factor in determining activation levels of a number
of proteins critically involved in synaptic plasticity (see 3). Receptor complexes involving D1R and
L-type calcium channels produce cAMP elevation at receptor activation and calcium influx through
opening of the L-type calcium channels, where calcium further raises cAMP via the calcium-activated
adenylyl cyclases AC1 and AC8. (The synergistic cAMP/calcium signal can be terminated byGi cou-
pled receptors, e.g.�-opioid or dopamine D2 receptors.) NMDA receptor activation by high-frequency
glutamatergic stimulation can produce sharp calcium signals sufficient to induce AMPA upregulation
and LTP, e.g. in hippocampal CA1/CA3 but also at corticostriatal synapses. However, a different induc-
tion pattern, favoring longer lasting, weaker calcium oscillations induces AMPA LTD in hippocampus,
which is also the dominant effect with dopamine D1 receptor stimulation at corticostriatal synapses.

A simulation of cAMP/calcium interaction shows that cAMP activation generates broadened os-
cillatory calcium signals (a) because of the sustained feedback between cAMP and calcium and (b)
because cAMP is highly diffusible, and in spite of some compartmentalization of the signal will extend
beyond the limits of a single synapse. Both effects counteract the generation of very high concentration
gradients for calcium.

This means that the concurrent or temporally contiguous activation of cAMP during NMDA recep-
tor mediated calcium entry is capable of profoundly altering the calcium signal and prevent the kind of
persistent AMPA phosphorylation required for LTP-like AMPA upregulation.

1ISLE; Stanford, Ca, 94305 Email:scheler@stanford.edu
2RIACS/NASA Ames; Moffett Field, Ca, 94035
3References at URL:http://www.stanford.edu/ �scheler/plasticity.html
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3 Regulation of AMPA and D1 receptor efficacy
The analysis of the kinase-phosphatase regulatory network stimulated by NMDA, AMPA and dopamine
receptors shows the emergence of two internally consistent states of protein phosphorylation state and
concentration (see Fig. 2A and Fig. 2B).
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Figure 2: Intracellular Network for AMPA(A) and NMDA-D1(B) dominated synapse
CaMKII is the autophosphorylated switch that gets turned on by high calcium. It promotes AMPA-

GluR1-Ser-831 phosphorylation, which seems to be the dominant mode for the induction of AMPA
upregulation and LTP. Calcineurin dephosphorylates AMPA-GluR1-Ser-845 and in this way lowers
AMPA peak current. High calcineurin and low PP2-A concentrations also impair dopamine signaling
pushing DARPP-32 into a Thr-75 phosphorylated state. This removes inhibition of PP-1 and allows
PP-1 regulation of the CaMKII switch to operate. High cdk5 can inhibit NMDA currents, and thus may
prevent further plasticity (Fig. 2A).

With cAMP activation, PKA and PP2-A are highly activated, while calcineurin/PP-1 is low. AMPA
is predominantly phosphorylated by PKA at Ser-845 and dephosphorylated at Ser-831 which induces
increase of peak current but may prevent lasting plasticity. In contrast the DARPP-32 switch at Thr-34,
together with the slow calcium oscillation promotes D1 receptor insertion (Fig. 2B).

These states are both robust and stable, they do not contain major instabilities, thus they are suitable
for the maintenance of input signals and induction of longer-term plasticity, such as receptor endo- and
exocytosis. The proposed model relates to a number of attested observations:

- NMDA activation and prolonged calcium increase promotes D1 insertion
- D1 receptor activation promotes AMPA desensitization/downregulation (LTD), but increases AMPA

peak current
- high-frequency stimulation induces LTP, requiring CaMKII autophosphorylation
- maintenance of LTP-state is associated with NMDA downregulation and reduction of calcium inflow.

4 Conclusion
From the analysis of these pathways we conclude that postsynaptic processes that regulate synaptic
transmission undergo significant cross-talk with respect to glutamatergic and neuromodulatory (dopa-
mine) signals. The main hypothesis is that of a compensatory regulation, a competitive switch between
the induction of increased AMPA conductance by CaMKII-dependent phosphorylation and reduced ex-
pression of PP2A, and increased D1 receptor sensitivity and expression by increased PKA, PP2A and
decreased PP-1/calcineurin expression. Both types of plasticity are induced by NMDA receptor acti-
vation and increased internal calcium, they require different internal conditions to become expressed.
Specifically, we propose that AMPA regulation and D1 regulation are inversely coupled. The net result
may be a bifurcation of synaptic state into predominantly AMPA or NMDA-D1 synapses. This could
have functional consequences: stable connections for AMPA and conditional gating for NMDA-D1
synapses.
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Predicting Co-Complexed Protein Pairs Using 
Genomic and Proteomic Data Integration 

 
Lan V. Zhang1,  Sharyl L. Wong1,  Oliver D. King1,  Frederick P. Roth1 

 
Keywords: protein-protein interaction, protein complex, decision tree, data integration, machine 
learning 
 

1 Introduction.  
 
Identifying all protein-protein interactions in an organism is a major objective of proteomics.  A 
related goal is to know which protein pairs are present in the same protein complex.  High-
throughput methods such as yeast two-hybrid (Y2H) and affinity purification coupled with mass 
spectrometry (APMS) have been used to detect interacting proteins on a genomic scale [1-4].  
However, both Y2H and APMS methods have substantial false-positive rates.  Aside from high-
throughput interaction screens, other gene- or protein-pair characteristics may also be informative 
of physical interaction.  Therefore it is desirable to integrate multiple datasets and utilize their 
different predictive value for more accurate prediction of co-complexed relationship. 

 
2 Results.  
 
Using a probabilistic decision tree approach, we integrated high-throughput protein interaction data 
with other gene- and protein-pair characteristics to predict co-complexed protein (CCP) pairs.  Our 
predictions proved more sensitive and specific than predictions based on Y2H or APMS methods 
alone or in combination (Figure 1).  Among the top predictions not annotated as CCPs in our 
reference set of protein complexes (obtained from the MIPS complex catalog), a significant fraction 
were found to physically interact according to a separate database (YPD, Yeast Proteome 
Database), and the remaining predictions may potentially represent unknown CCPs (Table 1). 

  
Figure 1: ROC (Receiver Operating 
Characteristic) curve of decision tree 
predictions in comparison with four 
high-throughput datasets (two YPD 
studies: Ito et al. and Uetz et al., and 
two APMS studies: Gavin et al. and 
Ho et al.), as well as their simple 
combinations (intersection of the two 
Y2H studies and intersection of the 
two APMS studies). Solid line 
represents decision tree predictions, 
while dotted line represents random 
predictions. 

 

                                                 
1 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 

Longwood Avenue, Boston, MA 02115, USA.  E-mail: fritz_roth@hms.harvard.edu 

Ito
Uetz

TAP

HMS-PCI

Decision Tree 
prediction

Ito ∩ Uetz
TAP ∩ HMS-PCI

0

0.02

0.04

0.06

0.08

0.1

0 0.00005 0.0001 0.00015 0.0002 0.00025

false-positive rate

tr
ue

-p
os

iti
ve

 ra
te

Dana Jermanis
Computational Proteomics

Dana Jermanis
62

Dana Jermanis


Owner
Text Box
C16.



Rank Protein 1 Protein 2 Score YPD Complex Annotation 
1 Rpl40Bp Rps31p 0.943  
2 Rps31p Rpl40Ap 0.938  
3 Smc1p Smc3p 0.864 Cohesin 
4 Gpt2p Sec28p 0.857  
5 Pwp2p Utp13p 0.844 Small subunit processome 
5 Sgn1p Pub1p 0.844  
7 Rdh54p Rad5p 0.833  
7 Arp3p Rvs167p 0.833  
7 Arp3p Srv2p 0.833  
10 Spt5p Rpb3p 0.800 Paf1p complex 
10 Spt5p Rpo21p 0.800 Paf1p complex 
12 Pwp2p Dip2p 0.776 Small subunit processome 
12 Pwp2p Ylr409C 0.776  
12 Sap190p Sap155p 0.776  
12 Sap190p Sap185p 0.776  
12 Pph21p Pph22p 0.776  
12 Nop7p Fpr4p 0.776  
12 Sap185p Sap155p 0.776  
12 Sik1p Cbf5p 0.776  
12 Nop2p Ebp2p 0.776 Pre-60S ribosomal particle 
12 Rpa135p Ret1p 0.776  
22 Pwp2p Asc1p 0.750  
22 Drs1p Spb4p 0.750  
24 Rsm10p Mrps5p 0.744 Mrp4p-associated complex (mitochondrial ribosome) 
24 Mtr3p Rrp45p 0.744 Exosome 3'-5' exoribonuclease complex 
24 Rrp40p Rrp46p 0.744 Exosome 3'-5' exoribonuclease complex 
24 Rrp40p Ski6p 0.744 Exosome 3'-5' exoribonuclease complex 

 
Table 1: Top 27 predictions that are not annotated as CCPs in the reference set 

 
3 Conclusion.  
 
We demonstrated that the probabilistic decision tree approach can be successfully used to predict 
co-complexed protein (CCP) pairs from other gene- or protein-pair characteristics.  Our top-scoring 
CCP predictions provide testable hypotheses for experimental validation.  
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Structal: A software for optimizing structural and sequence alignments 
 
Hervé Seligmann1 and Neeraja M Krishnan1  
 
Keywords: structural alignment, homology, correspondence, gap penalty, secondary structure, empirical test of ancestral 
reconstruction. 
 

1. Introduction 
Comparative biology, whether morphological, physiological or molecular, is based on correspondences between 
organisms or parts of organisms. Homology is a type of correspondence that exists between more or less similar 
entities when they have common ancestry. In a morphological example, comparisons between wings and arms 
are considered homologous in spite of them being morphologically different because they diverged originally 
from the same evolutionary and developmental processes. But comparisons do not necessarily have to be based 
on common ancestry [1]. In proteins with similar functions [2] but different descent, alignments between 
sequences maximize structural similarities, independently of the number of evolutionary steps necessary to 
transform one sequence into the other. In contrast, sequence alignments optimize over sequence similarity and 
gap penalty. The assumption of common ancestry is introduced into the process by assuming parsimony of 
divergent events between the sequences. It presumes that, in molecules with simple structure and function, 
preserving sequence similarity also provides functional equivalence for homologously aligned sites. However, 
sometimes, highly similar homologous segments can have very different contributions in the structures and 
functions of their respective molecules, even in molecules with secondary structures as simple as tRNAs.  
 
2. Materials and Methods 
Ideally, sequence alignments contribute to the same homologous properties of their known functional structure. 
However, in some cases, sites considered homologous according to the sequence alignments do not contribute 
to the same specific local structure. For tRNAs, because of the simple and well defined function associated with 
the cloverleaf structure, the functional realism of sequences can therefore be easily estimated by using folding 
programs based on empirical thermodynamic properties of RNA [3] or information properties (tRNAscan-SE, 
[4]): the functional tRNA cloverleaf structures consist of two types of nucleotide sites, complementary ones 
forming stems, and those forming loops. This property was elegantly used to evaluate the accuracy of 
sequencing, because sequencing errors result in lower foldability of tRNAs into their classical functional 
structure [5]. We estimated the functional accuracy of all reconstructed ancestral tRNAs (results were 
qualitatively similar for parsimony, maximum likelihood and Bayesian reconstructions) in primate 
mitochondria by canonical complementarities between sites in helices.  
 
3. Results 
Complementarity between sites in helices for reconstructed ancestral sequences decreased as a function of each 
of the following (partly interdependent) measures of evolutionary divergence between the extant species (in 
increasing order of effect on tRNA functional realism): the resulting average similarity between the aligned 
sequences, the number of gaps introduced by the sequence alignment procedure, and the similarity between the 
secondary structures of the extant, aligned sequences. These tRNA sequences were aligned by mapping 
corresponding stems and loops (based only on the criteria of structural similarity).  
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5. Figures and Tables 
 

 
Fig. 1. Effect of number of gaps on functional realism of reconstructed tRNAs using a structural alignment. (Filled dots are 
for tRNAs coded on the heavy strand and empty dots are for tRNAs coded on the light strand) 
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Structural and sequence similarity among extant tRNAs have the highest, and, respectively, the lowest effect on 
the functional realism of reconstructed sequences. Hence, alignments optimizing over both sequence and 
structure criteria, giving more weight to structural ones, should yield the functionally most accurate ancestral 
sequences. Our methods could assess optimal combinations of structural and sequence constraints in order to 
obtain the biologically most realistic alignment and create an off the shelf software to analyze nucleotide 
sequences, especially structural ones, such as tRNAs, rRNAs and control regions, and, at the very least, could 
hint at principles useful in solving similar, but much more complex problems associated with sequence versus 
structural similarities in amino acid sequences. 

4. Discussion 
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An alternative to the SEQUEST cross-correlation

scoring algorithm for tandem mass spectral

identification through database lookup: the Luck

scoring function, and the probability of an

unrelated spectra match model

Tema Fridman, 1 Jane Razumovskaya, 2 Nathan Verberkmoes, 3 Greg

Hurst 4 and Ying Xu 5

Keywords: tandem mass spectrometry, scoring function

1 Introduction.

Mass spectrometry represents a leading technology for examining the functional states of
proteins in cells [1], [3]. In a typical LC/MS/MS experiment, a protein mixture of interest
is digested into peptides which are separated, ionized and introduced into mass spectrome-
ter. Selected peptide ions are isolated and fragmented through collision-induced dissociation
(CID). The resultant fragments are then measured for their m/z and intensity values. The
fragmentation pattern is then used to identify the parent peptide. The most practical and
widely used technique is peptide identification (peptides are then matched to correspond-
ing proteins) through database search (SEQUEST, Mascot software programs). In such
methods, peptides from a sequence database are compared to the experimental data. Specif-
ically, theoretical mass spectra are first generated for a set of candidate peptides, and then
compared with the experimental spectra using a matching function.

SEQUEST [2] represents one of the most widely used and accurate programs for pep-
tide identification via database searches. Developed several years ago, SEQUEST was not
specifically designed for large-scale applications. One of the limiting factors in meeting the
needs for genome-scale applications is its (lack of) computing speed.

Here we present a new method with high discriminating power for searching protein
sequence databases for peptide identification. The accuracy compares favorably to the SE-
QUEST scoring function, with better separation between correct and incorrect matches. The
algorithm also runs significantly faster than the SEQUEST program, by roughly about two
orders of magnitude.

2 The Model.

First we introduce a Luck function, that has physical sence of quantitative measure of luck
to obtain a certain outcome wishk, given any unimodal probability distribution of possible
outcomes:

Luck(wishk) = Sign(wishk − mode) log
P (mode)

P (wishk)
, (1)

1ORNL, PO Box 2008 MS 6164, Oak Ridge, TN 37831-6164, USA. E-mail: tfa@ornl.gov
2ORNL, PO Box 2008 MS 6164, Oak Ridge, TN 37831-6164, USA. E-mail: rzw@ornl.gov
3ORNL, PO Box 2008 MS6131 Oak Ridge, TN 37831-6131, USA. E-mail: verberkmoesn@ornl.gov
4ORNL, PO Box 2008 MS6131 Oak Ridge, TN 37831-6131, USA. E-mail:hurstgb@ornl.gov
5Biochemistry and Molecular Biology Department, University of Georgia, Athens, GA 30602,
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with mode being the result that occurs most frequently, and Sign(x) being the sign function
(1 for positive x, 0 for x = 0, and -1 for negative x).

We developed a model derives the probability distribution of degree of match between
a given experimental spectrum (produced by the peptide of interest, the true peptide) and
a theoretical spectrum from a database peptide, assuming that the theoretical spectrum is
produced by a different, unrelated peptide. The resulting probability is a function of the
experimental spectrum density, the length of the interval on which the experimental peaks
are distributed, the number of theoretical peaks, and their distribution pattern. The model
does not take into account the intensity of peaks and the size of the database.

Based on the probability distribution above, we calculate the Luck of the match between
each experimental-theoretical spectral pair, and use it as a scoring function for the match.
As the experimental spectrum has consistently higher degree of match with the theoretical
spectrum of the true peptide than with that of an unrelated peptide, we get a substantially
higher Luck score for the correct match (i.e., you are exceptionally lucky to see that degree
of match, if you assume that the process, which generates the match, is random).

3 The experiment and the results.

We have tested our algorithm on a data set of 3771 experimental spectra that resulted from
performing an LC-MS/MS experiment on a protein mixture of eight purified proteins.Our
peptide database consisted of all possible tryptic peptides generated from the eight target
proteins (having 803 peptides), and from the 2873 S. oneidensis proteins (having 289,166
peptides). The latter was used as a distractor dataset.

Among 1053 spectra of parent charge one, we identified 526 correctly versus 532 found
by Sequest. Among the remaining 2721 spectra of parent charge two and three, we identified
496 versus SEQUEST’s 505 for parent charge two, and 221 versus SEQUEST’s 227 for parent
charge three. The spectra, that SEQUEST identified and Luck function did not, have very
low Xcorr score. In terms of sensitivity – specificity analysis, Luck function performs better
than SEQUEST due to greater separation between correct and incorrect identifications.

4 References and bibliography.
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Cross-Species Peptide Mass Fingerprinting Database 
Searching and “Conserved-Domains” 

 
Heming Xing1,  John Pirro1 

 
Keywords: proteomics, mass spectrometry, database search, peptide mass fingerprinting, cross-
species 
 

Peptide mass fingerprinting provides rapid protein identification using mass spectrometer 
as the primary analytical technique coupled with bioinformatics. This relies on the presence of 
protein sequence in the current database. As genome sequencing projects continue to add more and 
more sequence data into the sequence database, proteins from poorly characterized organism will 
increasingly be identified using cross-species comparison to proteins from well characterized 
organisms.  

 
         In this study, the application of cross-species protein identification using peptide mass 
fingerprinting [1] has been investigated. More than 7000 human/mouse protein orthologous pairs 
[2] are used to study the performance of cross-species PMF database searching. When sequence 
identity of ortholog pairs drops below 70% virtually no tryptic peptide of molecular weight 
between 700 and 3000 were conserved, which is consistent with previous small-scale study[3]. 
MOWSE program was also tested for the performance of cross-species protein identification using 
PMF. Mouse proteins are theoretically digested using trypsin and PMF searches are done against 
human protein sequence database. In 23% of the cases, PMF search returns the human ortholog hit 
ranked as No. 1, and in 37% of the cases, human ortholog hits are ranked within top 5. As expected 
in 42% of the cases, human ortholog hits are ranked out of top 50. 
 
         To improve the performance of cross-species PMF searches, conserved domains are used 
as the basis of recognizing homologous proteins across species boundaries. Several strategies are 
being tested to put more weights on the “conserved-domains” when the final MOWSE score is 
calculated. Preliminary results suggest that the MOWSE score considering the domain conservation 
can improve the performance of cross-species protein identification using PMF. 
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GOMER: Predicting Gene Regulation by Modeling
Binding Sites

Josh A. Granek1, Neil D. Clarke2

Keywords: protein-DNA interaction, transcription, regulation

1 Introduction.

The information required for all transcriptional regulation is encoded in DNA sequences.
Models of these regulatory sequences enables us to understand and predict the expression
patterns of genes. To this end, we have developed GOMER (Generalizable Objective Model
of Expression Regulation), a software package that predicts transcriptional regulation by
modeling the binding of transcription factors to genome sequences. GOMER allows regula-
tory models to be defined and evaluated in terms of the model’s ability to rationalize data on
regulation. GOMER is ideally suited for modeling regulatory systems based on expression
data from microarray experiments, as well as genome localization data from chromatin-IP
experiments. GOMER can also be used to predict novel genes expected to be regulated by
a modeled system.

2 Methods and Results.

GOMER is based on a simple thermodynamic model for binding site occupancy [4] which
has been generalized (1) to allow for flexibility in the description of the distribution of
binding sites. These descriptions of regulatory regions can be user defined through the use
of extension modules written in Python.

Scorefeature = 1−
sites∏
i=1

∏
s=(for,rev)

(
1

1 + [X]KX,i,s
a κ

(i)
site

)
(1)

For example, regulatory region functions can define a regulatory region as simple as the 600bp
5’ to the ORF (2), or something more complex, such as a Gaussian distributed weighting
of binding sites reflecting a preference for regulatory binding sites to be a certain distance
from the start of transcription.

κ
(i)
site =

{
1, 0 ≤ α ≤ 600
0, otherwise

(2)

This model has been further generalized to account for cooperative and competitive
interactions among transcription factors. The characteristics of these cooperative and com-
petitive interactions can be defined through extension modules, analogous to that used to
define regulatory regions.

GOMER uses rank order metrics [1, 2] to evaluate a given model’s ability to identify
genes expected to be regulated, providing an objective criteria for improving model param-
eters. GOMER can be used to model regulation of any feature (or combination of features)

1School of Medicine, Johns Hopkins University, Baltimore, MD, E-mail: jgranek@jhmi.edu
2School of Medicine, Johns Hopkins University, Baltimore, MD, E-mail: nclarke@jhmi.edu
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defined in a genome description file, or features defined by base coordinates in a genome
(e.g. microarray features)

We have applied GOMER to several transcriptional regulation systems, for which we
have built models that are able to identify the known regulated targets. Additionally, the
flexibility of GOMER has allowed us to apply it to other types of systems where sequence
specific binding plays a role. One example is a GOMER model we built to demonstrate
a hypothesized artifact of microarray based chromatin-IP experiments.[3] This artifact is
inherent to the design of these experiments, however, by using the model to account for
this artifact, we have found that the results of these chromatin-IP experiments are better
correlated with predictions for sequence specific binding.

3 References and bibliography.

References
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sequence features with gene regulation. Bioinformatics 19:212–8.
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Discovery of Tumor-Specific Alternative Splicing 
Sites* 

 
Fang Rong Hsu1, Chia Yang Cheng2 

 

Keywords: alternative splicing, tumor-specific 
 

1 Introduction.  
 

The splicing mechanism recognizes the boundaries between exons and introns. Alternative splicing 
can be a mechanism to generate more than one mRNA and protein from a single gene. Alternative 
RNA splicing functions in two ways. One is turn on/off control of gene expression; the other is in 
the formation of multiple protein isoforms [1]. It has been estimated that 35%-59% of human genes 
have more than one RNA isoforms [2].  
Alternative splicing can display a family of different protein in different tissues [1]. In the other 
hand, cancer associated splice variants have been reported for many genes [3]. ~15% of diseases-
causing mutations in human genes involve misregulation of alternative splicing and errors in 
mRNA processing have been associated with cancer and other human diseases. [4] 
Currently, many alternative splicing databases were developed [5, 7], and some detected tissue-
specific and tumor-specific alternative splicing sites [2, 3]. However, after being sifted by 
clustering and aligning to genomic sequence, few EST sequence could be used to find tumor-
specific sites for each tissue.  
AVATAR, a value added transcriptome data base, which was developed by aligning ESTs to 
genomic sequence directly [7, 8], offer more rich resource to analysis EST express in many tissues 
at each alternative splicing sites. In this study, we present a method to detect the tumor-specific 
alternative splicing isoforms from certain tissue. 
 
2 Materials and Methods  
 

Three steps were present to detect tumor-specific alternative splicing sites. First, 14,099 human 
alternative splicing sites were collected from AVATAR, which exons, introns and alternative 
splicing sites were identified by aligning five million ESTs [9] to human genomic sequence(Build 
31) .  
Second, five million ESTs from 8,431 libraries were categorized into 45 tissues and three types of 
histology, normal, tumor and unknown [6, 10]. ESTs were divided into four pools by tissue and 
histology (isoform 1 and tumor, isoform 2 and tumor, isoform 1 and normal, and isoform 2 and 
normal) at each alternative splicing site.  
Third, we calculated theses data by Fisher’s exact test, divided left tail of P-value by right tail of P-
value as confidence C. The splicing sites with certain tissue, which Log odd ratio of C was greater 
than 2, were suggested as tumor-specific alternative splicing sites.  
 
3 Result  
 

We found 20 genes which’s LOD greater than 2. For each gene, most ESTs dates in the four pools 
were from more than one library. 40% of tumor-specific isoforms were happened in Brain, and 50% 
were 5’ type alternative splicing (see table 1). Only three alternative splicing sites were also 
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tissues-specific sites. GNAS complex locus (GNAS), LOD score is 2.09, located on chromosome 20, 
is one of the three genes which’s alternative splicing isoforms were published in literatures.  
 

type 
No. of tumor 

specific sites 
Tissue 

No. of tumor 

specific sites 

cassette 3 Brain 8 

3' 7 Lung 4 

5' 10 

 

Skin 3 

 
Table 1:  Tissue and types distribution of human tumor-specific alternative splicing sites 

 

GNAS gene structure has been well investigated [11]; Gsα  is encoded by exons 1-13 of GNAS. 
Exon 2-13 are also included in two additional overlapping transcripts, XLαs and NESP55, each 
with a distinct first exon. (Fig. 1) In brain, exon 3 skipping isoform (S) and exon 3 including isoform 
(S’) were both expressed in tumor and normal EST pools. In S, tumor ESTs (7) are expressed more 
than normal ones (4), but oppositely tumor ESTs (5) were less than normal ESTs (12) in S’. (Fig. 1)  
We could ratiocinate that GNAS exon 3 might associated with cancer, though, reversed from which 
one of the three mRNAs the ESTs were unknown.  
We have good ground for thinking that it is worth to validate these 20 tumor-specific alternative 
splicing sites by traditional experiment. 

 
Figure 1: GNAS gene structure and EST expression in brain. 
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Adaptive evolution of E. coli on lactate leads to 
convergent, generalist phenotypes 

 
Andrew R. Joyce1, Stephen S. Fong2, Bernhard Ø. Palsson 3 

 
Keywords: adaptive evolution, microarray, gene expression, E. coli, MultiFun 
 
1 Abstract.  
 
Laboratory evolution has become a commonly used approach to address many of the fundamental 
long-standing questions about evolution [1] as well as to provide an experimental basis for delineating 
the mechanistic basis of adaptive evolution [2-3].  A recent review of this field [1] succinctly states 
key open questions in this field including 1) reproducibility of phenotypic changes during evolution, 
2) mechanisms involved in eliciting these phenotypic changes, and 3) connection between observed 
phenotypes and underlying evolutionary changes.  Here we answer these questions by demonstrating 
that laboratory adaptive evolution of Escherichia coli on lactic acid leads to a reproducible phenotype 
that exhibits improved fitness in multiple growth environments due to changes in a global regulatory 
mechanism that was discovered through detailed, quantitative phenotype testing and transcriptional 
profiling.    

2 Introduction and Results. 
 
A foundational concept in evolutionary biology is the notion that the evolutionary process brings 
organisms through a “fitness landscape” [4].  A fundamental question associated with this idea 
pertains to the reproducibility of the outcome of evolution.  Traditionally, the fitness landscape is 
depicted as containing multiple peaks of improved fitness which implies the possibility of divergence 
during evolution.  A contrasting perspective is correlated to computational modelling descriptions that 
imply a single global optimum phenotype [5].  To address these differing viewpoints, seven parallel 
evolution experiments (L2, L3, LA, LB, LC, LD, and LE) were conducted on lactate medium starting 
from a single parental colony of wild-type E. coli.  Quantitative measurements of growth rate, 
substrate uptake rate (SUR), and oxygen uptake rate (OUR) were taken in replicate for the wild-type 
strain and all evolution strains at day 20 of evolution (approximately 300 generations) and at the end 
of evolution (day 60 or approximately 1,000 generations).  

The evolutionary paths at day 20 and day 60 of evolution for all seven strains were traced from a 
common wild-type starting point, using the three measured parameters with growth rate as an 
indication of fitness (Figure 1A). Furthermore, multivariate ANOVA clustering (Figure 1B) reveals 
that 6 of the 7 evolved strain cluster at the end point of evolution. In the context of the “fitness 
landscape” concept, this indicates that six of the seven strains converged upon a single fitness peak by 
day 60 of evolution, while at day 0 (WT) and day 20 the strains functioned in different regions of the 
landscape.  
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Figure 1: (A) Evolutionary Paths of Evolved Strains. (B) Multivariate ANOVA clustering of strains. 
 

In an effort to probe the changes underlying these phenotypic improvements, we used Affymetrix 
E.coli Antisense Genome Arrays to measure global mRNA transcript levels in the wild-type and 
evolved strains. After normalization with dChip software, statistical filtering via ANOVA, and p-
value cutoff selection by FDR [5], a pool of 1283 genes that showed significant differential 
expression in at least one strain at day 20 or day 60. The selected genes were then functionally 
characterized based on the MultiFun annotation scheme [6]. Interestingly, the strains exhibited 
similar expression patterns within day 20 and day 60 groups in that the proportion of genes changed 
relative to wild-type were similar in terms of functional classification. However, only 6 and 18 
annotated genes were commonly differentially expressed across 6 of the 7 strains at day 20 and day 
60, respectively. 
  
3 Conclusions. 
 
Based on growth, substrate uptake, and oxygen uptake rate measurements, parallel laboratory 
evolutions of E. coli can converge on a single reproducible phenotype, in agreement with existing 
computationally-based hypotheses [5]. Based on genome-wide transcriptional profiling, however, the 
evolved strains achieve improved fitness through apparently distinct mechanisms. 
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Principal Component Analysis combined with probabilistic 
analysis of Gene Ontology as applied to neuroblastoma gene 

expression data 
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Keywords:  principal component analysis, gene expression, gene ontology, neuroblastoma 
 
Gene expression profiling using micro-array technology has become an important tool in tumor 
classification and has been successfully applied to many human cancers.  However, classifying 
subtypes of a cancer and establishing a link between the phenotype or known genomic 
abnormalities and the underlying gene expression is a more challenging task.  Neuroblastoma (NB) 
presents one example of a highly heterogeneous cancer with multiple stages.  NB is a childhood 
tumor of the sympathetic nervous system with a share of 8-10% of all childhood malignancies [1].  
The clinical stage classification system defines stages 1 through 4 and a special case of 4S.  There is 
a number of cytogenetic characteristics that distinguish NB, such as chromosomal abnormalities, or 
amplifications/deletions.  Among the most well described cytogenetic markers is MYCN 
amplification. In this study we attempted to associate gene expression patterns with tumor 
phenotype, known genomic abnormalities and biological processes. 

We carried out genome-wide expression profiling of 108 NB tumors (stages 1 trough 4, MYCN-
amplified as well as non-amplified) using cDNA micro-arrays with 42293 clones.    These tumors 
were of stages 1-4 with some of them with MYCN amplified.  Quality filtered data consisting of 
33680 clones corresponds to 22030 unique Unigene clusters.  We employed PCA to reduce the 
complexity of the initial “tumor dimensions” from 108 to two principal components (PC) that are 
interpretable in terms of the tumor stage and MYCN amplification.  In the subspace of these 
dimensions stage 1 (ST1) and stage 4 (ST4) tumors could be well separated, as well as MYCN-
amplified from non-amplified tumors.  Utilizing a “stepwise” PCA, whereby AMP tumors were 
gradually added to the dataset, PCA performed and the explained variance recorded, we were able 
to establish that MYCN amplification results in a different pattern of exp ression than in non-
amplified tumors. 

We performed further analysis in the PCA-reduced subspace by combining the expression data with 
the annotation information from the Gene Ontology (GO), as well as chromosomal location 
(cytoband assignment) for each gene.  Our novel approach combines probabilistic analysis of GO 
and with gene expression profiles arranged in the PCA-reduced space of biologically interpretable 
PCs in attempt to extract important biological processes associated with amplification or stage 
progression in NB, as well as to associate known genomic abnormalities with the transcriptional 
activity in these tumors.  In our algorithm, the gene projections on the first two PCs (“eigen-
tumors”), representing stage and MYCN amplification dimensions are considered.  The plane 
containing these projections is partitioned into segments as shown on Fig.1.  Each segment is 
defined by the angle of inclusion and the angle of shift between the adjacent segments. Within each 
segment a sub-selection could be made for genes differentially-expressed between tumors of various 
phenotypes (e.g. stage 1 vs. 4, or MYCN not amplified vs. amplified).  Thus, a bin is formed 
containing sub-selected genes from this segment. Next, for each gene in the segment GO 
annotations and chromosomal locations are obtained.  Then, the probability of finding by random 
chance a chromosomal location or a specific node or leaf of GO is calculated for every Unigene 
cluster from the total number of occurrences in the bin and on the micro-array chip.  This 
probability is further adjusted for multiple comparisons using the Bonferroni correction.  The over-
represented chromosomal locations are visualized in the PC subspace of eigen-tumors as shown on 
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Fig.2.  These chromosomal locations are associated with specific patterns of expression and 
stage/MYCN amplification, based on their location in the eigen-tumor space. 
 
Our analysis of NB tumors revealed associations between the known genomic abnormalities (such 
as chromosome 1p deletions) and the corresponding transcriptional activity, as well as major 
biological pathways differentiating stage and amplification.  Fig.2 shows the chromosomal locations 
that are over-represented in the corresponding segments of genes differentially expressed between 
MYCN amplified and non-amplified tumors of ST4. In addition to known genomic abnormalities, 
we found new chromosomal locations that could be of potential interest. 

                       
.  
  
 
Fig.  Diagram of partitioning of 
PC subspace.                                                
 

Fig.2  Cytobands that are over-
represented in the MYCN 
amplified tumors.  

 
 
The second component of our approach is the GO analysis of genes arranged in the eigen-tumor 
space as described above.  Calculating and assigning probabilities of over-representation allowed us 
to select biological processes that are associated with gene expression patterns underlying a 
particular NB phenotype. We show that amplification of MYCN in ST4 strongly correlates with up-
regulation of the genes involved in the ribosomal machinery, corroborating the results of several 
studies implicating MYCN in the regulation of ribosomal genes [2].  In contrast, the advanced stage 
(ST4) in the absence of MYCN amplification correlates with a significant increase in the expression 
of the genes involved in the cell cycle with no further increase in the expression of these genes upon 
MYCN amplification in ST4. 
   
In conclusion, we developed an approach of analysis of gene expression data that combines a priori 
clinical-biological information with micro-array generated gene expression profiles.  The 
combination of PCA and probabilistic GO analysis allows to extract biologically important features 
from the data and associate expression with genomic abnormalities and biological processes that 
may suggest a mechanism of tumor development.  We applied this method to NB, where we 
validated our approach by confirming existing knowledge and providing new insights.   
 
 
1. Brodeur, G.M., Neuroblastoma: biological insights into a clinical enigma. Nat Rev 
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expression of a large set of genes functioning in ribosome biogenesis and protein 
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Suitability of Spherical SOM for Gene Expression
Analysis

Hirokazu Nishio, 1 Ken-nosuke Wada, 2 Yoshiko Wada,2

Md. Altaf-Ul-Amin,1 Shigehiko Kanaya1

Keywords: Spherical Self-Organizing Maps, microarray, gene expression, dimension reduc-
tion, N-measure, distortion

1 Introduction.

Self-Organizing Maps(SOM)[1] are visualization methods by creating dimension-reduced fea-
ture maps, where units in low-dimensional represantaion space are associated with those in
original high-dimentional data space. In the present study, we consider two-types of SOMs,
one has planar representation space called ‘Plain SOM’ and the other has spherical space
called ‘Spherical SOM’[2]. In general, the profile vectors of gene expression are normalized to
unity in length in order to focus not on the absolute quantity of expression but the similarity
of the direction[3]. Since the normalized vectors are distributed on the surface of a super-
sphere, it tempts to think that the Spherical SOM is suitable for the data of gene expression.
But this idea had no ground because the surface of a sphere is topologically different from
that of a supersphere. In the present study, we propose the measure for suitablity of SOM
to a given data set, and confirmed that the Spherical SOM was actually suitable for the data
of gene expression.

2 Method.

If a SOM has the representation space which can express the structure of data without
distorting, distance between units in representation space should be proportional to that in
original data space. This is quantified by the linearity of ‘d-d plot’ as follows: All pairs
of the units are plotted in the two-dimensional plane. Horizontal axis corresponds to the
distance in representation space, and the vertical axis corresponds to the distance in data
space. The linearity of a distribution is quantified by the coefficient of determination of
regression analysis, which is called ‘N-measure’.

3 Result and Discussion.

In order to demonstrate the validity of N-measure, we examine three data sets as follows:

• Randomly distributed 1800 points on a plain surface consisting of two axes. Variance
of each axis is unity.

• Randomly distributed points on a sphere surface consisting of three axes. Initially
three dimensional 1800 vectors are randomly generated. Here, variance of each axis is
unity. Then all the vectors are normalized to unity in length.

• Actual 8-dimensional normalized gene expression profiles of B. subtilis.

1Nara Institute of Science and Technology, Graduate School of Information Science, 8916-5
Takayama, Ikoma, Nara 630-0101. E-mail: hiroka-n@is.aist-nara.ac.jp

2UNTROD Inc. 4-4-123 Aoyama, Narashi, Nara-ken, 630-8101
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2

Figure 1 shows the d-d plots for those data with Plain SOM (upper) and Spherical SOM
(lower). In case of plain surface data, a linear relationship is observed in the d-d plot of
Plain SOM (left upper). The N-measure of Plain SOM (0.8901: see Table 1) is greater than
that of Spherical SOM (0.3212). On the other hand, in case of sphere surface data, a linear
relationship is observed in the d-d plot of Spherical SOM (middle lower). The N-measure of
Plain SOM (0.3782) is less than that of Spherical SOM (0.9764). Thus, suitablity of SOM
to a given data set can be estimated by N-measure. The N-measure increases when a SOM
has the representation space which can express the structure of data without distorting. In
case of actual 8-dimensional gene expression data, the N-measure of Plain SOM (0.1682) is
less than that of Spherical SOM (0.6044). We conclude the Spherical SOM is suitable for
the analysis of the normalized data of gene expression.
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Figure 1: d-d plot(upper:Plain SOM, lower:Spherical SOM)

　 Plain SOM Spherical SOM

data on plain surface 0.8901 0.3212

data on sphere surface 0.3782 0.9764

data of normalized gene expression 0.1682 0.6044

Table 1: coefficient of determination
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In Silico Identification and Analysis of Tissue-Specific Genes 
using the Database of Human Expressed Sequence Tags 

 
Sheng-Ying Pao 1, 2, Win-Li Lin 1, Ming-Jing Hwang 2 

 
Keywords: tissue-specific genes, genome wide expression profile, EST 
 

1 Introduction.  
 
Genome wide transcriptome analysis with histological information can provide insights to identify 
candidate genes that are differentially expressed in certain tissues. At the transcriptome level, 
differential expression of genes plays key roles in maintaining and regulating cellular functions. 
Genes preferentially expressed can be characterized by their significantly different expression 
levels of transcripts in various tissues. In this study, tissue-specific genes were identified using 
human expressed sequence tags (EST). 

 
2 Methods.  
 
EST data, GenBank reports from dbEST, and UniGene build #161 were downloaded from NCBI 
(National Center for Biotechnology information). We extracted a description triplet for each EST 
library under the field “Title” (Lib. Name), “Tissue” and “Organ”. According to the triplet, each 
library was classified into a corresponding category of tissue. The classification process is illustrated 
in fig.1 wherein libraries are automatically classified by tissue and organ unless they are different, 
both null, or inconsistent with the title; in these cases, manual classifying and checking with title was 
carried out. To mitigate variation due to unspecified tissue and artificially modified expression, 
libraries described as subtracted, differentially displayed, normalized, or coming from multiple 
tissues were excluded. Libraries without a clear description in the triplet were also discarded. By 
subjectively selecting category names of classified libraries, a “target_tissue list” consisted of 
interested tissue names was then generated. 
 
For each category in the “target_tissue list”, the corresponding EST gi numbers and the UniGene 
clusters to which they belong were retrieved automatically. For each target tissue in the 
“target_tissue list”, we performed the differential expression evaluation according to [1]:  
 

 
 

where x and y are the number of ESTs matching the UniGene cluster from the target tissue and 
from all the other tissues, respectively. Likewise, N1 and N2 are the total number of ESTs from the 
target tissue and from all the other tissues, respectively. Clusters with N1<1000, N2<1000, x≦
0.05*N1, or y≦0.05*N2 were excluded from the test for insufficient sample size. 
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3 Results and discussion.  
 
We discarded 1898 EST libraries as described in methods, leaving 6,247 libraries with 3,352,546 
ESTs for analysis. Along with UniGene build #161, they provide sufficient data to identify tissue 
specific genes by in silico data mining. For theses libraries we constructed a tissue hierarchy and 
classified the libraries into 343 categories of tissues, of which we selected 113 categories to form a 
target_tissue list to detect differentially expressed genes. This “target_tissue list” provides a 
flexible framework for detecting differential expression in tissues of interest for various research 
purposes aiming to, for example, analyze the expression divergence of genes in one special cell 
type from multiple tissues, or to compare genes specific to diseased and normal states. 
 
To evaluate our approach, we compared the placenta-specific genes identified in our results with 
those of Ref [2], in which 90 preferentially expressed genes were reported, of which 19 have 
subsequently been removed from UniGene and have become nonexistent in UniGene build #161. 
Our analysis yielded 508 genes preferentially expressed in placental libraries with p<10-6, which 
included all of the 71 genes reported in [2] that remained existent in UniGene build #161. 
 
In summary, we have constructed a tissue hierarchy for EST libraries and identified differential 
expressed genes in 113 tissues. The tissue-specific gene information derived from this study will be 
useful in functional genomics research.  
 
4   Figures. 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 1. Procedure for EST library classification. 
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Regulation of NF-κκκκB responsive genes in a single cell 
 

P. Paszek1, T. Lipniacki2, A. Brasier3, B. Tian3, B. Luxon3, M. Kimmel4 

 
Keywords: Stochastic regulation of transcription, early and late genes, NF-kappaB 
 
1 Experiment and problem formulation. 
 
Nuclear factor κB (NF-κB) regulates numerous genes important for pathogen or cytokine 
inflammation, immune response, cell proliferation and survival. In resting cells it remains inactive 
in cytoplasm, bond to its inhibitor IκBα. In response to extracellular signals such as TNF, IκBα  is 
destroyed, NF-κB enters the nucleus, binds to specific regulatory sites and triggers gene 
transcription. Our observations [1] show (Fig. 1) that in HeLa cells, the NF-κB responsive genes 
can be grouped into 3 characteristic classes: early (such as IκBα, A20 or IL8) for which the amount 
of mRNA transcript has its maximum at about 1 hour, intermediate (such as NF-κB1 or TNFAIP2) 
with the maximum at 3 hours and late (such as NAF1 or NF-κB2) with the maximum at about 6 
hours. In contrast to some other cell lines, in HeLa cells NF-κB is not effectively lead out of the 
nucleus by the newly synthesized IκBα, but rather, after entering the nucleus at 15 min from the 
beginning of TNF stimulation, it remains there for at least 6 hours [1]. This implies that some other 
cofactors are needed to initiate and terminate expression of genes belonging to these 3 groups.  The 
aim of this work is to propose the mechanisms of gene regulation at a single cell level able to 
generate these 3 characteristic classes of expression profiles involving a small number of co-
regulators.  We will not try to identify these co-regulators, which at this point should be understood 
in broad sense as activating (e.g. histone acetylation) or repressing events, not necessarily 
connected with DNA protein binding. 

 
 

Figure 1:  Kinetics of NF-κB-dependent gene expression in HeLa cells [1]. Data represent the mean of three 
independent time courses analyzed by high-density microarrays. In this experiment the NF-κB nuclear 
translocation is enabled by culturing cells in the presence of doxycycline (Dox). The expression profiles for 
selected genes of each group where confirmed by Northern blots.  
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2 Model and results. 
 
The observed profiles of expression may be explained by assuming that all 3 classes of genes are 
regulated by at most 2 co-activators (not including NF-κB) and 1 repressor. We assume that: (1) Each 
gene has two potentially active alleles, and the activation and repression of these alleles proceed 
independently. (2) Expression of any early gene is initiated by NF-κB binding, while to initiate 
expression of an intermediate gene additionally one co-activator is needed, and to initiate expression 
of late genes two co-activators are needed in addition to NF-κB.  (3) Transcription of all genes is 
terminated by a repressor.  (4) All genes have the same mRNA degradation halftime equal to 30 min. 
(5) Binding of activators and repressor occur in a stochastic way, with binding halftimes (chosen to fit 
experimental expression profiles) of 10min, 70min, and 4 hours, respectively, for activators and of 
70min for the inhibitor.  

 
 
Figure 2: The mRNA profiles for early, intermediate and late genes.  First 3 rows show mRNA profiles in 
single cells, while the profiles in last row result from averaging over population of 1000 cells. These latter 
profiles should be compared to experimental data in Fig. 1. The kinks visible on single cell profiles correspond 
to initiation or termination of expression in any of two homologous copies of the gene. The difference among 
single cell profiles is larger for late genes and as a result the averaged expression profile is broader, what is well 
confirmed in Northern blot data.  
 
We have shown that the three classes of profiles can be explained by a relatively small number of 
regulatory factors.  Moreover, our analysis shows that, especially for late genes, the single cell mRNA 
profiles may be very different from the averaged profile. The single cell experiments testing this 
hypothesis are currently underway. 
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Stochastic Models Inspired by Hybridization

Theory Improve Measures of Gene Expression in

Affymetrix geneChip arrays

Zhijin Wu 1 Rafael Irizarry 2

Keywords: oligonucleotide arrays, expression measure, empirical Bayes

1 Introduction.

High density oligonucleotide arrays have been widely used to measure gene expression in
many areas of biomedical research. Affymetrix GeneChip arrays are among the most popular.
In the GeneChip system, a fair amount of pre-processing and data reduction occur after the
image processing step, including background adjustment, normalization and summerization.

In Affymetrix GeneChip arrays, each gene is probed by 11-20 short oligonucleotides
that perfectly match to mRNA sequence of the gene, refered to as perfect match (PM)
probes. In order to account for optical noise and cross-hybridization, Affymetrix pairs each
PM probe with a mismatch probes (MM) that is identical to the PM except the middle
base. The intensities observed on the MM probes are subtracted from the PM intensities
to give background-corrected intensities in the default algorithm (MAS 5.0) for expression
measure. The background-adjusted intensities from each probeset is summarized to define
the expression measure of the corresponding gene.

Various alternative algorithms of obtaining expression measures have been developed and
shown to outperform MAS 5.0 ([1], [2]). Among those the robust multi-array analysis (RMA)
has become a popular substitute for MAS 5.0. RMA uses a global background adjustment
that substabtial gains in precision with minor sacrifices in accuracy.

The accuracy of RMA can be improved when background is adjusted in a more specific
fashion. The challenge is to do so without much sacrifice in precision. Since the release of
the probe sequences by Affymetrix, its relationship with background hybridization has been
observed by different groups. A stochastic model based on molecular hybridization theory
has been proposed to describe various components of probe intensity([4]). In this poster we
present an improved expression measure based on this sequence dependent model.

2 Method and Result

Our model for the PM intensity contains optical noise, non-specific binding (NSB) and gene-
specific binding (GSB). For each PM/MM probe pair,

PM = O + NPM + S, where log(S) = s + a (1)

MM = O + NMM

The optical noise O is considered to be a global effect identically distributed for each probe.
The NPM , NMM refer to NSB for the PM and MM probes respectively. S stands for the
observed specific intensity and is composed of probe effect a and specific signal s.

1Department of Biostatistics, Johns Hopkins University. E-mail:zwu@jhsph.edu
2Department of Biostatistics, Johns Hopkins University. E-mail:rafa@jhu.edu
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Strong probe effect a in detecting signal was first observed by Li and Wong[1]. Naef
and Magnasco [3] propose a simple yet effective model, in which the affinity of a probe is
described as the sum of position-dependent base affinities, for predicting a. We propose that
both specific binding and non-specific binding can be described with Naef and Magnasco’s
model.

Since the optical noise variance is negligable when comared to the variance due to the
NSB component, we adjust for O by considering it as a constant. The NSB components
log(NPM ), log(NMM ) are modeled as correlated bivariate normal random variables with
means related to the probe affinities. We obtain the specific binding by minimizing the
mean squared error of s: ŝ = E[s|PM, MM ]. For the expression measure presented in this
poster we imposed a uniform distribution of s.

After extracting specific signal from each probe, we quantile normalized the adjusted
intensities and obtained an expression measure using median polish on the normalized and
background adjusted intensities. We denote the new expression measure GCRMA because
it uses base (GCTA) composition of probes and same summerization and normalization as
RMA.

Assessments on the Latin-square dataset provided by Affymetrix suggest that with com-
parable precision to RMA, GCRMA has much better accuracy than MAS 5.0 and some of
the widely used alternativevs including RMA, dChip and PerfectMatch. The improvement in
accuracy is most obvious in moderate expression levels, where the bulk of the non-spiked-in
genes fall in the intensity distributoin.

The expression measures obtained using GCRMA can be used in further analysis, such as
differential expression estimation. However, with model (1) in place we can obtain estimates
of differential expression and standard errors for those estimates directly from the probe
level data. In this poster we present some preliminary results related to this work.
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Improving Extreme Pathway Computations

Steven L. Bell1 and Bernhard Ø. Palsson2

Keywords: metabolic networks, stoichiometric matrix, sparse matrices, convex cone

1 Introduction.

The abundance of genomic data available today allows for construction of genome-scale
metabolic networks for many organisms. The topology of the type of networks considered
here is determined by an m×n stoichiometric matrix, S, whose rows and columns represent
the system’s metabolites and reactions, respectively. The dynamics of the system is given by
ẋ(t) = Sv, where x is the m-dimensional vector of metabolite concentrations, “ ˙ ” denotes
time-derivative, and v is a vector of fluxes which we assume is independent of concentrations
and time.

Under the assumption that the system is in steady-state, we have that Sv = 0, and
to obtain biologically feasible solutions to this equation, we also impose the condition that
v ≥ 0. The solution set is a so-called convex cone which can be generated by a finite
(and unique up to a multiple) number of vectors, i.e., each biologically feasible flux vector
(when the system is in steady state) can be expressed as a non-negative linear combination
of these extreme pathways [2]. The extreme pathways are the edges of the convex cone, or
more precisely, they are conically independent, i.e., no such vector can be expressed as a
non-negative linear combination of any other vectors in the cone.

Given a metabolic network, where the metabolites are represented by the nodes and the
edges represent the associated reactions, we compute the extreme pathways using an algo-
rithm presented in [3] (see also [4]). The algorithm uses matrix operations similar to those
used in the well-known Gaussian elimination algorithm. Such operations require frequent
access to memory, significantly degrading performance of the algorithm if large matrices
are stored. Furthermore, the computational time (and the number or extreme pathways)
typically grows exponentially as the size of the network grows linearly. Existing implementa-
tions work well for relatively small networks, but are of limited use for genome-scale systems.
Here, we propose two means to improve the performance of computing extreme pathways: an
efficient sparse matrix storage and computational procedure and a scheme to select pivoting
columns which we will refer to as the exponential threshold method.

2 Description of the algorithm

We now give a simplified version of the extreme pathway algorithm. The algorithm may
be described as a sequence of tableaux T 0, T 1, . . . , T N , where the initial tableau is given by
T 0 = [ I S′ ], and the final tableau T N = [P 0 ]. In the initial tableau, S is the m × n

stoichiometric matrix, “prime” denotes transpose, and I is the n × n identity matrix (and
hence T 0 is an n × (n +m) matrix). The final tableau, T N , for some 0 < N ≤ m, consists
of the matrix P whose rows are the extreme pathways, and the zero matrix, 0, which has m

columns. Converting the right hand matrix S′ to the zero matrix is done column by column

1Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, San
Diego, CA. 92093-0412 E-mail: sbell@ucsd.edu

2Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, San
Diego, CA. 92093-0412 E-mail: bpalsson@bioeng.ucsd.edu

Dana Jermanis
Gene Networks

Dana Jermanis
89

Dana Jermanis


Owner
E1.



2

using elementary row operations, each tableaux corresponding to a column. For 1 ≤ i ≤ N ,
the tableau T i is obtained from T i−1 by first choosing a pivoting column of the right hand
matrix (originating from S′) to zero out, column j, say. Suppose there are pos positive, neg
negative, and z zero elements in column j. First, the z rows of T i−1 containing a zero in
column j are copied to T i. Then each of the pos rows which contain positive elements in
column j is combined (using an elementary row operation) with each of the neg rows which
contain negative elements in column j so that a zero is produced in column j of T i. More
precisely, if T i−1

s,j > 0 and T i−1

t,j < 0 for some s and t, then |T i−1

t,j |T
i−1
s + |T i−1

s,j |T
i−1

t is the

new row to be added to T i. (Here, T i−1
s denotes the sth row, T i−1

s,j is the (s, j)-element in

the tableau T i−1, and |x| is the absolute value of x.) Finally, all rows which are not conically
independent are deleted from T i. Hence, the number of rows in T i is at most z+ neg ∗ pos.

3 Sparse matrices and the exponential threshold method

The stoichiometric matrix contains few non-zero elements (about 5%) and although the final
pathway matrix is less sparse (about 25% non-zero elements), we believe that sparse matrix
methods used with success in similar algorithms, such as Gaussian elimination, can also
benefit implementations of the extreme pathway algorithm. Memory is conserved since only
non-zero entries of matrices are stored, and computational performance is improved since row
operations use only non-zero elements of the vectors. There are many storage schemes for
sparse matrices each with its own type of data structures, and the problem usually dictates
which particular scheme is employed ([1], pg. 37). From Section 2, we see that for the
extreme pathway algorithm it is important that individual column elements and whole rows
can be accessed efficiently, so the storage method must be designed with these objectives in
mind.
In Section 2 we saw that the aim of the extreme pathway algorithm is to zero out the

columns of the tableaux using elementary row operations. Furthermore, for a fixed iteration,
the number of rows to be added to the next tableau depends on pos and neg, the number of
positive- and- negative elements, respectively, in the pivoting column. Our proposed method
dictates that a column is processed only if pos ∗ neg < T, where T is some threshold. When
all the columns of a tableau have been tested, the threshold is raised (exponentially) and the
process starts anew, if there are any remaining columns to be zeroed out. The rationale for
the threshold method is that the sparse columns are processed first since they require less
computation, and postponing processing the denser columns may result in some of their non-
zero elements being zeroed out by the elementary row operations performed in the earlier
iterations, i.e., doing less work early may reduce the amount of work that has to be done
later, resulting in less overall work. Preliminary results seem to indicate that this is indeed
the case.
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Analysis of Heterogeneous Regulation in Biological
Networks

Irit Gat-Viks 1 2, Amos Tanay 1 2, Ron Shamir 1

Keywords: genetic and metabolic regulation, high-throughput data analysis, model learn-
ing algorithms.

1 Motivation.

Biological systems employ heterogeneous regulatory mechanisms that are frequently inter-
related. For example, the rates of metabolic reactions are strongly coupled to the con-
centrations of their catalyzing enzymes, which are themselves subject to complex genetic
regulation. Such regulation is in turn frequently affected by metabolite concentrations.
Metabolite-mRNA-enzyme-metabolite feedback loops have a central role in many biological
systems and call for modeling and learning of heterogeneous regulatory mechanisms.

2 Method.

In this work we study steady state behavior of biological systems that are stimulated by
changes in the environment (e.g., lack of nutrients) or by internal perturbations (e.g., gene
knockouts). Our model of the system contains variables of several types, representing diverse
biological factors such as mRNAs, proteins and metabolites. Interactions between biological
factors are formalized as regulation functions which may involve all variable types and com-
plex combinatorial logic. Our model combines metabolic pathways (cascades of metabolite
variables), genetic regulatory circuits (networks of mRNAs and transcription factors protein
variables), protein networks (cascades of post-translational interactions among protein vari-
ables) and the relations among them (metabolites may regulate transcription, enzymes may
regulate metabolic reactions). We show how such models can be built from the literature and
develop computational techniques for their analysis and refinement given a collection of het-
erogeneous high-throughput experiments. We develop algorithms to learn novel regulation
functions in lieu of ones that manifest inconsistency with the experiments.

Our approach is innovative in several aspects:
• We model a variety of variables types, extending beyond gene network studies, that focus
on mRNA, and metabolic pathways methods, that focus on metabolites. Consequently, our
model can express effects of translation regulation and post translational modifications.
• Our approach allows handling feedback loops as part of the inference and learning process.
This is crucial for adequate joint modeling of metabolic reactions and genetic regulation.
• We build an initial model based on prior knowledge, and then aim to improve (expand) this
model based on experimental data. We show that formal modeling of the prior knowledge
allows the interpretation of high throughput experiments in new level of detail.
• Our algorithms learn new transcription regulation functions by analyzing together gene
expression, protein expression and growth phenotypes data.

1School of Computer Science, Tel-Aviv University, Tel-Aviv 69978, Israel. Email:
{iritg,amos,rshamir}@post.tau.ac.il.

2These authors contributed equally to this work.
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3 Experimental Results

Our methodologies and ideas were implemented in a new software tool called MetaReg. It
facilitates evaluation of a model versus diverse experimental data, detection of variables that
manifest inconsistencies between the model and the data, and learning optimized regulation
functions for such variables. Graphical representations provide overview of results and high-
light model inconsistencies. We used MetaReg to study the pathway of lysine biosynthesis
in yeast. We performed an extensive literature survey and organized the knowledge on the
pathway into a model consisting of about 150 variables. As part of model construction,
we reviewed the results of many low throughput experiments and included in the model the
most plausible regulation function of each variable. We assessed the model versus a heteroge-
neous collection of experimental results, consisting of gene expression, protein expression and
phenotype growth sensitivity profiles. In general, model inference agreed well with the ob-
servations, confirming the effectiveness of our strategy. In several important cases, however,
significant modeling discrepancies indicated gaps in the current biological understanding of
the system. Using our learning algorithm we generated novel regulation hypotheses that
bridge some of these gaps. We also showed that our method attains improved accuracy in
comparison to extant network learning methods.
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CAMP: a computational system for Comparative 
Analysis of Metabolic Pathways 
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1 Introduction. 
 
We present a systematic method for comparing the metabolic pathways based on KEGG (Kyoto 
Encyclopedia of Genes and Genomes) [1] reference pathway data. Our comparison of over 100 
metabolic pathways simultaneously can help researchers to figure out what happened in the course 
of the evolution and adaptation in each well-defined metabolic pathway. The comparison results 
can be used to improve the genome annotation results by either identifying missing genes, finding 
alternative routes or reducing annotation errors. CAMP (Comparative Analysis of Metabolic 
Pathways) will be freely available for academic or nonprofit use at http://gel.ym.edu.tw/camp/. 
 
2 Materials and Methods. 
 
The KEGG provides metabolic pathway information for each completely sequenced organism in 
xml file format [1]. Each file contains organism-specific metabolic pathway information. We have 
used these xml files as our input source, and the algorithm of our computational system outputs the 
percentage of similarity and/or difference between any two metabolic pathways. We have stored the 
pathway information as a graph GX = (V, EX) in the adjacency list [2] for organism X. V is the 
common set of vertices representing the compounds involved in reference pathway G. EA is a set of 
edges representing all the possible metabolic reactions in organism A referenced to pathway G. So 
GA and GB represent the information of pathway G in organism A and B, respectively. The value of 
denominator here is the number of relations belongs to GB, and, the value of similarity is the 
number of relations shared in both GA and GB. The percentage score (similarity over denominator) 
is returned at the end. Therefore, the critical point of this comparison is to figure out how to define 
the relation. Our current work indicates this relation can be appropriately determined by three 
parameters: length of reaction paths, whether to include those relations not existed in both 
organisms for similarity comparison, and type of comparisons either functional or topological. The 
last one is illustrated in Figure 1. 

 
Figure 1: The difference between topological and functional comparison in the adjacency list. 
Where A and B represent the compounds (vertices), x and y represent the reactions (edges). 

 
3 Results and Conclusion. 
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The metabolic pathway comparison has been implemented by Java with well-organized source code 
and comments, as well as JavaDoc API. A web-based query page and a Java applet are provided for 
displaying the comparison results. In the example shown below, we have compared the 
carbohydrate-related metabolic pathways of different Vibrio species. Our comparison results are 
consistent with the phylogeny analysis results currently available, i.e. the Vibrio vulnificus (VV) 
YJ016 is much similar to Vibrio vulnificus CMCP6, than with Vibrio parahaemolyticus (VP) and 
Vibrio cholerae (VC). This result is shown in Figure 2. 
 

 
Figure 2: Comparisons of carbohydrate-related metabolic pathways in Vibrio species. 

 
To know exactly what the differences are and why these Vibrio species are so different in the 
galactose metabolism pathway, the system will response with three pathway views. The first two 
can display those enzymes only specifically present in VC when referenced to those in VV YJ016, 
and vice versa. The last view shows the enzymes that are shared among these organisms. All the 
metabolic pathways of the target organism can also be compared with those of many other 
organisms as shown in the example of Figure 3. The output results can not only be presented along 
with the taxonomy information of these organisms, but also be sorted or clustered on both axes. 
Therefore, our CAMP system can be used to thoroughly compare metabolic pathways in many 
different ways with annotated genomic information. 
 

 
Figure 3: Comparison of γ Proteobacteria against E. coli K-12 MG1655 in 113 metabolic pathways. 
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Chi-Ying F. Huang2, Cheng-Yan Kao1
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1 Introduction. 
 
In the post-genome era, systems biology is an emergent field for understanding of biological 
systems at whole system-level instead of single gene or protein.  There are numbers of exciting and 
profound issues that are actively investigated such as the gene regulation and biochemical network.  
In this study, we focus on the transcriptional networks.  The traditional clustering algorithm is 
applied to the gene expression data to acquire some groups of genes.  The signature algorithm [2] 
can be used to refine and extend these groups of genes generated by clustering algorithm.  When a 
group of genes with common cis-regulatory binding motif in promoter region, and we can assume 
these genes are co-regulated by the same trans-regulatory factor.  Not only the binding motif 
information is investigated but also known pathway, protein interactions and cellular component of 
Gene Ontology information are referred [3].  We performed this idea and approach to find the most 
upstream regulators.  Appling this approach to cancer research, these genes may be novel 
oncogenes.  We integrated some biological databases and also provided some bioinformatics tools 
as web service for biologists to predict the transcriptional networks in silico.  By this approach, we 
found some important transcriptional module and transcription factors, and we will exam it by 
RNAi experiment in vitro or in vivo.  Besides, the more details of our result can be found on our 
website (http://insilico.csie.ntu.edu.tw:9999/RECOMB2004/). 
 
2 Method. 
 
In order to obtain more precise transcriptional networks, we integrated the some well-know 
biological databases locally, updated periodically and developed some bioinformatics software 
packages as followings: 
 
(1) MotifFinder: This package can accept a list of genes of interest as input. The upstream 
promoter sequences of these genes are extracted from DBTSS database. The range of promoter 
sequences takes as parameter from -3000 to +1000. It will also process the retrieved result from 
TRANSFAC and find the common cis-regulatory elements and corresponding trans-regulatory 
factors as output. 
(2) GOFinder: The given input is a list of genes of interest. The biological process, cellular 
component, and molecular function categories of Gene Ontology is shown. Besides, the biologists 
can search the gene ontology information with different ontology level from 1 to 5. 
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(3) PathwayFinder: The pathway package can accept a list of genes of interest as input. All the 
BioCarta and KEGG pathways containing these genes will be reported in a descendant order 
according to the number of input genes in a pathway. 
(4) ProteinInteractionFinder: The interaction tool can take a list of genes of interest as input. The 
protein-protein interactions information from DIP and the annotations of these interacting proteins 
retrieved from SWISS-PROT will be shown.  
 
We use the bottom-up approach to construct the transcriptional networks from small transcriptional 
modules.  The rectangle box stands for a transcriptional module. The gene or protein represented as 
white ellipse, and the black ellipse is the protein with interactions (Figure 1). The detail processes 
described as following: 
 
Step1. As a first step for further analysis, we applied the k-means clustering algorithm to gene 
expression data.  The genes in the same cluster c are possibly and potentially co-regulated. 
Step2. After generating the k clusters, we applied the signature algorithm to each cluster c to obtain 
a new cluster c’ as ‘transcriptional module’ initially.  The signature algorithm can be used to extend 
and refine partial knowledge about a pathway module. The genes in the same module c’, therefore, 
are more potentially co-regulated. 
Step3. Some useful bioinformatics tools are provided to analyze these modules and more 
annotations are extracted from GeneCards, GO, SWISS-PROT, NCBI for biologists. Genomics 
information such as binding motif and Gene Ontology are provided. Proteomics information such 
as pathway and protein-protein interactions is provided. Combining the biological information, the 
biologists can infer the regulators and construct transcriptional networks more precisely. 
Step4. Take the regulating genes or proteins as newer transcriptional module, and apply Step3 to 
these modules recursively. 

 
 

Figure 1: Construct transcriptional network from transcriptional module iteratively. 
3 Results. 
 
HCC microarray dataset, obtained from Stanford Microarray Database, contains 1648 differentially 
expressed genes in HCC vs. nontumor liver samples as analyzed by Chen et al. [1].  By our 
approach, we found some important transcription modules and some regulators can regulate these 
modules.  From further literature review, we also found the regulators involve in hepatocyte 
regeneration upon partial hepatectomy. Besides, we will exam it by RNAi experiment in vitro or in 
vivo. This approach may provide novel targets involved in the carcinogenesis of HCC. 
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Path Finding and Topology Correction in Biological
Networks

Ryan Kelley1, Astrid Haugen2, Bennet Van Houten2, Trey Ideker1

Keywords: biological networks, systems biology

1 Abstract

Systems biology requires the integration of diverse sets of biological data, such as microarray expression
data and protein interaction studies. Viewing these data in a network context is one way to achieve this
goal. In order to analyze data integrated in this manner, methods must be determined for discovering
significant relations in these networks. Previous work focused on identifying significant subgraphs.[2]
However, it is also useful to identify specific types of subgraphs, such as paths. Biologically, these paths
may represent a causal chain of events. In this work, we present a method for identifying such paths in a
network. This method builds on the previous work of Kelleyet al.[3] Briefly, this technique uses linear
programming to identify the highest scoring path of length L ending at each node, given the highest
scoring path of length L-1. Extensions to this work include a scoring correction for the topology of the
network. This is meant to correct the problem whereby nodes with many neighbors are more likely to
belong to a high scoring path.

Fitness data as described by Giaeveret al.[1] was obtained for the response ofSaccharomyces
cerevisiaeto arsenic, which was then incorporated into a species-specific metabolic map. Our method
was sucessfully used to identify signficant paths in this metabolic map. Specifically, 6 different paths
containing 10 unique metabolic reactions were discovered. These reactions are involved in the synthe-
sis/conversion of amino acids relevant to the arsenic response. These results suggest that this method
may be useful in analyzing other data sources in conjuction with different types of biological networks.

References
[1] Giaeveret al. (2002) Functional profiling of theSaccharomyces cerevisiaegenomeNature418, 387-391.

[2] Ideker T, Ozier O, Schwikowski B, Siegel A (2002) Discovering regulatory and signalling circuits in molecular
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1 Introduction.  
 

Presently, vast amount of sequence and expression data are available for several eukaryotic 
genomes. This provides us with the opportunity to actually predict both cis-regulatory elements 
(CREs) and putative regulatory networks (RN), whose expression is driven by a set of CREs both 
predicted or experimentally defined. And it has been shown previously that transcription regulation 
is often driven by multiple CREs, sometimes as much as 30[1, 2] 

The abundance of expression and sequence information used separately is not sufficient 
because (a) the process of expression regulation in eukaryotes is remarkably complex (b) CREs 
discovery represents a serious computational problem due to their size and minimal conservation. 
Our approach to the problem is to combine evolutionary conserved upstream regions from sets of 
possibly co-regulated genes into a dataset we use to predict single or composite CREs. This 
strategy is based on the assumption that most eukaryotic CREs occur inside evolutionarily 
conserved regions[3, 4]. We extend this analysis by searching a database of upstream regions with 
the set of CREs predicted in the first step. By doing this, we prove the CREs under investigation are 
over represented in the initial dataset and second we elucidate the proposed regulatory network (the 
initial dataset) by extending and/or refining the list of genes that indeed do have matches to a part 
of or to the entire CRE set. 

We created a pipeline, called Batch Sequence Analysis (BSA), which can accomplish the 
analysis process described above, without manual intervention. We present here the structure and 
logic of BSA and some preliminary results generated by BSA. 

 
1 Materials and Methods.  
 

We assembled a sequence database of upstream regions for 36389 genes (19093 human, 12988 
mouse, and 3980 rat genes). We used for this purpose the ENSEMBL database (version 19, 
www.ensembl.org). We defined our clusters of orthologous groups by querying the GeneKeyDB 
database (genereg.ornl.gov/gkdb) and the ENSEMBL compara database. The conserved regions are 
established through additive pairwise alignment with the bl2seq, after which all non-conserved 
sequences are masked. 
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The pipeline uses currently the MEME/MAST (meme.sdsc.edu/meme/website/intro.html) 
system for CRE/RN prediction. Parsers for these programs as well for the TRANSFAC format are 
included in the current Bioperl version (bioperl.org). The images representing the motif matches are 
created using the BioPerl GD library. We use the weblogo to create images of each CRE consensus 
(weblogo.berkeley.edu). All results are stored in a relational ORACLE database called PSITE 
(genereg.ornl.gov/gkdb). The pipeline is written in Perl and can be installed under LINUX/UNIX. 

 
2 Results and Discussion 
 

The general structure of the BSA pipeline is described in Figure1. The data generated by the 
pipeline is stored in the PSITE database after the CRE and RN steps. The input data set format is a 
simple list of several popular database identifiers (LocusLink, ENSEMBL, REFSEQ, GO, gene 
symbol, etc.). 

 
Figure 1: BSA pipeline structure. 

 
During the CRE step, new over-represented motifs are predicted and can be compared to a 

previously identified set of Positions Scoring Matrices (PSMs), TRANSFAC for example. Such 
comparison can be done at the PSM sequence match level by first looking for possible matches 
within the defined conserved regions to known motifs and then mining the PSITE database for 
overlapping matches. An example is shown in Table 1. 

 
Query motif ID Gene Start  Matching motif ID Gene Start  
Transfac ID X 6607 -753 ps4_000000000496 6607 -750 
ps4_000000000303 6789 -139 ps4_000000000491 6789 -145 

Table 1: Overlapping sequence matches between motif, predicted during the analysis and 
previously predicted or experimentally discovered CRE.  

 
The BSA report consists of all files created during the run. This includes the sequences that 

were retrieved, log files, graphic representation of the CRE and CRE matches. This report can aid 
experimentalists to formulate new hypothesis, concerning the transcription regulation of the genes 
that were analyzed and possible new interaction as new RN is predicted. 

We used different data sources to test the pipeline: GO families, microarray expression data, 
QTLs (Quantitative Trait Loci), etc. We will present here some of our findings. 

Though we have used BSA pipeline exclusively to search for CRE within the promoter regions, 
it can also be used to look for sequence motifs inside other sequence regions such as UTRs, introns, 
etc.  
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Towards Automated Explanation of
Gene-Gene Relationships

WacÃlaw Kuśnierczyk,1 Astrid Lægreid,2 Agnar Aamodt1

Keywords: microarrays, gene-gene relationships, knowledge-intensive problem solving, it-
erative search, public databases and tools.

1 Introduction.

During the recent decades research in molecular biology experienced several paradigm shifts
that changed the researchers’ approach to solving particular problems in the field. The
invention of microarray technology in the last decade of the previous millennium can certainly
be seen as one of those paradigm shifts [3]. However, although there appear first reports
showing efforts to combine various resources of genomic data instead of investigating just
one source (e.g., [2, 4]), the understanding and interpretation of the results—the key issue
in any attempt to a discovery—is still entirely left to the human.

Microarray data represent a reasonable source of new hypotheses on gene function and
between-gene relationships. In order to fully understand and explain these hypotheses,
biological background information from many resources has to be explored and combined.

We propose a novel method intended to aid a researcher in understanding hypothetical
relationships between genes, e.g., genes not previously known to be related. In order to justify
a tentative link between genes, the sequences, promoter regions, protein structure, function
and other properties may have to be investigated for these and possibly other related genes.
Although a manual search for information that would link two genes is theoretically possible,
in practice it may be a very tedious task. Our approach is an attempt to design and imple-
ment a high-level wrapper for existing databases and tools, providing an automated process
of forming relevant human-readable explanations. The proposed solution draws from the
achievements of research in artificial intelligence—knowledge representation and knowledge-
intensive reasoning, non-deductive inference mechanisms, and machine-learning [1].

2 Methods.

The proposed system is an intelligent interface between the user on one side, and remote
databases and publicly available tools on the other side, enhanced by background knowledge
in molecular biology. Its modular architecture is illustrated in Fig 1. A typical question
that can arise from a microarray experiment and may be asked to the system is of the form
How are genes g1 and g2 related? or What might be the causal relationship between genes g1

and g2? The exact syntax of the query depends on the actual implementation of the query
interface module (QI).

The query, translated into the internal representation language, is interpreted by the core
reasoner (CR), which utilizes general domain knowledge (GDK) to construct an explanation
chain that links the two investgated genes. The GDK is modelled as a multi-relational
semantic network, a kind of ontology, where each concept and relation are represented as a

1Department of Information and Computer Science, Norwegian University of Science and Tech-
nology, Sem Sælandsv. 7, 7491 Trondheim, Norway. E-mail: {waku,agnar}@idi.ntnu.no

2Department of Cancer Research and Molecular Medicine, Norwegian University of Science and
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distinct object. The CR contains inheritance and propagation methods for reasoning over
a combined set of relations (e.g. causes, has-function, has-structure, has-subclass, has-part,
triggers, inhibits, etc.), assigning a specific ‘explanatory strength’ to each relation. Data of
different types, related to the queried genes, are retrieved from databases (DB) and matched
with the help of available tools (T). The connection between the system and various public
resources goes through dedicated interfaces responsible for contacting a resource suitable for
a particular task and in a way specified by the resource’s query interface. After the concepts
have been instatiated with specific data coming from the query and from databases, the
system attempts to construct an explanation by searching for one or more paths in the
semantic network that would connect the two genes. The retrieval of information needed to
instatiate the concepts is repeated iteratively until a pathway is found, or specific search-
limiting criteria are met.

An explanation is output through the explanation module (EI), and the user may or may
not accept it, thus giving feedback for the search process. The explanation may be refined at
a later time, and the result may be retained in the case-base (CB) for further reference and
to boost a search similar to a previously completed one. An explanation is of the form Gene
g1 regulates gene gx which in turn produces a protein that may interfere with the action of
gene g2, though typically it would be much more complex.
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QI EI
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DIDIDB DIDIT

HG/U

QI EI

GDK
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DIDIDB DIDIT

case base

core reasoner

databases

explanation interface

general domain knowledge

hypothesis generator, user

query interface

tools

CB:

CR:

DB:

EI:

GDK:

HG/U:

QI:

T:

Figure 1: The architecture of an automated system for explanation of gene-gene relationships.

Note on the implementation The system is currently in the design phase. The specific
modules will be implemented concurrently and a functional version of the system is planned
to be released by the end of year 2005.
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1 Introduction.  
 

Proteins can be thought of as being organized into networks, with proteins connected by 
virtue of physical or functional interactions – such network models are becoming increasingly 
important in system biology and medicine.  To date, many useful experimental and computational 
methods have been developed for finding functional linkages among proteins.  Unfortunately, none 
of these are comprehensive, and all show limited accuracy and proteome coverage.  Therefore we 
are, currently, able to detect only a fraction of the total linkages between proteins, with many left 
undetected. 

Here, we propose a method to find new functional linkages between proteins based on the 
proteins’ already known interaction partners in an existing network. The fundamental idea is that 
two proteins that are linked to similar groups of proteins (i.e., that share a network neighborhood) 
are more likely to be linked themselves. This general idea has been already used to verify the 
quality of protein interactions 1 or to suggest new linkages in a variety of biological networks 2. 

In this analysis, we discovered new functional linkages between yeast proteins by analyzing 
the existing yeast functional network.  In this preexisting network, pairs of yeast proteins were 
linked if they were observed to operate in the same cellular pathway/system via a variety of large-
scale analyses 3-10.  Each link carries a real-valued measure of confidence.  The method we describe 
here allowed us to discover several thousand additional linkages in yeast, and to improve the 
overall quality of the yeast protein network. 

    
2 Method and Results.  
 

Starting from a reasonably accurate yeast protein network (the result of an integration of an 
variety of functional genomics data 11), we calculated a matrix of protein functional linkages.  In 
this matrix, we have real-valued confidence scores instead of simple binary values for the linkages, 
thus, each row (or column) of the matrix represents the “context vector” of a protein, or the list of 
linkages it participates in, and their relative strength.  Missing linkages were indicated by zero 
entries in the matrix.  Using this matrix, we calculated the Pearson correlation coefficient between 
the genes’ context vectors, including in the calculation only those entries in which at least one of 
the two genes had a non-zero value.  The resulting correlation coefficients indicate the degree of 
similarity between the overall network neighborhoods of each pair of genes, regardless of whether 
the genes were previously linked.  Protein pairs were sorted by correlation coefficient, and we 
calculated the likelihood that the pairs of proteins were in the same KEGG pathway 12 as a function 
of correlation coefficient. 

We found that the quality of linkage by context depends strongly on the preexisting network.  
We compared linkages by context from three different groups of preexisting linkages, each with the 
same size but different quality, made by replacing high quality linkages with low ones (Fig A).  
Assessment of the quality of linkages derived only from network context (Fig B) shows that given a 
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reliable starting network, this method produces additional protein functional linkages of reasonable 
accuracy.  Thus, for the many ongoing attempts to integrate functional genomics data and protein 
interactions, this approach represents a simple but powerful to improve the final networks. 

 
3 Figures. 

 
 

Figure (A). Dependence of the linkages derived from network context on the quality of the initial linkages.  As 
the quality of initial network decreases, the quality of the context-derived linkages decreases correspondingly.  
(B) Assessment of linkages derived only from network context.  The linkages derived from network context 
show better performance than preexisting linkages, linkages from both preexisting network and its context, or 
linkages from only network context.  Linkages derived only from network context still show very significant 
likelihood of being correct (i.e. much better than random chance of proteins being in the same pathway).  
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1 Introduction.  
 
Boolean network model [1] may provide useful insights for network dynamics at the coarse level. 
Recently Boolean network has been extended to cope with certain randomness inherent in biological 
system as Probabilistic Boolean network [4]. While Probabilistic Boolean network is a step forward 
toward a better mathematical model with capability to abstract uncertainty in biological system, it fails 
to describe context specific determinism of regulatory system.  Context can be defined as a certain 
condition under which a limited number of genes are tightly regulated by each other via specific 
cellular mechanisms to perform a specific task [2].  This specific task can be a different developmental 
stage, or tissue specific function, resulting in a specific cell-type. The change of this context will result 
in the change in the set of genes that are highly interactive, and probably their connectivity and 
relationships. Different biological contexts can also correlate with different diseases or might be a 
reason why a certain group of patients respond to a therapy while others do not. We started to study 
this problem and have been developing a context-sensitive Boolean network (cBN) model that will 
abstract the following hypothesis; regulatory mechanism itself in cellular system is static and hard-
coded in its genetic code (genomic information), but its activation and inactivation (transcriptomic 
information) is context sensitive.  
 
While high-throughput gene expression profiling provide vast amount of data for cellular system, 
most of those measurements come from the stead state observation of the system.  Suppose we infer 
rules from steady-state observations, would the network driven by these rules mimic behavior of 
biological process?  For answering this question, one plausible way we can make sense out of a rule-
making procedure is to see what it does in a case we understand the ground truth through the 
simulation of a small synthetic network driven by some artificial rules. In addition, how is the 
sensitivity and stability of the network to the methodology of rule formation? Although the stability of 
a large random Boolean network was well studied both analytically and mathematically [1,3], there 
has not been extensive study for their structures and the inference of model parameters based on 
steady-state observations, and their relevance to approximating certain biological systems behavior. 

 
2 Results.  
 
Fig. 1 shows the effect of varying the extent of data consistency on the dynamics of the network and 
the recall of rules based on simulated data. The recall is defined as the ratio of the number of relevant 
rules retrieved from the inferred rules to the total number of relevant rules originally constructed. 
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When applying cBN to microarray data, the simulation results showed that the total 31 melanoma 
sample states occupied 43% of the portion in the steady state distribution with perturbation probability 
p = 0.001, as shown in Fig. 2. 
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Figure 1: Effect of varying the extent of data consistency on the recall of rules and the dynamics of the network. 
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Figure 2: The estimated distribution after long run based on melanoma data. 
 

3 Conclusion.  
 
In this study, we tried to address if the rules inferred from the steady state observations and the 
network dynamics driven by those rules can provide us useful information by analyzing the sensitivity 
and stability of the network to the methodology of rule formation.  We used cBN model constructed 
by a set of artificial rules/functions and inferred rules from steady state observations of this artificial 
network. By comparing various statistics estimated from the network reconstructed by the inferred 
rules against those estimated from the network originally constructed by the artificial rule set, even 
though in this very limited context, we conclude that the inference of rules from steady state 
observations and its analysis might be quite informative to understanding of cellular system. We also 
conclude that the more consistent the data is the more stable the network is and the more useful 
information the network can provide.  When applied to microarray data, we observed the rules 
inferred in fact effectively drive cell states into cancer states. 
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1 Model formulation. 
 
Typically, in an animal cell there are tens or hundreds mRNA molecules of a given species and tens 
of thousand of corresponding protein molecules. Therefore processes such as mRNA translation, 
formation and degradation of protein complexes, and catalytic and spontaneous degradation, which 
involve a large number of molecules, may be modeled by ordinary differential equations (ODEs). 
In contrast, in a single cell, the regulation mRNA transcription may be discrete, governed by 
stochastic events of binding and dissociation of transcription factors. The stochasticity in regulation 
of transcription leads to large variability among cells. Since a given cell reacts to its own mRNA 
and protein levels, and not to the average levels in the population, the information about this 
variability is very important. In this work we apply our model on the NF-κB regulatory module [1], 
Fig. 1, to the single cell by modeling the transcriptional part of the regulatory network using a 
stochastic switch.  The mathematical representation of the model consists of 14 ODEs 
accounting for: formation of complexes and their degradation, transport between nucleus 
and cytoplasm, and transcription and translation, together with 4 equations accounting for 
binding and dissociation probabilities of NF-κB molecules to regulatory sites in A20 and 
IκBα promoters. The simulation time is split into small time intervals ∆t. Within ∆t’s, the 
ODEs are solved using the fourth order MATLAB solver. At the end of each interval, the 

 

 
Figure 1: The model involves two-compartment kinetics of the activators IKK and NF-κB, the inhibitors A20 
and IκΒα, and their complexes. In resting cells, the unphosphorylated IκBα  binds to NF-κB and sequesters it 
in an inactive form in the cytoplasm. In response to extracellular signals such as TNF, IKK is transformed from 
its neutral form (IKKn) into its active form (IKKa), capable of phosphorylating IκBα, leading to IκBα 
degradation. Degradation of IκBα releases NF-κB, which enters the nucleus and triggers transcription of the 
two inhibitors and numerous other genes. The newly synthesized IκBα leads NF-κB out of the nucleus and 
sequesters it in the cytoplasm, while A20 inhibits IKK converting IKKa into the inactive form IKKi, a form 
different from IKKn but also not capable of phosphorylating IκBα.  Bold arrows stand for very fast kinetics. 
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binding and dissociation probabilities are calculated, and the status of the two promoters, which may 
be ON or OFF, is evaluated and kept constant during the next time interval.  
 
2 Results. 
 
The stochasticity of the model implies that simulations, which mimic the behavior of single cells, 
performed with the same model parameters and the same initial conditions, are different. The 
averaged outcome resembles that of the deterministic model [1] and fits well the experimental data 
obtained for a population of cells, data not shown. Here we focus on variability in cell kinetics. 
 

 
 
Figure 2: The scatter plots show the abundance of protein versus its mRNA at three time points, for inhibitors 
IκBα and A20. Prior to TNF signal there is relatively little of IκBα mRNA molecules, while the IκBα protein 
(which is mostly complexed with NF-κB) is abundant. Then at 30min most of the IκBα protein is degraded, but 
the number of mRNA molecules is large due to NF-κB induced transcription.  For A20, initially there is little of 
both protein and mRNA, then the growing amount of transcript is followed by the growing amount of protein. 
The broadening of the distribution in time is caused by the desynchronization of cells due to stochasticity. 

 
Figure 3: The single cells trajectories (thin lines) keep oscillating despite the equilibrium distribution is reached, 
and the average trajectory (bold line), a construct resulting from averaging over population, stabilizes.   
 
Patterns of variability indicate that the averaging is accomplished by cancellation of phases of 
oscillations in individual cells. Fig. 3 shows that none of cells behaves like an average. This outcome 
suggests experimental testing by following individual cells, which currently is underway.  
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1 Introduction.  
 

Recent experiments have unambiguously established that biological systems can have 
significant cell to cell variations in gene expression levels even in isogenic populations. In this 
paper, we present a new fully probabilistic approach to the modeling of gene regulatory networks 
that allows for fluctuations in the gene expression levels. By testing the new algorithm on the 
synthetic gene network library recently bioengineered by Guet et al. [1], we have demonstrated that 
the new algorithm is robust and very successful in explaining the experimental result. 

 
2 Methods.  
 

In our algorithm, expression levels of the genes in a regulatory network are represented by 
using multi-state functions. Changes in the expression levels of the genes are described in a 
probabilistic model. The gene expression levels go up or down with certain probabilities. Transition 
probabilities, that govern how the system may evolve, depend on the overall state of the network. 
The new algorithm was implemented using a Monte Carlo approach where a multitude of Markov 
chains are created using the computed transition probabilities. Within the allowed minimum and 
maximal values, expression levels of the genes can increase or decrease by one, or stay unchanged 
between successive steps of the Markov chain according to the employed transition probabilities. 
Transition probabilities were computed using the following rules: For each pair of interacting genes in 
the network, we define a weight Wik that indicates the strength of the regulation of gene k by gene i. 
The Wik parameters can be negative or positive indicating inhibition or activation, respectively. Total 

regulating strength for gene k, Sk (t), at time t is calculated as Sk (t) =  where Gi(t) is 

the expression level of gene i at time t. If S

(t),
i iG*ik W∑

k (t) is negative, transition probabilities are given as 
 

  Pk,t(↑) = P0      (1) 

  Pk,t(↓) = P0 * ( 1 +  
k

k
k|k|

k
k

n
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n
(t)S
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|(t)S|

+
 )  (2) 

  Pk,t(−) = 1 − Pk,t(↑) − Pk,t(↓)    (3) 
 
where Pk,t(↓) and Pk,t(↑) are the probabilities that the expression level of gene k will be lower or higher 
by one unit in the next step, and Pk,t(−) is the probability that it stays unchanged. P0 is the basal 
transition probability that combines various factors that may give rise to cell-to-cell variations among 
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the members of a cell culture. Parameters Ck and nk are constants associated with gene k. In the 
simulation, the model parameters, Wik, Ck and nk, were determined by trial and error until reasonable 
agreement with experimental results was obtained. When Sk(t) is positive, Pk,t(↓) is assigned with the 
basal constant, and Pk,t(↑) is computed using the sigmoid function (equation 2).  

For each simulation, a trajectory of 60 million Monte Carlo steps was run from which 
information about the gene expression levels and their fluctuations is collected for later analysis. 
Running average of gene expression levels computed in our simulations can be considered to be either 
the mean expression value of a certain gene across many cells of a colony or the time averaged mean 
expression value of a certain gene in a single cell. In these cases the observed fluctuations about the 
mean correspond to expression value variations among isogenic cell populations or to the dynamical 
fluctuations in a particular cell.   

 
3 Results.  
 

We used the new algorithm to simulate the synthetic genetic regulatory networks recently 
engineered by Guet et al. [1]. The synthetic networks were constructed by forming various 
combinations of four well characterized genes, one of which is the reporter gfp gene (Figure 1). 
Figure 2 compares the predictions of the probabilistic model for the synthetic networks with the 
experimental results. We have calculated the linear correlation between the results for the GFP 
expression and found a correlation coefficient of R2=0.91 and a slope of 0.82, which shows that the 
predictions of the probabilistic model for the synthetic networks are in good agreement with the 
experimental results. 
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 Figure 1. Structure of the studied synthetic gene 
regulatory networks.  (A) General construct, (B) 
Network obtained with a particular set of 
promoters. 
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Singular Value Decomposition (SVD) and Principal component analysis (PCA) have been used on 
microarray datasets to cluster genes and to identify and explain the principal components in a larger 
effort to reverse engineer genetic networks [2]. However, clustering methods generate mutually 
exclusive groups unlike cellular networks where genes (or gene products) participate in more than 
one reaction pathway.  SVDMAN [6], addresses this problem, by generating gene groups that are 
non-exclusive.  SVD of a matrix, X, yields components, U, S and V such that X=U S VT. Columns 
of U give the coefficients of genes along the principal components defined by the rows of VT. An 
SVDMAN group is formed by identifying all genes whose coefficients along a principal component 
are greater than a defined threshold value, indicating that these genes are significantly influenced 
by that component.  Since the same gene can be highly expressed along many components, genes 
are found in multiple groups enabling overlaps in the network. The threshold is given by WN-1/2, 
where N is the number of genes and W is a weight factor with a default value of 3.0. The 
application of this procedure to the publicly available Serum fibroblast dataset [3] and Yeast 
sporulation datasets used by Tavazoie et al. [5] using the default value revealed that the total 
number of genes participating in the groups and overlaps between groups were insignificant 
compared to the total number of genes. For example, out of 2945 genes monitored by the Yeast 
sporulation dataset, a total of only 124 genes entered the SVDMAN groups and no overlaps were 
present. The results obtained do not meet the objective, nor are they likely to be representative of 
real cells. In this paper, we report a modification to better identify non-exclusive gene groups. 

 
The number of gene associations identified by SVDMAN is greatly affected by W. In order to 
identify a suitable network, we varied W from 5.0 to 0.1 and analyzed the trends in numbers of 
genes participating in the network and the extent to which these genes repeated among the groups. 
As W decreased from 5.0 to 0.1, the number of genes included totally and in each individual group 
increased as shown in Fig. 1. The fraction of genes included increased significantly initially and 
reached a saturation value equal to N (total number of genes) as W asymptotically approached zero. 
Repetition of genes among the groups also increased significantly with a decrease in W. A 
repetition factor for each gene entering the groups was estimated by dividing the total number of 
connections (number of genes in all groups including multiple occurrences of each gene) by the 
actual number of genes involved, excluding repeats, for every value of W (Fig. 2). The figure 
indicates that below a certain value of W, the number of repetitions increases rapidly and each gene 
appears in almost all groups. For e.g., at W~0.1, each gene in the serum is associated with ten out 
of all possible groups. In contrast to such high levels of gene associations, cellular networks are 
believed to be sparse [1, 4] and hence, we assume that each gene participates in 4-8 groups on 
average. Based on this observation, the range for W for the Serum dataset is [0.4 0.6]. The 
corresponding value for the Yeast dataset is [0.7 1.1].  This range of W also results in inclusion of 
88-95% of the Serum fibroblast genes (and 95-98% of the Yeast genes) and is congruent with the 
expectation that the vast majority of these genes should participate, since these genes have already 
been filtered for substantial expression. 
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Figure 1: Percentage of genes included in groups vs. W              Figure 2: Repetition factor vs. W. 
 
 
In order to validate the groups obtained using the optimal range of W, we compared the gene 
associations with clusters obtained using expression profile similarity by Iyer et. al [3] and 
Tavazoie et al. [5]. At the outset, since SVDMAN groups and Iyer et al. clusters are based on 
different criteria, associations between the two are not necessary. However, we notice some 
similarity among the two. Specifically, the clusters and groups have some common units (subsets) 
with similar expression profiles. Many of these common units participate in multiple groups and 
thus form the hubs of the network.  
 
These limited observations suggest that SVDMAN can identify closely related genes which are 
comparable to those from clustering methods. These genes can be compared across groups to 
identify relations between clusters and the cohesiveness of clusters based on their ability to retain 
the genes together. Such analyses can be extended to obtain connections between genes and thus, 
the connectivity matrix of the entire genome.  
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1 Introduction.  
 

Biological pathways may be defined as temporal or spatial sets of events leading to state 
changes in systems. There are several known classes of biological pathways. Most ubiquitous and 
important for biologists are metabolic, signal transduction, and gene activation pathways. Other 
examples include developmental pathways and food chain pathways. 

Present pathway representations employed by different databases pose several problems for 
scientists attempting comprehensive computational analysis of this type of information. First, pathway 
data storage and retrieval is complicated by the very nature of the subject: pathway information is bi-
partite: The components (what the parts are) and the topology (how those parts are connected). Many 
current representations focus primarily on the former, because capturing and storing topology 
information, is much less straightforward than storing annotation-like information. Second, the 
problem of pathway analysis is exacerbated by the presence of synonyms, homonyms, content-
dependent synonyms, classification hierarchy, etc. Third, there is no universal standard for pathway 
representation – each database selects its own unique model.  

There is a strong demand for software which is able to 1) integrate public data from 
different sources with proprietary information and 2) analyze and predict both properties of pathway 
components and pathway topology. 

Vector PathBlazer is a program aimed at the biologist who needs to do complex analyses of 
different types of biological pathways. 

 
 

2 Data model and database architecture.  
 

Vector PathBlazer recognizes three types of objects: compounds, reactions, and pathways. 
Compounds are the actors in biological reactions. There are multiple classes of compounds: small 
molecules, proteins, genes, physical factors (UV light, heat), etc. Reactions are defined as spatial or 
temporary events leading to changes in properties of compounds. Reactions separate participating 
compounds into educts and products. Pathways store information about participating reactions and the 
connections between them. 
 The Vector PathBlazer data model is based on bi-partite directed graphs. Two sets of nodes 
are compounds and reactions. Directed arcs link educts to a reaction and reaction to products. Both 
reaction and compounds can be annotated at different levels. Information such as original database, 
subcellular location, tissue, organism, and disease, can be stored. Arcs carry information about the 
type of arc, transition probabilities, and stoichiometric constants. Pathways carry their own 
annotations that can differ from annotations of reactions and compounds. Annotations can be preceded 
by logical quantifiers such as ONLY_IN {organism|location|tissue}, KNOWN_IN 
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{organism|location|tissue}, or NOT_IN {organism|location|tissue}. This simplifies storage and 
retrieval of species-, organism-, and location-specific information. 
 The population of the Vector PathBlazer database can be achieved by the use of parsers 
supplied by InforMax. Parsers for KEGG [2], DIP [6], BIND [1] are currently provided. Parsers for 
TransPath [4] and BioCyc [3] are being developed. Unique or proprietary data can be added to the 
database manually through a graphical interface or via XML files.  
 The data imported from different sources are integrated into a single Access database. The 
integration rules are based on lists of synonyms and annotations. These rules can be fine-tuned to 
satisfy a user's needs.  
 
 
3 Pathway discovery, assembly and analysis.  
 

The Vector PathBlazer database can be queried for pre-assembled pathways or novel 
pathways can be discovered and built using the database query engine and the pathway-building 
algorithm. A modified Dijkstra algorithm is used to 1) search for the shortest paths between two 
compounds, and 2) search for the shortest paths and path lengths equal to shortest path plus specified 
numbers of steps.  
 These searches can be performed on any reaction subset, Reaction subsets are created 
manually or by filtering other sets of data. Therefore, subsets can include reactions from one or more 
databases, making discovery of previously unknown connections across heterogeneous data sources 
possible. Reactions can be added to resultant pathways in a stepwise fashion. Additionally, Use of 
Interaction Generality [5] as a restricting parameter can reduce amount of potentially irrelevant 
interactions. 

Expression data can be easily mapped to assembled pathways using customizable templates. 
The results of a particular experiment can be color coded according to user's specification. 

Graphical information can be displayed in different forms using graph layout settings. 
Editing capabilities allow for the addition and deletion of pathway elements. Annotations can also be 
accessed and changed directly from the graphical pane. 
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The EcoTFs Database: Escherichia Coli 
Transcription Factors and Signals  
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1 The EcoTFs database.  
 

The EcoTFs web site (http://EcoTFs.lanl.gov) is dedicated to the assembly and dissemination of 
information about Escherichia coli transcription factors and the signals that control their activity. 

 
This web site was established in November/December of 2003 to provide an online database of 

information about autoregulation of 50 transcription factors (TFs) in E. coli as supplementary 
material in support of a recently published review of gene circuit design [Wall et al., 2004]. 

 
Unique features of this database (currently an html table with links) include annotation of the 

signal(s) influencing the activities of each TF and classification of each TF based on 1) the 
response to a stimulus (induction or repression of regulated effector genes), 2) the mode of 
regulation at the promoters of regulated effector genes (repressor or activator control), and 3) the 
co-regulation of TF and effector gene products in response to signals. The information catalogued 
in the database allows the distribution of gene circuit types to be studied (Table 1). 
 

The database was developed to help test theoretical predictions of classifications for elementary 
gene circuits [Hlavacek and Savageau, 1996; Wall et al., 2003]. A repressor mode of regulation at 
the TF (i.e. , negative autoregulation) is predicted when stability, robustness and responsiveness are 
important performance criteria, as is expected for many circuits such as those that control metabolic 
functions. The co-regulation of TF and effector gene products may be classified as direct coupling 
(TF and effector expression change in the same direction in response to signal), inverse coupling 
(TF and effector change in opposite directions), or uncoupled (TF expression does not change). 
Prediction of coupling type is related to the gain of effector gene products with signal (Table 2).  
 

Over 100 TFs in E. coli have been studied experimentally (and there are more putative TFs 
based on the genome sequence), so the current version of the database is incomplete. We plan to 
add material until the database is as comprehensive as possible for E. coli. We also plan to extend 
the scope of the database to include information about well-studied TFs in other bacteria. 
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95616, USA. E-mail: masavageau@ucdavis.edu 
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2 Figures and tables.  
 
Effector TU Repressor mode of 

control at Regulator 
TU 

Activator mode of 
control at Regulator 
TU 

TF does not 
influence 
transcription of 
Regulator TU 

 I U D I U D N/A 
Inducible (+) 4b 3c 4d 0 0 5e 4f 
Inducible (- ) 0 0 9g 0 0 0 4h 
Repressible (+)  0 3i 0 0 0 0 2j 
Repressible (- )   0 1k 9l 0 0 0 1m 
 
Table 1:  Distribution of system types among 49 surveyed E. coli  TFs. The following footnotes indicate the sets 

of transcription factors that correspond to the table entries: b(AraC, IlvY, MetR, So xS); c(CynR, SoxR, TorR); 
d(CysB, DsdC, MelR, RhaS); e(CpxR, IdnR, MarA, RhaR, XylR); f(MalT, MhpR, Rob, XapR);  g(BetI, CytR, 

EmrR, GalS, MarR, NagC, PdhR, PutA, UxuR); h(GalR, GlpR, LacI, RbsR); i(AsnC, GcvA, PspF); j(FadR, FruR); 
k(TyrR); l(ArgR, DnaA, Fur, H-NS, IscR, MazEF, MetJ, PurR, TrpR); m(ModE). D – direct coupling, I – inverse 

coupling, U – uncoupled, N/A – no TF self-regulation. 
 

Effector TU Low Gain Intermediate Gain High Gain 

Inducible (+) I U D 
Inducible (- ) D U I 
Repressible (+) I D D 
Repressible (- ) D U I 
 

Table 2:  Predictions of coupling type for elementary gene circuits. (-) indicates a repressor mode of control, 
and (+) indicates an activator mode of control. Predictions depend on both the mode of control of effector 

expression and the magnitude of the steady-state gain of effector gene products with signal. The predictions for 
inducible and repressible systems are identical except for the case of activator control with intermediate gain. D 

– direct coupling, I –  inverse coupling, U - uncoupled. 
 

3  References and bibliography. 
 

The EcoTFs web site is available at http://EcoTFs.lanl.gov 
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Discovering Activated Regulatory Networks in the DNA
Damage Response Pathways of Yeast.

Chris Workman1, Scott McCuine
�

, Ryan Kelley
�

, Trey Ideker
�

Keywords: regulatory networks, systems biology, DNA damage

1 Abstract

Modeling of the molecular interaction networks induced by DNA damaging agents is likely to reveal
rich new insights into the mechanisms of the cellular DNA damage response, a determinant of can-
cer progression and cellular toxicity. To further elucidate the DNA damage response in eukaryotes,
we have developed in-silico network models of regulatory pathways responding to the DNA damaging
agent methyl methane sulfonate (MMS). Models were constructed using data derived from an array
of classical, genomic and proteomic approaches and were refined using computational systems biol-
ogy approaches. Regulatory pathways were systematically interrogated to monitor protein-DNA inter-
actions using chromatin immunoprecipitation in conjunction with promoter microarrays (chIP-chip);
yeast 2 hybrid based methods to identify protein-protein interactions[1]; DNA microarrays to moni-
tor genome-wide expression patterns; and systematic genetic perturbations via single gene-knockout
strains. New computational techniques were used to integrate and model these data and include algo-
rithms for statistical identification of expression-activated network regions[2] and the Cytoscape visual-
ization platform[3] for operating on network models. Using this systems approach, we have generated
new hypothesis about cellular factors and mechanisms involved in the complex interactions of DNA
damage response.

Figure 1: Activated regulatory network found in Cytoscape[3] using the ActiveModules
approach[2].

1Department of Bioengineering, University of California San Diego, 9500 Gilman Dr. 0412, La Jolla, CA 92093
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Parallel Data Mining of Bayesian Networks from Gene Expression Data 
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DNA microarrays allow monitoring gene expression for tens of thousands of genes in 

parallel and are already producing huge amounts of valuable Gene Expression Data. 

Uncovering gene/protein interaction and key biological feature of cellular systems 

from these data is a major challenge in computational biology.  Bayesian network (BN) 

is a promising method to describe relationships between genes in a genetic regulatory 

network. However, learning Bayesian network structure is an optimization problem in 

the space of directed acyclic graphs [1]. The number of such graphs is 

super-exponential in the number of variables. Therefore, we need to develop 

high-performance parallel search algorithms.  

 

In the work described here the problem is to find the best Genetic Regulatory 

Network in a very large solution space of all possible Bayesian networks. Since the 

problem is NP-hard [3], a heuristic search technique must be used. This leads to the 

employment of Genetic algorithm (GA), since GA has been shown to be a robust and 

effective search method requiring very little informa tion about the problem to explore 

a large search space. The GA works on a population of solutions, which change as the 

algorithm cycles through a sequence of generations, until a satisfactory solution has 

been found. Solutions are directed graphs; viable solutions (those which will be 

scored and allowed to breed in the next generation) are directed acyclic graphs. The 

scoring function used was the Bayesian scoring metric (BSM) [1], in which the best fit 

to the experimental data is calculated using Bayesian techniques. High scoring 

structures have a greater chance of being selected as parents for the next generation 
[2]. 

 

Due to the sheer volume of data involved in data mining, the time required to execute 

genetic algorithms and the intrinsic parallel nature of genetic algorithms, we decide to 

parallelize the Genetic  algorithm (PGA) and plan to take two different approaches to 

parallelizing the GA.  
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The first approach is to implement GA in master-slave model. Breeding (reproduction, 

crossover and mutation) was carried out in parallel. In fact the scoring was also 

implemented in parallel. The selection had to be implemented sequentially and thus 

remained on the master (the root processor which is the controller, and is connected to 

the host). This was necessary, as all of the structures from the new generation needed 

to be re-mixed to form new parents from the gene pool before distribution to the 

slaves for breeding. The remaining processors are utilized as slaves, which carry out 

the breeding in parallel and report the new structures and their scores to the master 

(root processor) [2]. 

 

The second approach is to divide the population into subpopulations, run a 

conventional GA in each subpopulation and allow the periodic communication of 

information between subpopulations that helps in the search for the solution. The 
information usually exchanged between subpopulations is a subset of the fittest 

individuals of each subpopulation. This exchange of individuals is known as 

migration. This parallel version of GA actually is a distributed GA.  

 

Although this project is still in progress, it is anticipated that the PGA should enhance 

the efficiency of genetic search and has higher probability to get the optimal solution 

than the GA. Since the PGA can make use of multiple computing resources at the 

same time and can divide the large problem into several smaller ones.  

 

In the poster session, presentation will address the pr oblem of parallelization of 

Genetic Algorithm for the Mining of Bayesian Network based on Gene Expression 

Data. Two approaches to parallelizing the GA will be presented in detail. The results 

of the performance study of PGA and PGA’s applications in Data M ining will be 

presented too. 
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1 Introduction.  
 
A gene expression study using DNA microarrays usually involves two major steps. The first step 
typically consists of performing initial experiments to narrow the set of genes to study further in more 
detail. The experimenter can avoid this first step if he or she already knows the set of genes of interest. 
For example, the genes involved in galactose metabolism in yeast are relatively well known, so an 
experimenter could skip the experiments in the first step in the study. After choosing those genes, the 
experimenter has to produce an experimental design for further study of how those genes regulate 
each other. 
 
Asbestos fibers small enough to be inhaled, and numerous enough to overcome the normal host 
defenses can lodge in the lungs, leading to chronic inflammation, pulmonary fibrosis (asbestosis), 
pleural thickening as well as cancers of the lung and pleura. Asbestos fibers are clearly associated with 
induction of mesothelioma, a neoplasm derived from the mesothelial lining of the pleural cavity, but 
the mechanism is unclear [1]. We describe our initial effort in a gene expression study that is designed 
to learn causal relationships among genes that play an important role in mouse asbestos. In this paper, 
we concentrate on assessing expert biologist’s knowledge of pairwise relationships. 
 

 
2 Analysis.  
 
Causal networks represent causal relationships using a graphical model. Graphical models hold great 
promise as representations of molecular biological processes, because they are both expressive and 
intuitive. In a recent issue of Science, the authors of four separate review articles on bioinformatics 
and related topics described graphical models as one of the most promising methods for representing 
cellular pathways [2-5]. Three of the articles specifically mention causal Bayesian networks as a 
promising type of graphical model. Particularly, Kitano [5] refers to one of our causal analysis papers 
[6] and emphasize the importance of causal discovery in systems biology research. We use Bayesian 
networks to model interactions of genes in mouse asbestos. 

 
A causal Bayesian network is a directed acyclic graph in which each arc is interpreted as a direct 
causal influence between a parent node and a child node, relative to the other nodes in the network [7]. 
One of the challenges in applying Bayesian methods for causal discovery is the assessment of 
informative priors on possible causal structures and on the parameters of those structures. On the one 
hand, the ability to represent such prior information is a great strength of the Bayesian approach. With 
it, we can potentially express prior causal knowledge that comes from many sources other than the 
observational data. While good progress has been made in facilitating the expression of priors on 
Bayesian network structures and parameters [8], assessing such prior probabilities (particularly when 
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there is a large set of variables) can still be difficult. Note that it will be impractical to assess priors of 
all of the possible pairwise relationships especially if you are dealing with more than 5,000 genes. We 
asked expert biologists to assess priors of pairwise relationships that they think are relatively well 
known, and we assume default prior probabilities for the remaining relationships. We currently use the 
following assumptions (unless the expert biologist specifies his or her knowledge): p(Ei

XY) = 1/3 for 
i=1,2,3. For genes X and Y, Ei

XY represents X←Y, X→Y, and X  Y for i=1,2,3 respectively. We list 
relatively well known pairwise relationships assessed by expert biologists in Table 1. 
 

Relationship Prior Relationship Prior Relationship Prior Relationship Prior 
SRA→TNFα 0.9 SRA → IL6 0.6 SRA → IL1 0.6 IFNγ →TNFα 0.5 
IL1 → IL6 0.8 IFNγ → IL6 0.5 IFNγ → IL1 0.5   

 
Table 1:  Priors assessed by expert biologists about pairwise relationships among genes that play an important 
role in mouse asbestos. 

 
3 Future Research. 
We will combine the background knowledge shown in Table 1 with microarray experiments with 108 
mice that were exposed in different asbestos agents [9]. We are planning to use a pairwise causal 
algorithm, Implicit Latent Variable Scoring (ILVS) method [6] and its extension Local ILVS Method 
(LIM) that analyzes local structures with more than pairwise variables [10]. There are many 
challenges in the planned analysis, e.g., (1) causal discovery with no direct manipulation of genes; (2) 
global network inference with local networks. 
 
Once we develop a model that combines expert’s background knowledge and the results of microarray 
experiments, we are planning to develop and evaluate a system that recommends experimental design 
of a gene expression study, e.g., what gene to knock out; how many experimental repetitions to make. 
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1 Introduction. 
 
Using high-throughput biological data such as gene expression data to study the gene regulatory 
networks has become one of the most attractive topics in bioinformatics research.  Among the 
efforts, many researchers are trying to use Bayesian networks (BN) to reconstruct regulatory 
networks.  Different levels of success have been reported on real biological microarray data (such 
as Friedman et al, [1]), on synthetic data from simulated models (such as Zak et al, [2]), and on 
both real and simulated data (such as Husmeier et al, [3]).  It has been observed that certain choices 
in BN learning can have big influence on the result, thus it is necessary to take a systemic 
investigation on the effects of these choices.  In this paper we focus on the choices of some basic 
parameters in the BN learning procedure, such as restrictions on the network structure, input data 
type (discrete or continuous) and initial structure.  We use a well-studied biological network [4] to 
generate synthetic expression data, use dynamic Bayesian networks (DBN) with different 
parameters to reconstruct the network and observe the influences of the choices.  The observations 
provide some information useful for reconstructing regulatory networks with BN learning. 

 
2 Data and Methods. 
 
The network model used in this study is a 17-node sub-network (MAPK kinase cascade) from the 
network in [4].  Starting from certain initial condition of the nodes, the time series of expression of 
each node can be computed from the set of partial differential equations.  We generated five 
different datasets.  Datasets 1, 2 and 3 are composed of the 17 nodes with different sampling 
intervals and thus result in different sample sizes (200, 500 and 2000).  Datasets 4 and 5 include 
only 9 nodes of the sub-network, the sample sizes are the same with datasets 2 and 3 respectively.  
 
Because the standard Bayesian networks can not solve the problem of loops, we used dynamic 
Bayesian network or DBN to reconstruct the regulatory network, where each original node (gene) is 
represented by one node at time t and one node at time t+∆t.  The learning algorithm used in this 
paper is based on the software package PNL (http://www.intel.com/research/mrl/pnl/).  We used the 
Maximum Likelihood algorithm for discrete data learning and the linear Gaussian algorithm for 
continuous data learning.  Three discretization methods (by difference, by mean or by median) 
were compared, and we chose the method of binary discretization by difference because the three 
discretization method does not show big difference on the datasets. 
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3 Results and Discussion. 
 
The first observation was that adopting proper restrictions to the DBN structure according to prior 
knowledge can help improving the learning.  For example, with the setting of DBN, since the 
expression of a gene at time  t+∆t always depends that at time t, such connections in the DBN 
structure are trivial.  However, these signals are sometimes so strong that they prevent the DBN to 
learn other weaker signals.  Experiments showed that forbidding such connections during the 
learning phase can significantly improve the number of correctly reconstructed links in the network.   
 
There is always the uncertainty about whether expression data should be used in discrete or 
continuous form for reconstructing gene networks, and what kind of initial structure is better for 
BN learning.  We did a systematic comparison with different choices on our 5 datasets.  The 
observation is, with discrete expression data, using empty initial structure (no links exist at the 
beginning of learning) usually produces better learning result than using a chain initial structure 
(where there is a link between any two adjacent nodes at the beginning).  However, if continuous 
expression values are used and when we have a relatively larger sample size (say, 20 times of the 
number of nodes), starting with a chain structure is better.  Generally continuous values show 
advantage in the learning when we have a large sample size, otherwise they do not show big 
difference with discrete expression values and thus since BN learning with continuous features are 
more complicated than with discrete features, we suggest that for limited sample sizes, adopting a 
proper way to discrete the expression data benefits the learning with regard to both the computation 
and the performance.  The following table summarizes the major suggestions from this study about 
Bayesian network learning for reconstructing regulatory networks from expression data. 

Sample Size Data type Initial structure Prior Restriction 
small Discrete expression values Empty initial structure
large Continuous expression values Chain initial structure

Proper restriction on  
BN structure always benefits 

 
It should be noted that with a careful choice of all the learning parameters, the reconstructed 
network was still far from perfect.  For example, in the 9-node model, only 10 of the 16 real links 
can be correctly recovered, and there are also 7 false positive links.  However, this was based on a 
direct comparison of the edges connecting the nodes.  Since the given model is described as 
network of differential equations and the learned model is a probabilistic model, direct comparison 
may not be a proper way to evaluate the learning performance.  After manually checking those false 
positive links, it turned out to be that only 1 among them was really a false link, and the 
probabilistic dependences indicated by the other links actually all exist in the original model.  This 
reveals that the BN is capable of learning regulatory networks from expression data, but a proper 
way of evaluation needs to be investigated.  
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PathBLAST : Mining For Conserved Pathways In
Genome-Scale Molecular Interaction Networks

Silpa Suthram1, Taylor Sittler
�

, Trey Ideker
�

Keywords: interaction networks, PathBLAST, conserved pathways

1 Introduction.

Genome scale protein interaction networks are being mapped and identified at an ever-increasing speed.
In order to make sense of this deluge of new data, new tools are needed in order to assemble a co-
herent picture of these interaction networks and their functional significance. PathBLAST [1]is one
such method for identifying conserved pathways between two molecular interaction networks. Path-
ways are scored and selected based on sequence homology and topological similarity using a dynamic
programming algorithm, as previously described [1]. Since interaction networks are obtained from
high-throughput methods, these often include many false positives. To help eliminate the false inter-
actions, here we present a new scoring system to assign a confidence value to each interaction. The
model considers the co-expression of interactors [2], the number of times an interaction was observed
and its topological clustering coefficient [3]. Using the revised PathBLAST, we report new biological
findings illustrating conserved pathways between yeast and a variety of other model species for which
interaction data is already available (Fig.1). The ability to mine conserved pathways across multiple
species provides insight into how these pathways have evolved and can delineate roles for previously
uncharacterized proteins through analysis at the level of both sequence and function.

Figure 1: Mining conserved pathways using PathBLAST[1].
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Learning kernels from biological networks by
maximizing entropy

Koji Tsuda, 1 William Stafford Noble 2
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1 Introduction

When predicting the functions of unannoted proteins based on a protein network, one relies
on some notions of “closeness” or “distance” among the nodes. However, inferring closeness
among the nodes is an extremely ill-posed problem, because the proximity information pro-
vided by the edges is only local. Moreover, it is preferable that the resulting similarity matrix
be a valid kernel matrix so that function prediction can be done by support vector machines
(SVMs) or other high-performance kernel classifiers [2]. Maximum entropy methods have
been proven to be effective for solving general ill-posed problems. However, these methods
are concerned with the estimation of a probability distribution, not a kernel matrix. In this
work, we generalize the maximum entropy framework to estimate a positive definite kernel
matrix.

We found that the diffusion kernel [1], which has been used successfully for making pre-
dictions from biological networks (e.g. [3]), can be derived from this framework. However,
one drawback inherent in the diffusion kernel is that, in the feature space, the distances
between connected samples have high variance. As a result, some of the samples are out-
liers, which should be avoided for reliable statistical inference. Our new kernel based on
local constraints resolves this problem and thereby shows better accuracy in yeast function
prediction.

2 Locally Constrained Diffusion Kernels

SVMs work by embedding samples into a vector space called a feature space, and search-
ing for a linear discriminant function in such a space [2]. If we have an undirected graph
with n nodes and m edges, the n nodes in a graph are mapped to n points in the feature
space �1, · · · ,�n ∈ F . The embedding is defined implicitly by specifying an inner product
via a positive definite kernel matrix Kij = �

�
i �j , i, j = 1, · · · , n. Because the discriminant

function is solely represented by inner products, we do not need to have an explicit represen-
tation of �1, · · · ,�n. Once a kernel matrix is determined, the (squared) Euclidean distance
between two points can also be computed as Dij := ‖�i − �j‖2 = Kii + Kjj − 2Kij .

We have found that the matrix of the diffusion kernel [1] can be derived as the optimal
solution of the following maximum entropy problem:

min
K

tr(K log K), tr(K) = 1, tr(KL) ≤ c,

where log denotes the matrix logarithm operation, c is a positive constant, and L is the
graph Laplacian matrix [1]. Let {sj , tj}m

j=1 denote the node pairs connected by m edges.

1MPI for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany, and AIST CBRC,
Tokyo, Japan. E-mail: koji.tsuda@tuebingen.mpg.de

2Dept. of Genome Sciences and Dept. of Computer Science, University of Washington, 1705 NE
Pacific St., Seattle, WA 98109, USA E-mail: noble@gs.washington.edu
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Figure 1: Mean ROC score as a function of the diffusion parameter. The plots show the
mean ROC scores computed across the set of CYGD categories, using (A) the metabolic network
and (B) the protein-protein interaction network. The solid and broken lines correspond to the new
and conventional kernels, respectively.

The quantity tr(KL) equals the sum of Euclidean distances between connected samples:
tr(KL) =

�m
j=1 ‖�sj − �tj‖2. The objective function corresponds to the (negative) von

Neuman entropy. In order to impose a more uniform network structure, we consider the
following local constraints:

min
K

tr(K log K), tr(K) = 1, tr(KVj) ≤ γ, j = 1, · · · , m, (1)

where tr(KVj) = ‖�sj − �tj‖2 corresponds to the Euclidean distance between each pair of
connected samples.

3 Experiments

We computed kernels from two different types of yeast biological networks. The first network
was derived by [3] from the LIGAND database of chemical reactions in biological pathways.
The second network was created by [4] from protein-protein interactions. We tested the
kernels’ utility in the context of an SVM classification task. We used as a gold standard the
functional categories of the MIPS Comprehensive Yeast Genome Database. We selected all
functional categories containing at least 30 positive examples resulting in 36 categories for
the metabolic network and 76 categories for the protein-protein interaction network. Figure 1
compares the classification performance of SVMs. The figure shows that, for both types of
network, our new kernel out-performs the conventional diffusion kernel.
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Phylogeny of Tumor Progression from CGH Data

Sven Bilke1, Qing-Rong Chen1, Javed Khan1
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1 Introduction.

Genomic instability, gain or loss of DNA, is frequently observed in tumors [3]. While normal
cells contain two copies of each chromosome (with the exception of the gender chromosomes
X and Y), tumor cells often loose one or both copies or gain extra copies of specific regions
of DNA. The chromosomal location of changes is not random: in many cases instable regions
from different patients with the same disease cover the same locations, which are therefore
called recurrent regions. It is often argued that, in the competition for nutrition and space,
changes at specific locations provide an advantage and are hence more frequent (recurrent)
than instabilities at neutral or adverse locations. In this ’micro-evolution’ [3, 1] the patterns
of genomic instabilities allow to conclude on the inheritance of genomic features and hence the
’phylogeny’ of different tumor stages. In this study we use the overlap of the location of genomic
instabilities shared between and unique to different phenotypes as indicators for the pathways of
tumor progression. To demonstrate the feasibility of this approach we analyze cytogenetic data
for three stages of Neuroblastoma the most frequent pediatric childhood tumor, and identify a
progression model for this cancer by an exhaustive search in the space of progression models.
The data for genomic instabilities used in this study was obtained from 32 neuroblastoma [2]
specimens, 12 patients with stage 1, and 20 patients with stage 4 of which 12 were MYCN-
amplified (4+) and 8 were MYCN single-copy tumors (4-). Comparative genomic hybridization
on a cDNA array with 42000 elements was used to measure the relative DNA copy number.
P-values for the presence of gains or losses were estimated by a sliding window method, where
the distribution of genome-ordered observations in that window was compared by a t-test to
the distribution observed for the full genome.

2 Results and Discussion

Under the assumption that the gains and losses are milestones in the development of the
disease, the progression between different stages should be observable in the pattern of genomic
instabilities. In order to develop models which can be discriminated by genomic imbalance data,
we restrict our analysis to models which follow these biological principles:

1. Unobserved intermediate genotypes are possible but the model with the smallest number
of genotypes (observed + unobserved) is utilized

2. All changes found in a parent genotype must be present in the offspring occurring with
a similar frequency (the inheritance signature)

3. All tumor stages belonging to the same diagnostic group arise from a common ancestor
(i.e. the phylogeny is a rooted tree).

The models compatible with these requirements are discriminated by the patterns of overlap
of recurrent genomic instabilities, namely regions common to all stages, specific to a stage
and shared between stages. In this feasibility study we analyze a relatively small number of
three observed stages, defining seven different subsets which may either be empty or occupied.
This allows for 27 = 128 different observations. Not all of those are compatible with the
concept of tumor progression in form of a micro-evolution with a specific genetic signature. For
example, the case where none of the sets is occupied describes the case where the progression

1Oncogenomics Section, Pediatric Oncology Branch, Advanced Technology Center, Na-
tional Cancer Institute, 8717 Grovemont Circle, Gaithersburg, MD 20877, USA. E-mail:
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of neuroblastoma does not manifest itself in a specific signature of genomic instabilities. We
identify ten topologically distinct models of tumor progression compatible with the biological
assumptions. These models are depicted in the left panel of figure 1. As mentioned in the
introduction, no single region is found to be affected in all tumors of a specific stage. Also, no
single region is affected exclusively in one stage. However, the frequency of their occurance is
often significantly different in the different stages of the disease. Therefore the frequency of a
genomic instability for the different stages is the primary observable. We define a region to be
specific to a stage if it is significantly more frequent in one stage as compared to all the other
stages. If a region is significantly more frequent in two stages with respect to the third stage,
this regions is called shared. If a region is frequent in all stages, the region is called common.
In our analysis of the neuroblastoma-data we have verified that the final result is stable with
respect to reasonable changes of the significance thresholds used in defining these regions.

We found recurrent alterations common to all three subgroups, specific for each of the
subgroups and common regions of gain for stage 1 and 4- tumors. Interestingly there were no
shared alterations of 4+ with 1 or 4- besides the regions common to all. The tumor progression
model compatible with these findings is depicted in the right panel of figure 1.

In this study we demonstrate that the pattern of genomic instabilities in neuroblastoma
can be used to conclude on the pathway of progression of the disease. The analysis of the
frequency of genomic instabilities maps our data onto one of the models compatible with the
assumption that ’micro-evolution’ governs the progression of cancer. The selected model is in
agreement with clinical evidence [4] for neuroblastoma. The identification of the progression
pathways for cancer may have an important impact on the strategy for the treatment. In
Neuroblastoma our result indicate that the model of a linear progression towards the more
aggressive disease (figure 1 (a), sub-diagram I), which is seemingly suggested by the staging
system, is not supported by our data. Instead, the best fitting model (right panel of figure
1) suggests that the final outcome of the disease is determined at an very early stage of the
cancer development. The stage 4+ disease is fundamentally different from Stages 1 and 4-, also
a developed stage 1 tumor does not progress to stage 4-.

Figure 1: The ten Topologically distinct tumor progression models for three observed
stages. Unobserved, intermediate states are drawn in cyan and magenta, observed stages
in red, green and blue. b) The selected model summarizing the pattern of recurrent
genomic instabilities in our data.

References
[1] For a review see e.g. Bogen K.T. (1989) J. Natl. Cancer Inst. 81, 267-277.

[2] For a review of Neuroblastoma biology see e.g. Brodeur, G. M. (2003) Nat Rev Cancer 3, 203-16.

[3] Rajagopalan, H, et.al. Nat Rev Cancer. 2003 Sep;3(9):695-701.

[4] Westermann, F., Schwab, M. (2002) Cancer Lett 184, 127-47.

Dana Jermanis
Genomics

Dana Jermanis
133

Dana Jermanis




 
 

Human Transcript Clustering 
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1 Introduction.  
 
Human genome sequencing projects have provided an opportunity for researchers to annotate genes 
at the whole genome scale.  Two analyses of the sequence estimated number of genes ranging from 
30,000 to 40,000 [3, 4]. However, a direct comparison of the predicted genes from these two 
analyses revealed little overlap in the prediction of novel genes [2]. In the absence of any single 
definitive method for identification of genes, a synthesis of complimentary methods is needed to 
prioritize a set of model genes and their associated relationships with transcript and genomic 
sequences.  We describe here a method to create a gene model index which is as accurate and 
comprehensive as possible, folding together sequences from Celera and the public domain. 

 
2 Methods and Results.  
 
We first clustered and aligned all expressed human sequences in GenBank to create EST clusters.  
We then located the resulting consensus sequences as well as NCBI RefSeq, GenBank mRNA, 
Ensembl transcripts, UniGene unique representatives, NCBI model RefSeq (XM_) on the Celera 
human genome assembly by megablast [5]. Detailed alignments were generated with sim4 [1].  The 
vast majority of transcript sequences from most sources can be aligned to the human genome.  
Once transcript sequences were aligned to the genome, coordinates of exons, introns and genes 
with aligned transcripts were loaded into a relational database.  Alignments were clustered together 
into sets which represent genes.  Two alignments were considered to represent the same gene only 
if their exons overlap at the same location of the chromosome.  This allows correct resolution of 
overlapping but distinct genes.  In total ~3.5 million transcripts including ESTs were clustered into 
130,000 gene models.  These models can be prioritized by confidence and an appropriate subset can 
be selected for any given task.  For examples, the gene model index may be used to support 
microarray design, the calculation of cross-species mappings, and the prediction of splice variants 
by transcript sequence.  
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Massively Parallel DNA Sequencing using 
Single Molecule Array Technology

Anthony J. Cox1

Keywords: Whole genome resequencing, single molecule array.

1 Introduction

Solexa is developing a unique technology that has the potential to transform the economics of
DNA sequencing by allowing the sequence of millions of individual DNA molecules to be
rapidly determined in parallel. Our approach obviates the need for sorting, cloning and
amplification of genomic DNA samples and so lab preparation and reagent overheads are also
drastically reduced. The applications of a re−sequencing technology range from SNP
determination to transcriptomics.

As well as outlining the basic ideas behind Solexa’s sequencing platform, this presentation will
describe the high throughput bioinformatics pipeline that we are developing to process the large
volumes of image and sequence data that our platform will generate.

2 Sequencing Technology

Genomic DNA is first purified and sheared and the resulting fragments are then immobilized onto a
surface as primed single strands at a density of around 100 million molecules per square
centimetre. These molecules are then sequenced with a base−by−base sequencing strategy
employing proprietary polymerases and modified fluorescently labelled nucleotides. Sensitive
optical methods allow the outcome of sequencing reactions to be observed simultaneously at a
resolution of millions of individual DNA molecules, thus enabling their sequences to be determined
in a massively parallel fashion. We aim to obtain at least 25 bases of sequence from each molecule
imaged.

3 Bioinformatics Pipeline

The primary output of the sequencing process consist of a large number of images, each similar to
Figure 1. The first task of our bioinformatics pipeline is to convert these data into a set of DNA
sequences. This requires rapid processing of the images in real time. The resulting sequences are
then aligned to the reference human genome sequence, allowing for sequencing errors and naturally
occurring differences. We have developed software that has made it feasible for the large number
of inexact alignments required to be performed on a Linux cluster with a modest number of nodes.
Lastly, sequencing errors are filtered out to leave behind the genuine variation between the
reference sequence and the genome being sequenced, in a final stage analogous to the consensus
generation stage of shotgun sequence assembly.

1
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Figure 1: Actual Single Molecule Array image. Each spot is a single DNA molecule with labelled
nucleotide attached.

4 Post Sequencing

We have secured UK government funding and set up academic collaborations for the co−
development of systems and methods for storage and analysis of genome variation data derived
from single molecule array sequencing.
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Clann: Software for Phylogenomic investigation and
analysis of Horizontal Gene Transfer using

supertrees.
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Abstract:

Clann is a software tool, developed by Chris Creevey, which uses supertree analyses to investigate
the Phylogenomic information content from whole genomes. This in turn allows the identification
of Horizontal Gene transfer (HGT) events, and the characterization of the genes that are more or
less likely to be involved in such events.

A number of methods of constructing supertrees have been devised (1-8) and a variety of supertrees
have been constructed using both molecular (9-11) and morphological (12-14) datasets. However, for
the most part, these methods focus on the production of a supertree with the assumption that the input
trees are broadly in agreement and have not been used to address the issue of whether or not there
really is an underlying phylogeny that can be accurately represented by a tree diagram. Here we use
supertree construction as a step in addressing the issue of whether or not there really is an underlying
phylogeny that can be accurately represented by a tree diagram. We previously have used this
approach to investigate support for a tree-like phylogeny in the prokaryotes (15)

The supertree methods that Clann implements are as follows:
1. Source tree compatibility
2. Component /splits compatibility
3. Quartet compatibility
4. Matrix representation with Parsimony (MRP)
5. Most Similar Supertree  (15)

Exhaustive and heuristic searches of supertree-space are possible using these methods as optimality
criteria. Clann includes methods for testing the quality of the input data and the quality of the
resulting hypotheses.

Clann is freely available for academic use and can be downloaded at :

http://bioinf.may.ie/software/clann
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1 Introduction.

Recently developed techniques are successfully producing “shotgun libraries” composed of
genomic fragments from multi-genotype populations.  The structure of the underlying population
(e.g. richness, evenness, etc.) can be estimated from these shotgun libraries.  However, it is cost
prohibitive to sequence the entire library, so indirect methods based on sequencing only a very
small fraction of the library must be relied upon.  These methods typically proceed by extracting
some statistics from the sequenced fragments (e.g. the number of fragments that overlap any other
fragment, or the size and number of strings of contiguous fragments, etc.) and then searching for
the population structure with the maximum likelihood of producing those statistics.  This likelihood
function is often too complex to be computed directly for the candidate population structures, so
various simplifications are employed to estimate it, with an accompanying loss of precision and
accuracy.  Additionally, the search typically only produces the likelihood values necessary to
determine the location of the maximum in the space of candidate population structures and some
estimate of error for that location.

We have developed a Monte Carlo simulation method to directly estimate the likelihood of any
candidate population structure.  This method is applied to a grid of points that spans the range of
solutions under consideration.  The grid of results is then used to produce a contour map, thus
applying contouring algorithms to estimate the likelihood function between grid points.  The
contour map can be analyzed visually as well as computationally to derive valuable information
about the potential solutions (e.g. the relative strength of the maximum likelihood solution, or the
size and shape of the regions of nearly maximum likelihood solutions, etc.).
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immunoglobulin V gene sequence database 
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1 Introduction.   
 
With the exponential growth of the primary nucleotide sequence databases GenBank, DDBJ and 
EMBL [1] the requirement of automatically generated and annotated secondary sequence databases 
arises. Our aim is to generate an immunoglobulin nucleotide sequence database derived from the 
EMBL database in an automatic approach, representing the immunological sequence spectrum 
present in the germ-line. Within an immunoglobulin gene locus there are different sequence 
configurations possible: The germ-line configuration, in which multiple gene elements, mainly the 
so-called V genes, constitute the potential diversity of the antibody molecule, and the rearranged 
configuration, in which one V gene has been recombined with one or two other gene segments to 
create a functional antibody coding sequence (for review, see [2]). These rearrangements may or 
may not include somatic point mutations and deletions. To separate the germ-line encoded from 
somatically mutated immunoglobulin sequences we use two strategies: On the one hand, we 
compare V gene sequences from the EMBL database with genomic BAC sequences and regard a 
100% match as a germ-line evidence. On the other hand, all rearrangements from the EMBL database 
are aligned and V genes that are found in at least two independent rearrangements are regarded as 
germ-line sequences. To maximize data reliability our database does not include information from the 
annotation part of the EMBL nucleotide entries but provides accurate sequence evaluation by 
sequence comparison. The program was developed with sequences from the murine immunoglobulin 
heavy chain locus. However, it can also be applied to the light chain loci, other types of sequences 
(e.g., T cell receptor genes) and other species. 
 
 

2 Methods.  
 
Sequence alignment with BLAST. In order to identify all immunoglobulin sequences within the 
EMBL database we use the BLAST algorithm [3]. Beside the standard subset the High Throughput 
Genomic Sequence (HTG) and the WGS (Whole Genome Shotgun) databases are included in the 
search. A number of known immunoglobulin sequences are used as initial query sequences [4]. The 
BLAST result is subsequently filtered for minimum sequence identity and minimum alignment 
length.  
Sequence alignment with DNAPLOT. DNAPLOT is a sequence alignment program tailored for 
immunoglobulin nucleotide and protein sequences [5]. The fast alignment algorithm allows sorting 
the sequences within a multiple alignment and comparing multiple alignments among each other. 
Furthermore, the DNAPLOT motif recognition functions are used for the automatic V gene 
annotation. 
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Figure 1: Extraction of V gene sequences from the EMBL database by the BLAST program and 
germ-line V gene selection by the DNAPLOT program. 

 
3 Results and discussion.  
 
In our database we can classify the V genes into three different quality groups. The first group consists 
of sequences found in a rearranged form as well as in a non-rearranged configuration. These are germ-
line sequences of actively used V gene segments. V gene sequences of the second group are only 
found as germ-line genes but not recovered in V gene rearrangements. Such V gene segments may 
represent pseudogenes and the reason for the non-functionality of such sequences might be determined  
 
by a subsequent analysis. The third group of V genes is only found in rearranged sequence list but not 
in the list of non-rearranged sequences. These V genes represent most likely germ-line genes. 
However, a little bit of uncertainty remains until in a future generation of the database, a non 
rearranged counterpart can be recovered from the EMBL nucleotide database. 
 
Due to the automatic generation our sequence data set can be updated any time. It is comprehensive as 
it takes all published immunological sequences into account. The addition of new entries into the 
EMBL database will continuously improve the resulting V gene database. In turn, our database 
provides an important tool for the annotation of genomic sequences of the mouse. The method can be 
easily adapted to other variable loci, thereby providing the opportunity to analyse species with poor 
sequence data availability.  
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1 Introduction.  
 
This work proposes a new method to speed up the multiple-use PCR primer design procedure for 
polymerase chain reaction (PCR). The development of PCR has revolutionized genetic analysis and 
engineering science. The PCR technique is basically a primer extension reaction for amplifying 
specific nucleic acids in vitro. Designing proper primers for multiple sequences is a knotty task [2]. 
The proposed method reduces the computing time of multiple-use PCR primer design by representing 
multiple DNA sequences in a new data structure, named partial order graph (POG). POG preserves all 
information of sequences and reduces computing time. The melting temperature of primer candidates 
is determined by nearest-neighbor thermodynamic approximation. To determine the melting 
temperature of primer candidates, a lookup table is built to accelerate the calculating process by 
recording pairs of neighbors appeared in the sequences. The proposed method is applied on four 
datasets which is selected from the UniGene database with different species. It efficiently reduces the 
number of necessary computed pairs of neighbor to only 0.62% of the original size. The efficient 
multiple-use PCR primer design algorithm is useful in many aspects of genomic researches including 
unique primer design, minimal primer set design, probe design, and so forth.  

 
2 System and method.  
 

The proposed method works as follows. Assume we would like to find the primers of n DNA 
sequences. These sequences will be transferred into a compact partial order graph (POG). Fig.1(a) 
shows an example of merging three sequences into a POG. In the POG, letters are represented as 
nodes and directed edges drawn between consecutive letters in each sequence. Identical letters of 
sequences are merged if they appear at the same position. Primer candidates are then generated by 
shifting the windows whose size is predefined. A primer candidate is considered to be good if the 
melting temperature (Tm) is high enough to a particular region in a sequence but low in all the other 
sequences. We calculate Tm using a thermodynamic data [3] with the following formula [1]: 

],log[6.16
)4/ln(

15.273 ++
+∆

∆
−= Na

CtRS
HTm

  

where ∆H is the sum of the nearest-neighbor enthalpy changes for hybrids; ∆S is the sum of the 
nearest-neighbor entropy changes for hybrids; R is the Gas Constant (1.987 cal/°C/mol); Ct is the 
molar concentration of strands; and [Na+] is the monovalent ion concentration.  

However the costs of calculating pair of neighbors are time consuming. To compute Tm 
efficiently, a lookup table of all pair of neighbors in those sequences is created. If an edge (i.e., a pair 
of neighbor) appears in the sequence, the corresponding entry will be set to 1. Fig. 1(b) shows the 
lookup table.  
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Seq.1: T A G A G C A G G C 
Seq.2: T G T A G C T A T C  
Seq.3: G T A C C C C C T C  

   
     (a)            (b) 

Fig. 1: (a) shows an example of how three sequences are merged into a POG; (b) shows a lookup table of all pair 
of neighbors in those sequences. The table is used to accelerate the process of calculating tm for primer 
candidates. 
 
3 Result.  
 
The proposed method is applied on four genome datasets to verify the robustness. Four genome 
datasets, including Homo sapiens (Hs), Mus musculus (Mm), Rattus norvegicus (Rn), and Hordeum 
vulgare (Hv), are selected from the UniGene database (http://www.ncbi.nlm.nih.gov/UniGene/). We 
cut the long sequence of species into smaller segments (3,000 bp) and merge them into a more 
compact partial order graph. Table 1 shows the results on the proposed methods tested on these 
datasets with a PC (800MHz Intel Celeron and 512 Mbytes of RAM). Among these experiments, the 
proposed method can significantly reduce the number of neighbors which are necessary in calculating 
Tm. The reduce rates are at least 99% in these tests. Although the building time is somewhat long, once 
the POG is built, we can easily add more target sequences in a short time without destroying the 
established POG. 

 
Table 1:  Experimental results of the proposed methods applying on four different datasets. 

 Hordeum vulgare Rattus norvegicus Mus musculus Homo sapiens 
size of UniGene database 11.1 MBytes 64.7 MBytes 117 MBytes 137 MBytes 

original number of sequences 11491 53354 88185 108094 

total edges should be calculated 8,406,053 46,518,085 90,434,462 102,295,866 

building time(sec.) 208.8 1120.2 2150.7 2489.8 

edges should be calculated in POG 43,786 183,201 403,385 634,711 

ratio of calculating edges 0.52 % 0.39 % 0.45 % 0.62 % 
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1 Introduction  
 

Single-nucleotide polymorphisms (SNPs) can change the function or the regulation of a protein.  
They also are useful as genetic markers that can be used to find the actual DNA sequence variants 
that cause differences in gene function or regulation; many such differences directly contribute to 
disease processes.1  The ability to genotype SNPs rapidly and cost-effectively is essential for many 
applications such as mutation detection and linkage mapping.2 

Our laboratory uses a genotyping method for SNPs that combines the specificity of nucleotide 
incorporation by DNA polymerase and the sensitivity of fluorescence polarization, known as 
Template-directed Dye Terminator Incorporation assay with Fluorescent Polarization detection 
(FP-TDI).  Following PCR amplification of the target region, a SNP-specific primer anneals 
immediately upstream of the polymorphic site in the target DNA.  Appropriate dye-labeled 
terminators extend the SNP-specific primer by one base; by determining which terminator is 
incorporated, the allele present in the target DNA can be inferred.  The highly specific and sensitive 
nature of FP-TDI allows us to perform high-throughput SNP genotyping in a 384-well plate format, 
generating about 10,000 genotypes per day.3       

The development of a laboratory information system became especially critical with our 
participation in the International HapMap Project, the goal of which is to develop a haplotype map 
of the human genome.  The freely-available information produced by the Project is expected to be 
an important resource for researchers who want to find genes related to health, drug response, and 
disease.  As a genotyping center for the HapMap project, our laboratory must have the capability to 
receive large incremental SNP allocations from a data control center (DCC) over a thousand miles 
away.  Our FP-TDI machines output data in a raw format which has to be processed, organized, put 
through quality control, and then submitted back to the center.   

 
2 Data Requirements 
 

Participation in the HapMap project requires a data pipeline that begins at SNP allocation.  On 
a regular basis the data control center sends us massive compressed XML files that contain the 
sequence and alleles for each SNP that has been found in our region, chromosome 7p.  We must 
parse, sort, and store all of that information.  With each new allocation, we must determine the 
SNPs for which we can successfully design assays, a computationally-intensive process that takes 
advantage of freely available databases including dbSNP and RepBase4.  We select from among 
assayable SNPs those which meet our criteria for genotyping.   When technicians run the assays, a 
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raw text file is the only output.  Those raw files must be processed so that our quality control team 
can view the results in PerkinElmer’s SNPScorer software.  An interface is necessary for the team 
to view call rates and update QC assessments for each assay without making direct changes to the 
database records.  In preparation for submission, called data from our laboratory must be combined 
with that from collaborators located in San Francisco.  Finally, the data must be exported into a 
precise XML format and delivered to the data control center.    

 
3 LIMS Solution 
 

We felt that an open-source platform offered the flexibility and capabilities that best suited the 
vast quantities of data in our pipeline.  A customized UNIX environment provides the backbone for 
our data processing.  Three relational MySQL databases store our laboratory data in every stage of 
the data pipeline; they also provide the storage and organization capabilities required for complex 
informatics tasks including assay design, SNP choosing, primer orders, data storage, analysis, 
quality control, and data submission.  Once DCC files are downloaded and decompressed, Perl 
scripts parse out the requisite SNP information and update our database.  In the ensuing assay 
design pipeline, the most ideal PCR and SNP-specific primers are selected and ranked for every 
SNP possible.  A mapping program written in Perl selects the SNPs in our region that have assays, 
have not been ordered, and meet the distribution requirements set by the HapMap Project Steering 
Committee.  Additional software generates the order files for mapped SNPs and parses the raw 
output files into our database once the assays have been run.  Our intranet provides web interfaces 
built in Perl CGI that allow our staff to analyze, call, and assess the quality of each assay.  
Additional web interfaces chart our progress on 7p, help staff members to update plate ordering 
information, and display calculated assay errors (such as Mendelian failures).  Data is exported into 
XML format for transmission between laboratories and submission to the DCC. 

 
4 SUMMARY 
 

We used open-source technology to build a Laboratory Information Management System 
(LIMS) to store, manipulate, and share the data produced by our FP-TDI technology.  
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1 Introduction.  
 
The current strategies for mapping and sequencing are clearly not meeting the challenge of high-
throughput comparative genomics. Alternative and complementary strategies need to be developed, 
and it is imperative now to find cost-effective and convenient methods that allow comparative 
genomics projects to be undertaken by a wide range of laboratories.  
 
We develop a new robust and high efficient technique for large scale scanning of genomes in 
complex multiorganisms mixture on a quantitative and qualitative basis. This comparative genomic 
technique are currently effectively applying [1] in the area of sequencing of related bacterial strains 
and species, in order to identify the genomic basis for differences in their biological properties, 
particularly pathogenicity. Our approach allows analysis of complex microbial mixtures such as in 
human gut and identification with high accuracy of a particular bacterial strain on a quantitative 
and qualitative basis.  

 

2 Method and results.  
 
To achieve the aim of large scale scanning of microbial genomes we propose to create restricted 
site tags (RST) set of a organism: databases containing specie’s short sequences surrounding 
restriction sites - tags, of a particular rare cutting restriction enzymes. We introduced an 
information value of a rare cutting restrictases (with restriction site of eight base pairs in lengths 
and more, Tab. 1, Fig. 1) and analyzed RST passports of all selected restrictases. Thus, a 
comparison of 1 312 tags from available sequenced E. coli genomes, generated with the NotI, PmeI 
and SbfI restriction enzymes, revealed only 219 tags that were not unique. None of these tags 
matched human or rodent sequences.  
 

Restriction 
enzyme 

PmeI SbfI PacI FspA NotI SgfI SgrAI SrfI Sse2321 AscI FseI SwaI 

Score 62.5 49.5 37 35.5 22.5 22.5 21.5 16.5 16 14 13 -21 

 
Table 1.  Information value of recognition sites for rare cutting restriction enzymes in selected 70 microbial genomes. 
 
Thus, RST set for a particular organism represents in fact a unique genomic fingerprint of this 
specie or strain that is easy to generate. This distinctive feature of the method allows a 
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discriminating different species and even strains from mixture of genomes. From the total DNA 
fraction of a complex microbial system a total RST set is produced and sequenced. Then an 
information about the original genomes mixture is extracting by comparison of the total set with the 
fingerprints of known bacteria (with known genomes) using combinatorial chemistry. At the same 
time it was shown that short sequences randomly taken from any bacterial genomes fall in clusters 
when principal component analysis (PCA) is applied [2]. Due to this fact we can suggest the 
potential of our method to discriminate even between unknown (unsequenced) species. 
 
          Inf.value 

 
Figure 1. Schematic distribution of recognition sites for rare cutting restriction enzymes in selected completely 

sequenced bacterial genomes. 
 
The procedure for generating tagged sequences is easily realized experimentally and can be adapted to 
any rare cutting restriction enzyme. We demonstrated experimentally that the NotI tags comprising 19 
bp of sequence information could be successfully generated using DNA isolated from intestinal 
samples. Such NotI passports allow the discrimination between closely related bacterial species and 
even strains. Therefore the approach allows analysis of complex microbial mixtures such as in human 
gut and identification with high accuracy of a particular bacterial strain on a quantitative and 
qualitative basis. 
 
The remarkable advantage of our method verified on microbial systems is the ability to identify even 
strain composition. This gives the opportunity of identifying faint differences between relative 
organisms, e.g. pathogenic islands. 
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Aligning Optical Maps

Yu-Chi Liu 12, Michael S. Waterman 1, Anton Valouev 1, Lei Li 1, Yu
Zhang 1, Yi Yang 1, Jong-Hyun Kim 1, David C. Schwartz3
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1 Introduction.

Optical Mapping is a single molecule system for the construction of ordered DNA restriction
maps [4]. It uses light microscopy to directly image individual DNA molecules bound to
charged surfaces, cleaved by restriction endonucleases. Cut sites are flagged by small, visible
gaps. Notably, restriction fragments retain their original order, and the resulting string
of restriction fragment masses is termed an optical map. Shotgun Optical Mapping is an
approach that constructs whole-genome DNA restriction maps by overlapping optical maps
derived from randomly sheared genomic DNA molecules. Each molecule is mapped and
aligned to form contigs consisting of 10− 50x coverage of a given locus; as such, these maps
have served as scaffolds for sequence assembly and validation [3].

In the map assembly problem, sensitive detection of overlaps between optical maps plays
a crucial role, and experimental errors make the analysis of this problem complex. By
modifying the dynamic programming algorithm in [2] for restriction maps alignment with
suitable scoring function and parameters, we are able to find accurate matchings between
two overlapping optical maps under the limits of known experimental errors.

2 Data.

Due to experimental condition, the measured maps have the following features:

I. missing cuts,
which occur when molecules are not cleaved at all restriction sites.
In one data set, the probability of missing cut at a cut site is about 0.2.

II. false cuts,
which occur when there are cleavages detected which are not at a restriction site.
We have about 5 false cuts per Mb in one data set.

III. sizing errors,
which are imprecisions in measuring the length of restriction fragments.
Suppose lr is the true fragment length and lm is what we observed in the data, then

|lm − lr| is modeled to be proportional to
√

lr.

3 Methods.

Let a segment [i, k] of a map consists sites i through k. Let a matching pair between two
maps be denoted by (i, j; k, l).

1Program of Molecular and Computational Biology, University of Southern California, Los An-
geles, California, 90089.

2E-mail: ycliu@usc.edu
3Laboratory for Molecular and Computational Genomics, Department of Chemistry and Lab-

oratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706. E-mail:
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Suppose we have a global alignment Π between a map A with m sites and the other
map B with n sites is a sequence of ordered matching pairs (i1, j1; k1, l1) (i2, j2; k2, l2) . . .
(id, jd; kd, ld), where kt < it+1 and lt < jt+1 for each t < d. Let qx denote the position of
site x on map A, and ry the position of site y on map B. With λ ≥ 0 and ν ≥ 0, the score
of Π is defined as:

score(Π) =

d∑
t=1

σ(it, jt; kt, lt) + l(qi1 , ri1) +

d∑
t=2

l((qit − qkt−1), (rjt − rlt−1))

+ l((qm − qkd), (rn − rld))− λ

[
m + n−

d∑
t=1

(kt − it + 1)−
d∑

t=1

(lt − jt + 1)

]
,

where

σ(it, jt; kt, lt) = ν · (#of matching sites pair in segment [it, jt; kt, lt])

+ l((qkt − qit), (rlt − rjt))− λ((kt − it) + (lt − jt)).

Each pair of matching sites in segment is rewarded by ν in σ(it, jt; kt, lt). It also takes
care of random permutation of restriction sites position. Each site not matched with any
others (due to a false cut or a missing cut) is penalized by λ. l(a, b) is the scoring function
of length similarity for two segments, one with length a and the other with length b. So the
function l(a, b) takes care of the distance discrepancy between a matching pair.

To obtain an appropriate function for l(a, b), we first, using a central limit theorem,
model the measurement distribution (conditional on the true fragment length). Then we
derive a log likelihood function to use as l(a, b).

This approach, which is for global map alignment, can be modified to yield local align-
ments and overlap alignment. To obtain an algorithm for overlap alignment, we modify the
recursion in [2] as follows.

Initialize both the first row and column as 0 when calculating the maximum score matrix
of alignments (which means both the open and end gaps are not penalized [1]). We are able
to find the best overlap alignment (with highest score) between two optical maps under the
scoring scheme we mentioned above.

References
[1] Huang, X. 1992. A contig assembly program based on sensitive detection of fragment overlaps.

Genomics, 14:18-25

[2] Huang, X. and Waterman, M.S. 1992. Dynamic programming algorithms for restriction map
comparison. Comp. Appl. Bio. Sci., 8:511-520.

[3] Lim, A., Dimalanta, E.T., Potamousis, K.D., Yen, G., Apodoca, J., Tao, C., Lin, J., Qi, R.,
Skiadas, J., Ramanathan, A., Perna, N.T., Plunkett, G. 3rd., Burland, V., Mau, B., Hackett,
J., Blattner, F.R., Anantharaman, T.S., Mishra, B., Schwartz, D.C. 2001. Shotgun optical maps
of the whole Escherichia coli O157:H7 genome. Genome Res., 11(9):1584-93.

[4] Schwartz, D.C., Li, X., Hernandez, L.I., Ramnarain, S.P., Huff, E.J., Wang, Y.K. 1993. Ordered
restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping.
Science, 262:110-114.

Dana Jermanis
Genomics

Dana Jermanis
153

Dana Jermanis




�

�������	��
��������
�����
������	������� �"!#�$� %�� � �$&'�(%")*
+*��
��&'
��,�(���
-/.��102�	�	%���&'�3.��$� ���4�$�657
8��� 9:�$&<;7=>0 )*
�+*��
��&'


07�	����.��3.����?�

@BADCFEHGIAKJIL�M GN�O�AKP�ERQ SUTWVYX[ZR\�\UL^] @BZ/_�Ca`bZdcDPFegf�Ah\g_ji

k?lnmRo8prq$sutgv�wyx[z{wy|~}����n��z{}�� ��}�����xy��xy�U�~�$xyxy�$���$�����gxR�r��}��U�����gx

��� t���q��r�g�
�b}3�U}�z{�������~}��$xb�$���g���������[�����r�������$xb�$w[���g�(���������������*��x[xy��������}3z{}�����}�x ��z���¡F�g}£¢

x[�g�����¥¤�¦¨§�z{}�© wy}�x[��}�z��I�ª�[}�x ����¡«�U��xy�¬���n�U�ªx[�	��}��g���gx[z���|U���g������}£����}��g���gx[z�����x �{���gxyz
�$xr�z{�(¡®�$�{���d¯��b}3�U�(���[��z¨� �w[z{�ªx[� w[xyz{w[|~}����n�ªz{}���ª}��$��xy��x[����}����yx[�ª©nw[}�z��U}��°}�����|~}��
��x����g��|[w[���$������xr���Y����xy��wy��z±������z�¯�²��y}�³g}��´xy}�µa}���}���}�xn�¨µ�}��~�$�{����µ�z�¡«�����¶wyx[z{wy|~}��{¢
�n��z{}��3��}�����xy��xy�'��zY���y}^����xy��}�|[�·��¡R����}��U�����gxR�n�¨����z±���$¡R�ywy���ª�[��x[���y��� ��³UzY�$¡R���[}�µ��$���[z·��¡
�¸�ª��xy��wr�$�g}g¯·²��[}���}^�$��}��U��z±���ªx[���Y��}��U�����gx[zY¡«���·�U��¹º}£��}�x �Y�g}�x[�g��������}����ª��xyz��n�U}���}�������xy}��
� ���3��}�����xy��xy�(�$���g���������[�»�$w[�����(�$��������������¡«���g�¼�{���$�ªx[��xy���[�$���U¯
½Dx��gw[�B�����g�$�������[��g���gx ��}��n�u¡®}��$��w[��}�zB��¡y�[��¹º}���}�x �Y�U�g�(����x���¡[���y}·�{������xy��xy�¸�g}�xy�g�����

¤¨¦�§¾z{}�© wy}�x[��}�z¸�$��}¨}��n�{��������}�����xn���8�����{��}�z{|~�gxr�U��xy����}��U�����gx[z��yµ��[�ª���?z{}£���°}'��z�|U���g�[¢
�$�y������z±���ª�I���n�[}���z·���8�U}���}����F¡®}�����w[��}��(�U�g�(����x[z·¡¿���g�À���[}�wyx[¢D�$xyxy�$���$��}��3��}�z±���g}�xy�g�����
¤¨¦�§"z{}�© wy}�x[��}�z�¯�§À��}�xy}£������|U���g�y���y������z±���������n�[}��·��¡^��}�xy��������z{}�© wy}�x[��}�z±�{��wy�£��w[��}
��z��[wy�����^wy|(������g�8�y��xy}I�����~���y}¸¡®}�����w[��}����[���(����xyz������g}����[}��¸��xy� �$w[�����(�$��������������Árxy�
��w[�^���[}��~}�z±�I��x[xy�����������gx�$¡B���y}¨��}�z±�¸��}�xy�����ª�'¤¨¦�§�z{}�© wy}�x[��}g¯
²d�¨�$�£�[�ª}��°}F���[�ªzd����z{³~��µ�}FÁ[��z±�u��}��n��z{}��3Â������U�[}^Ã�����£³g}�xdÄ zuw[xyz{wy|~}£���U��z{}��'��}�����xy��xy�

�$���g���������[���$xr�?����|y��}���}�xn��}������y}'ÅI����}����y�R�{������xy��xy�(�$���g���������[�Æ����|U��� ��}�z{zI���[}'�ª�$���g}
µ��$��}��[�gw[z{}���¡[���y}·�g}�x[�g������¤¨¦�§�z{}�© wy}�xy��}�z�¯d�¾�y}�x�µ�}��$|y|y����}������u���¨ÇYxy�����ªz{����$��|ywyz
|y�$��z{}g¯/���Bµ^��zB���yz{}����g}������y�$�/�gw[�YÅI����}����y�°�{���$�ªx[��xy�¸z{�y��µ�}�����g��|y�$���$�y��}�|~}��{¡«�����(�$xy��}
�$xr���y���g�[}��¸}�È�����}�x[���(���r��x¥Â��$���d�[}Ã�$����³°}�xRÄ z¸w[xyz{w[|~}����n�ªz{}�� ��}��$��x[��xy�(���������������y�¯
²��[}�x3µ�}���}�z±��}��8���y}^ÅI����}����y�n�{������xy��x[�������g�$�������[�À��x(�I��}��$�yµ^����}��y��wyz{}���¡º|U������}���x

z{}�©nw[}�xy��}3�[�$�����y��z{}8�ª��³°}8ÉY½ËÊ�¢D¦IÊ¨Ç·Ì��~����x ������xy��xy� ÍgÎgÏgÐ$ÍgÑ }�xn�{����}�z���xr�¥w[|´��� Ï Ò Ó�Í�Ô
Õ ÑgÖ����r�$���$����}���z�¯?²��y}���}�z{w[���8|U������}���x���}��U������xbµ^�$z8������|~�gz{}�����¡¸Ï ×�Ø Ï�Ón×�Ó°Ð$Í?µ������Uz�¯
²��[}��(�$�U���3w[����}�xy�$������¡�µ������b��z8ÓgÙgÑ¥���r����������}���z�¯²��y}�������}�������|y��}��U���Ë�*��¡^���[�ªz
}£�[|~}£���ª��}�xn��µ���z�Ú�Û Õ ÑUÜDÝ$Þ^ßy�°�����ªx[�(|~�g��x ��������|yw[���������gxd¯¨à¨wU���$�ª�����������y�»��z¨}�È����ª}�xn�
��x �r��xy�[����xy���ª�����g}�y�������r�$z{}g¯
§�¡«��}��{µ��$���Uz��^µ�}´��xn��}������$��}������y}¥ÅI����}£���y���{������xy��xy�¬�$���g���������[��z(���b�Uw[�(��x�|[����¢

���$��}�����}��g����x��ª�[}�xn����Áy���$�����gx	¡¿���g�#wyx[¢D�$xyxy�$���$��}����nw[�(��xb��}�xy����} z{}�©nw[}�xy��}�z�¯´��}
w[z{}��b���y}(|U���g������}£���F��x �{���gx¬�$xr�áÂ�¤�z�{������xy��xy�*�[�$����z{}£��¡«�����,�´|yw[�y������Ê¸}�|U��}�z{}�x[¢
���������°}�â�}�x[�£�[�(�$��³´¤'�����¥ãU}���z��$¡^ä¨w[�(��x*¤�¦�§åãU}�© wy}�xy��}�z'|U�����U�ª�U}���� ��â�}���³°}��ª}£�
¤I���gz{�g|[�y���ª�¬æ¨}�xy����}´ÉY����ç±}����?µ�}��Hz{����}*��xr�á�{������xy}���|[���g���$��}�������x �{���gx¾�$xr�¾Â�¤�z
��}��U������xyz���}�z{|~}��������°}���� ¯²�µ��´���ª��z{z{��Ár}£��z3µ�}���}(�[wy�����8�y��z{}�����x����y��z{}(���U��}�}���}��U�����gx[z
���¥�ª�U}�x ����¡¿�b���[}�|U���g���$��}�����}��g���gx[z�¯�²��[}���}�z{wy���3µ���z8���g��|y�$�����[��}(µ������	�$���y}��3|[����¢
���$��}��·��}��g���gx �ª�[}�x ����Ár���������gx(��}����y�n�Uz��y��z{}��(�gx����y}���}��n��}�µ��[�$����z{}£�^� ��Ìu���£³g}��{����xy�
ä¨�$��è�����}����g�g����w*|y��|~}���¯

Ü�é�ê�ëgì£ídî�ïdðuî�ñ'ë°ògìDê�ó�ô�õ�ö�ê�÷°õ�ê�ønùF÷gö ú�ê�óDûËö ìýüî�ïdðuþ°ö�õ�ÿ���î°í����ýñ�ÿ�ö��	��
�������������������������� �!"�$#�%��
Ý�é�ê�ëgì£í î�ï¼ðuî�ñ'ë°ògìDê�ó ô�õ�ö�ê�÷°õ�ê4ÿ�÷'&)(�ÿ�ìDþ°ê�ñ�ÿ�ìDö�õ�û�ø»ùF÷°ö ú�ê�óËûDö ìýü�î�ï¼ðBþgö�õ£ÿ���î°í �*�ýñ�ÿ�ö��	�

+ �,%� �������������������� �!"�$#�%��
- é�ê�ëgì£í î�ï ðuî�ñ'ë°ògìDê�ó ô�õ�ö�ê�÷°õ�ê�ÿ�÷'&/.rö�÷���ò°ö�ûDìDö�õ�û£ø,ùF÷°ö ú�ê�óËûDö ìýü î�ï ðBþgö�õ£ÿ���î°í �*�ýñ�ÿ�ö��	�


��0� �!���%��213�,4����������������� �!"�$#�%��

Dana Jermanis
154

Dana Jermanis
Genomics

Dana Jermanis


Dana Jermanis
F12.



5

Â�wU�{��}�x ����� ��µ�}�$��}¥�yw[���¿�U��xy����z{�ª��|[����Áy}��¬���n�[}�����¡�z{}�© wy}�x[��}z±�{��wy�£��w[��}g�^���gx[¢
z{��z±����xy� ��¡^��x ��}�����}�xy���3��}������gxd�u�ªx �{����xyz��d}��U�gxyz��/������}�|[���$�z{����}�z���xr���[��xy����z{����}�z�¯3��}
����}'�{������xy��xy�����[}��x �{���gx´�$xr�}��U��x��}��U�ª���gxyz¨��xy�|~�gz{�������gx´z{|~}�����Ár��µ�}��ª��� ���(�$�{�����U}�z
�$¡�������}�|[���$���$xr���U�gx[���z{����}�z¡¿���g� �nwy�(�$xb��}�xy����}3�{������xy��x[�´�y�$���n¯¥æ¨���°}�x���xbwyx[¢
�$xyx[�����$��}��3�g}�x[�g������¤�¦�§áz{}�© wy}�x[��}g�����y}���xn��}£���g}�x[�ª�^��}������gxyz��n��x �{���gx[z�� }��U�gx[z�� �$����}�|U¢
���$��z{����}�z¨�$xr� �[�gx[���¸z{����}�zI�$��}���x[xy�$���$��}�� ��w[�����(�$�������$�ª��� ¯
½DxH¡®wU��w[��}´µ�����³~�¸µ�}´µ����ª��}��n��}�xy� ��wU�{��}�x �z{����|y����Ár}��H���n�U}��I���á�$xyxy�$���$��}*���y}

���g��|y��}���}�g}�xy�g�����¤�¦�§ z{}�©nw[}�xy��}8���$��}8z{|~}�����Áy��������� ¯§Ixy�?µ�}µ��ª���B��}�Áyxy}��w[�{��}�x �
z{����xr���U�$xr�����gx ��}�x �Bz{���$����xy�¨|y�$�{��zB�$xr�������[}��B|r��������}���}£��zu���I����|[�����°}Y���y}���x[xy�����������gx
�$����wU������� ¯

Dana Jermanis
155

Dana Jermanis
Genomics

Dana Jermanis
5

Dana Jermanis




Characterization of Retroid Agents in the Human Genome: 
An Automated Approach

Marcella A. McClure, Rochelle A. Clinton, Hugh S. Richardson, Vijay A. Raghavan, Crystal M. Hepp,
Brad A. Crowther, Angela K. Olsen, Eric F. Donaldson1 and Aaron R. Juntunen.

Keywords: Retroid agents, retroviruses, retrotransposons, Genome Parsing Suite, human genome

1  Introduction.

Retroid agents are genomes that replicate by reverse transcription of an RNA intermediate. Although once
considered to be "junk" DNA, some Retroid agents are implicated in disease via insertional mutagenesis while
others have been found to encode proteins essential to mammalian reproduction or to provide regulatory
sequences for host cell processes. We have developed new software, the Genome Parsing Suite (GPS), to identify
and characterize reverse transcriptase (RT) signals in the human genome database (HGD), and to annotate the
Retroid Agents that encode them. The GPS approach is quite different in concept from RepeatMasker [1], a
program designed to identify and mask out Retroid Agents in the human genome with consensus DNA for
repetitive elements. Recent work conducted on the December, 2001 freeze of the human genome identified 90 L1
LINEs with intact open reading frames (ORF) [2].  The prototype GPS provides precise information about the
Retroid Agent, including genes present, condition of genes, agent boundaries, location of the agent in the genome
etc. The GPS utilizes protein rather than nucleotide sequences to screen for the presence of Retroid Agents,
thereby providing a deeper query into a genome. Using the GPS to analyze 257,278 RT hits retrieved by BLAST
from the July 2003 freeze of the HGD a total of 95,537 unique RT signals have been identified, and 111 signals
are not unambiguously classified to date. As expected, a human LINE sequence pulls out 93% of the unique RT
hits. This is less than the reported 500,000 LINEs found by RepeatMasker. The estimated number of LINEs in
the HGD using RepeatMasker does not account for two possibilities regarding small sequence length hits; 1)
some may be random, and 2) small hits that are close in proximity actually belonging to the same highly divergent
LINE genome. In addition the RepeatMasker results include small remnants of untranslated regions (UTRs),
while the GPS screens for potentially functional Retroid Agents.  We have identified 156 LINEs that contain the
coding capacity to be potentially functional. All chromosomes except 19 and 21 have full length LINEs without
stop codons or frame shifts (table 1). The GPS is designed to not only identify highly conserved Retroid agents,
but also very distant ancestors. A complete analysis of Retroid information content per genome will also allow the
correlation of the position of these agents with higher order genomic feature, e.g., regions of increased gene
expression or silencing within CpG islands. The development of this research tool provides the ability to quickly
evaluate all Retroid information of a given genome and generate hypotheses regarding the nature of the Retroid
Agent landscape in genomes from all three domains of life. By populating the GPS with protein sequences
representing all known RT genes not only is a complete analysis of the major Retroid Agents present in the any
genome feasible, but low frequency RT genes and in some cases “cryptic” retroviral genomes may be discovered.  

2  Software and files. 

The GPS can be populated with any set of phylogenetically distributed protein sequences and the corresponding
ordered-series-of-motifs (OSM) representing functional or structurally important amino acids to search, annotate
and assess probable function of new members of a protein family in any organismal genome database. Tests were
performed to determine which of three external search methods provide the greatest amount of raw data to
analyze.  BLAST [3] with the PAM70 matrix, retrieved more significant RT hits than WU-BLAST [4] using the
same matrix, or RepeatMasker driven by Cross_Match [1] using our in-house RT gene libraries.  Twenty-one
representative RT sequences were used to generate the data presented in table 1.  The GPS is designed to initially
evulate the RT retrieved hits and then search the surrounding genomic sequences for other genes encoded by
Retroid agents.  Raw BLAST hits are evaluated for the presence of the RT OSM. Unique hits are determined by
comparison of: 1) hits in the same reading frame by multiple probes to the same location, and 2) compound hits at
the same location from multiple reading frames.  In stage one, a hit with a blast score that is at least 10% greater
than all others is determined to be the unique hit. All hits meeting this 10% criterion are reevaluated in the next
procedure. In stage two, if more than one probe retrieves a hit to the same location, the unique hit is 
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determined by a score of at least 50% greater than all others. Ambiguity arises when the range of scores are all
within 50% of one another. The unique hit will then be determined from among these ambiguities at the Retroid
agent gene component analysis stage of the GPS. This procedure removes redundancy of retrieved  hits due to
cross coverage by multiple queries and solves the problem of multiple small hits retrieved by a given query which
represents a distantly related RT gene. Failure to account for these small hits results in each hit being scored as a
unique hit, thereby overestimating the number of potential RT genes and Retroid genomes within a host genome.
Based on the OSM scores for potential RTs, corresponding Retroid agent genome sequences are extracted from
the organismal database. The GPS then analyzes these potential Retroid agents for the expected genes given the
RT classification based on our gene component libraries. In addition, each potential Retroid agent sequence will
be evaluated by all component libraries to screen for recombination events.  Future extensions to the  GPS  will
include  the  ability  to  populate  the  system with  nucleotide  sequences  using  our  in-house  Retroid  nucleotide
libraries and a graphical display of all results.

3   Figures and tables. 

Chr   Unique   Unclass Full Perfect
1
2
3
4
5
6
7
8
9
10
11
12
13

6722
7793
6858
7136
6361
5793
4944
4817
3842
4029
4486
3890
3167

4
4
5
14
7
8
3
2
3
2
9
6
2

127
167
133
154
139
122
86
109
71
74
95
83
42

17
12
11
10
12
10
9
7
4
6
9
6
3

Chr   Unique   Unclass Full Perfect
14
15
16
17
18
19
20
21
22
x
y

2850
2520
1624
1458
2448
1222
1374
986
745
9091
1381

3
5
2
1
1
6
3
1
3
4
13

51
35
26
19
46
18
26
8
7

187
23

3
5
7
1
5
0
3
0
2

13
1

Totals                95537              111            1848              156
           Table 1. Chr is chromosome number. Unique indicates all unique RT signals, Unclass includes all RTs that could not 
           be unambiguously classified by query RTs.  Full indicates full length LINEs and Perfect indicates LINEs that are 
           full length and contain no frame-shifts or stop codons.
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MGAW : a Microbial Genome Annotation 
Workbench under Web-based Analysis Interface 
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1 Introduction 
 
As the genome projects have produced tremendous bioinformatic data, annotation is considered 

as an essential part of genome sequencing projects to elucidate the value of the sequence[1]. 
Through annotation systems, molecular biologists could deal with genome data easily and all 
related information could be accessed, edited, or updated without additional efforts. To satisfy these 
needs, we have developed MGAW(Microbial Genome Annotation Workbench), a web-based 
microbial genome annotation system, which provides web-based analysis interface for gene 
prediction, homology search, promoter analysis, motif analysis and gene ontology analysis. The 
annotated information can be retrieved with database searching and browsed with a genome map 
browser and a gene classification viewer. Public microbial genome databases are imported and can 
be searched and browsed through the same interface. 
 
2 Methods 

 
MGAW database contains from contig data to functional analysis data of the final gene set. The  

interface of each annotation tool was implemented not only for running each tool and viewing the 
result but also for monitoring the progress. Analysis results are saved in the database with primary 
keys indicating the relationship between data. 

Gene prediction in a genome project is the first step of annotation. General methods for gene 
prediction are applied in this system and a few analysis options are provided. For promoter analysis, 
we implemented a general promoter pattern search and a two-component analysis search against all 
the predicted genes. For motif analysis, the Prosite DB patterns are searched against all protein 
sequences which are translated from the gene prediction. Fast algorithms were developed to 
accomplish fast searching for motif patterns of regular expression. The progress/status of promoter 
and motif analysis can be monitored through web interface. For homology analysis of all the 
predicted genes, we implemented the interface for NCBI BLAST and both COG(Clusters of 
Orthologous Groups) and GO(Gene Ontology) databases were used to classify the homology search 
result[4].  

Database searching module was implemented to query for the annotation results of an in-
progress or finished genome project and a linear map browser was implemented to visualize the 
whole genome map and detailed annotation information for each selected gene by further clicking. 
A gene classification viewer was implemented to show gene ontology analysis result with COG for 
a whole genome. A circular map is generated after retrieving gene ontology information of  all the 
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genes of a genome and calculating a few features for the whole genome area. A few options were 
implemented to select a specified category, a region and a drawing mode 

For public microbial genome data, input programs were implemented to parse the genome data 
of GenBank format and import into MGAW databases. Each imported genome can be searched and 
browsed as an annotated genome can be. 

 
3  Results and Discussions 

 
MGAW has stepwise and intuitive interface as shown in Figure 1. We have tested and improved 

through a few microbial genome projects. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Overview of MGAW features : annotation interface, genome browsing,  gene ontology viewing 
 
More features will be added in the near future, including gene ontology viewing for GO, genome 

alignment, and a lot of comparative genome analysis modules. MGAW will be very helpful not only 
for analysis of public microbial genome annotation but also as a practical information system of  
genomics/comparative genomics for real genome projects. 
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A Bioinformatics Approach Toward Identification of Genes 
involved in Hematopoiesis and Leukemia 
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Keywords: database, data-mining, EST, hematopoiesis, leukemia, statistical analysis, gene 
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1   Introduction. 
Hematopoiesis describes the process of the normal formation and development of blood 

cells, involving both proliferation and differentiation from stem cells.  Abnormalities in this 
developmental program yield blood cell diseases, such as leukemia.  This complex, biological process 
is under stringent control, with various extra- and intra-cellular stimuli that result in the activation of 
downstream signaling cascades.  Ultimately, these signaling cascades converge at the level of gene 
expression where positive and negative modulators of transcription delineate the pattern of gene 
expression [1]. 

In order to elucidate the mechanisms involved in such regulation, it is important to identify 
the genes, which play integral roles in the hematopoietic process.  Our in-house developed 
Hematopoiesis Promoter Database, HemoPDB, includes experimentally defined genes, which were 
manually curated from published literature [2].  Characterization of the gene expression profiles of 
these genes may allow us to efficiently identify previously unannotated genes via a combination of 
statistical analysis and data-mining of expressed sequence databases.  We have designed a data-
mining pipeline in order to manage the data obtained from dbEST [3] to determine the UniGene [4] 
clusters likely representing genes expressed preferentially in hematopoietic tissues and organs. 

 
2   Results.  

We downloaded all of the ESTs via dbEST: ftp://ncbi.nlm.nih.gov/repository/dbEST to 
create a standardized gene expression database for each sequence according to organ/tissue.  Our 
automated pipeline then determines the genomic coordinates of each sequence by its alignment to the 
genome by BLAT [5].  These coordinates are then associated with the corresponding UniGene cluster.  
We then perform a genome-wide statistical analysis by applying a binomial test to compare the 
proportion of organ/tissue-specific ESTs expressed in each cluster vs. the entire EST population.  The 
imposed criterion of a p-value, which conforms to a specific level of statistical significance, allows us 
to determine the clusters that are hematopoietic-related.  We intend to substantiate these data obtained 

                                                 
1 Div. of Human Cancer Genetics, Dept. of Mol. Virology, Immunol. and Med. Genetics, 420 West 12th 

Ave.  Room 570A, Columbus, Ohio, USA. E-mail: pohar-2@medctr.osu.edu 
2 Div. of Human Cancer Genetics, Dept. of Mol. Virology, Immunol. and Med. Genetics, 420 West 12th 

Ave.  Room 570B, Columbus, Ohio, USA. E-mail: sun.143@osu.edu 
3 Div. of Human Cancer Genetics, Dept. of Mol. Virology, Immunol. and Med. Genetics, 420 West 12th 

Ave.  Room 570B, Columbus, Ohio, USA. E-mail: liyanarachchi-1@medctr.osu.edu 
4 Div. of Human Cancer Genetics, Dept. of Mol. Virology, Immunol. and Med. Genetics, Dept. of  

Physics, 420 West 12th Ave.  Room 570, Columbus, Ohio, USA. E-mail: stapleton.41@osu.edu 
5Div. of Human Cancer Genetics, Dept. of Mol. Virology, Immunol. and Med. Genetics, 420 West 12th 

Ave.  Room 524, Columbus, Ohio, USA. E-mail: davuluri-1@medctr.osu.edu 

ftp://ncbi.nlm.nih.gov/repository/dbEST
Dana Jermanis
Genomics

Dana Jermanis
160

Dana Jermanis


Dana Jermanis
F15.



by comparing them to the gene expression profiles of experimentally characterized hematopoietic 
genes.   

We will present the development of our automated pipeline, in addition to results obtained 
from this genome-scale analysis.  We are hopeful that this study will allow the identification of key 
genes in the normal and malignant hematopoietic environments.      

 
 
3   Figures. 
 

Figure 1. Sample EST percentage distribution of 5 UniGene clusters obtained via our automated method, which 
identifies hematopoietic-related genes.  The highest percentages, conveyed by black bars, are consistent with 

hematopoietic organ/tissue types. 
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The complete genome sequence (1,111,496 bp) of Rickettsia typhi, an obligate intracellular 
pathogen and the causative agent of murine typhus, was determined and compared with the two 
published rickettsial genome sequences (R. prowazekii and R. conorii). A total of 877 genes were 
identified in R. typhi genome, including 3 rRNAs, 33 tRNAs, 3 ncRNAs, 838 proteins, 3 of which are 
frameshifts, and over 40 pseudogenes, which include the entire cytochrome c oxidase system. R. typhi, 
R. prowazekii and R. conorii share 775 genes: 23 are found only in R. prowazekii and R. typhi; 15 are 
found only in R. conorii and R. typhi; and 23 are unique to R. typhi. While most of the genes are 
collinear among these three genomes, there is a 124 kb inversion in R. typhi, when compared to R. 
prowazekii and R. conorii. In addition, a 35 kb inversion close to the replication terminus was also 
found in R. typhi and R. prowazekii when compared to R. conorii. Inversions in this region are also 
seen in the unpublished genome sequences of R. sibirica and R. rickettsii indicating this region is a hot 
spot for rearrangements. Genome comparisons also revealed a 12 kb insertion in the R. prowazekii 
genome, relative to R. typhi and R. conorii, which appears to have occurred after the typhus (R. 
prowazekii & R. typhi) and spotted fever (R. conorii) groups diverged. Repeat sequence analyses of R. 
typhi genome revealed that, like R. prowazekii and R. conorii, this genome contains very few 
repetitive sequences, which may explain the similarity in gene orders among the rickettsial genomes. 
The three-way comparison allowed further in-silico analysis of the SpoT split genes leading us to 
propose that the stringent response system is still functional in these rickettsiae. 
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immunoglobulin V gene sequence database 

 
Ida Retter1, Werner Müller 2 
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1 Introduction.   
 
With the exponential growth of the primary nucleotide sequence databases GenBank, DDBJ and 
EMBL [1] the requirement of automatically generated and annotated secondary sequence databases 
arises. Our aim is to generate an immunoglobulin nucleotide sequence database derived from the 
EMBL database in an automatic approach, representing the immunological sequence spectrum 
present in the germ-line. Within an immunoglobulin gene locus there are different sequence 
configurations possible: The germ-line configuration, in which multiple gene elements, mainly the 
so-called V genes, constitute the potential diversity of the antibody molecule, and the rearranged 
configuration, in which one V gene has been recombined with one or two other gene segments to 
create a functional antibody coding sequence (for review, see [2]). These rearrangements may or 
may not include somatic point mutations and deletions. To separate the germ-line encoded from 
somatically mutated immunoglobulin sequences we use two strategies: On the one hand, we 
compare V gene sequences from the EMBL database with genomic BAC sequences and regard a 
100% match as a germ-line evidence. On the other hand, all rearrangements from the EMBL database 
are aligned and V genes that are found in at least two independent rearrangements are regarded as 
germ-line sequences. To maximize data reliability our database does not include information from the 
annotation part of the EMBL nucleotide entries but provides accurate sequence evaluation by 
sequence comparison. The program was developed with sequences from the murine immunoglobulin 
heavy chain locus. However, it can also be applied to the light chain loci, other types of sequences 
(e.g., T cell receptor genes) and other species. 
 
 

2 Methods.  
 
Sequence alignment with BLAST. In order to identify all immunoglobulin sequences within the 
EMBL database we use the BLAST algorithm [3]. Beside the standard subset the High Throughput 
Genomic Sequence (HTG) and the WGS (Whole Genome Shotgun) databases are included in the 
search. A number of known immunoglobulin sequences are used as initial query sequences [4]. The 
BLAST result is subsequently filtered for minimum sequence identity and minimum alignment 
length.  
Sequence alignment with DNAPLOT. DNAPLOT is a sequence alignment program tailored for 
immunoglobulin nucleotide and protein sequences [5]. The fast alignment algorithm allows sorting 
the sequences within a multiple alignment and comparing multiple alignments among each other. 
Furthermore, the DNAPLOT motif recognition functions are used for the automatic V gene 
annotation. 
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Figure 1: Extraction of V gene sequences from the EMBL database by the BLAST program and 
germ-line V gene selection by the DNAPLOT program. 

 
3 Results and discussion.  
 
In our database we can classify the V genes into three different quality groups. The first group consists 
of sequences found in a rearranged form as well as in a non-rearranged configuration. These are germ-
line sequences of actively used V gene segments. V gene sequences of the second group are only 
found as germ-line genes but not recovered in V gene rearrangements. Such V gene segments may 
represent pseudogenes and the reason for the non-functionality of such sequences might be determined  
 
by a subsequent analysis. The third group of V genes is only found in rearranged sequence list but not 
in the list of non-rearranged sequences. These V genes represent most likely germ-line genes. 
However, a little bit of uncertainty remains until in a future generation of the database, a non 
rearranged counterpart can be recovered from the EMBL nucleotide database. 
 
Due to the automatic generation our sequence data set can be updated any time. It is comprehensive as 
it takes all published immunological sequences into account. The addition of new entries into the 
EMBL database will continuously improve the resulting V gene database. In turn, our database 
provides an important tool for the annotation of genomic sequences of the mouse. The method can be 
easily adapted to other variable loci, thereby providing the opportunity to analyse species with poor 
sequence data availability.  
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The role of pre-mRNA secondary structure in

splicing of Saccharomyces cerevisiae
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1 Introduction.

Splicing of pre-mRNA, which involves the excision of introns from a primary RNA tran-
script and ligation of exons into mature mRNA, is one of the essential cellular processes in
eukaryotic organisms. Although this process has been extensively studied since the discovery
of splicing almost three decades ago, the highly reliable identification of splice sites by the
splicing machinery is still not a very well understood phenomenon. It is currently believed
that the identification is accomplished through the base-pairing interactions between the
conserved sequences at the exon/intron boundaries as well as within introns and the small
spliceosomal RNAs. However, these sequences are short and often hard to distinguish from
the numerous unutilized sequences throughout the genome.

The inadequacy of the primary sequence to unambiguously specify splice sites prompted
scientists to speculate about the effects of higher order RNA structure. There are a number
of research articles discussing various effects of RNA secondary structure on splicing, but
more general role has not been established. In our current research we are attempting to
characterize the types and role of RNA secondary structure in the context of gene splicing.

2 Methods.

S. cerevisiae, which was chosen to be the model organism for this research, has a characteristic
bimodal intron length distribution [5], with shorter introns ranging in length from 50-200 nt
and longer ones from 200-1000 nt. Since the intron length and the distance between 5’ splice
site and the branchpoint sequence are tightly correlated in yeast, the distribution of the
latter is also bimodal. It is believed that shorter branchpoint distance (35-200 nt) is optimal
for splicing since it facilitates direct interactions between the small nuclear RNAs involved in
splicing. Analysis of the few yeast introns with a longer branchpoint distance, also called 5’L
introns, revealed the existence of a stem/loop structure that effectively shortens the distance
between the 5’ splice site and the branchpoint to the optimal value [1, 4, 2].

To investigate if the formation of the stem/loop structure between the 5’ splice site and
the branchpoint is common for all yeast introns with long branchpoint distance we used two
approaches. In the first one we computationally predicted secondary structures of 111 S.

cerevisiae 5’L introns and searched for ‘zipper’ stems that satisfied certain thermodynamic
criteria. A ‘zipper’ stem is a stem located between the 5’ splice site and the branchpoint
which maximally shortens the distance between these two sequences. The distribution of
branchpoint distances shortened by ‘zipper’ stems was then compared to the branchpoint
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Figure 1: Comparing distributions for (a) branchpoint distance for 5’S introns, (b) branchpoint
distance for ‘zipped’ 5’L introns , (c) length of ‘zipped’ random sequences.

distance distribution of introns with short branchpoint distance (5’S introns) using the stan-
dard Kolmogorov-Smirnov test. The distributions were found not to be significantly different.
To further test the significance of these results we performed the same ‘zipper’ stem analysis
for random and exon sequences and obtained distributions that were significantly different
from the original branchpoint distance distribution for 5’S introns (Figure 1).

We also used a comparative genomics approach to test for the existence of ‘zipper’ stems
in yeast introns. In this context, we used homologous intronic sequences from three species
closely related to S. cerevisiae: S. paradoxus, S. mikatae, and S. bayanus [3]. Multiple
sequence alignments of these sequences were visually searched for conserved structural ele-
ments that could function as ‘zipper’ stems. The alignments were also processed by several
programs that predict use conserved secondary structure elements based on compensatory
mutations. Potential ‘zipper’ stems were found for each of the alignments and the result-
ing distribution of shortened branchpoint distances was not significantly different from the
original distribution for 5’S introns.

In addition to the ‘zipper’ stem analysis we also looked at the secondary structure of the
branchpoint region of the yeast introns. We compared the predicted secondary structures of
the branchpoint sequences with those of other intronic sequences of the same length by count-
ing the number of unpaired bases. The results we obtained indicate that the branchpoint
sequences have significantly less base-pairing interactions than an average intronic sequence
of the same length.

References

[1] Goguel, V. and Rosbash, M. 1993. Splice site choice and splicing efficiency are positively influ-
enced by pre-mRNA intramolecular base pairing in yeast. Cell. 72:893–901.

[2] Howe, K. J. and Ares, M. Jr. 1997. Intron self-complementarity enforces exon inclusion in a
yeast pre-mRNA. Proc Natl Acad Sci USA. 94:12467–12472.

[3] Kellis, M., Patterson, N., Endrizzi, M., Birren, B., and Lander, E. S. 2003. Sequencing and
comparison of yeast species to identify genes and regulatory elements. Nature. 423:241–254.

[4] Libri, D., Stutz, F., McCarthy, T., and Rosbash, M. 1995. RNA structural patterns and splicing:
molecular basis for an RNA-based enhancer. RNA. 1:425–436.

[5] Parker, R. and Patterson, B. 1987. Architecture of fungal introns: implications for spliceosome
assembly. In Inouye M. and Dudock B. S., editors, Molecular biology of RNA: new perspectives,
Academic Press, Inc., San Diego, CA, USA. 133–149.

Dana Jermanis
Genomics

Dana Jermanis
166

Dana Jermanis




Dana Jermanis
Genomics

Dana Jermanis
167

Dana Jermanis




e2g - A Web-Based Tool for Efficiently Aligning

Genomic Sequence to EST and cDNA data

Alexander Sczyrba, Jan Krüger, Robert Giegerich 1

Keywords: EST alignment, gene structure prediction, suffix array

1 Introduction.

High throughput cDNA and EST sequencing projects have generated a vast amount of data
representing the transcribed portion of the organisms in study. As soon as (parts of) the
sequence of the associated genome becomes available, gene structures can be determined by
mapping the cDNA data to the genomic sequence. This allows the detection of genes missed
by gene prediction tools and the determination of splice variants of already known genes.

While several tools for mapping ESTs and cDNAs to genomic sequence already exist
[1, 2, 3], they can hardly be used in an interactive web-based application because of the
huge amount of data to be searched against. e2g is a web-based tool which efficiently aligns
genomic sequence to indexed cDNA and EST databases. This allows users to rapidly detect
the exon-intron structure of genes, including variants, in the genomic region of interest.

e2g is online available on the Bielefeld University Bioinformatics Server at:
http://bibiserv.techfak.uni-bielefeld.de/e2g/

2 Method.

The web interface accepts either (i) genomic sequence or (ii) genomic sequence and cDNA/EST
data as input. In the first case the sequence will be matched against a database of cDNAs
and ESTs. (Currently, databases for human and mouse are available.) In the second case,
the user provides the cDNA data to be matched against the genomic sequence. In both
cases, repeats and low-complexity regions will be masked before matching.

As good efficiency is critical for the approach, an enhanced suffix array is built on the
server as an persistent index of the EST sequences using mkvtree [4, 5]. The index efficiently
represents all substrings of the database sequences and allows to solve matching tasks in time
independent of the size of the index, done using the string matching algorithm vmatch [4, 5].
Matches can be computed either exactly, or approximately by extending the exact seeds using
the X-drop strategy [6]. Matching the 16.5kb genomic sequence of the example in figure 1
against all mouse EST data (approx. 2.5 GB), takes 50 seconds on a SUN UltraSparc III
(800 Mhz) with 64 GB RAM. Allowing mismatches using the X-drop strategy (99% identity,
seedlength 15) increases the running time to 73 seconds.

3 Web interface.

Figure 1 shows a screenshot of the e2g web interface. Matches of the ESTs reveal the exon-
intron structure of the gene. On the top the annotation of the submitted genomic region is
shown. This can be overlayed by dragging a transparent image over the lower part of the
window, allowing the user to easily compare the annotated gene structure to the matches

1Technische Fakultät, Bielefeld University, D-33594 Bielefeld, Germany.
E-mail: {asczyrba,jkrueger,robert}@TechFak.Uni-Bielefeld.DE
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found. Information about the matches of the circled exons is shown on top. The alignment
of each match can be calculated on the fly, reusing the existing index (see popup window in
the lower left).

Figure 1: Screenshot of the e2g web interface.
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1 Introduction.  
 

To facilitate efficient prioritization of candidate disease susceptibility genes for association 
analysis, increasingly comprehensive tools are essential to smoothly integrate vast quantities of 
disparate private and public data generated by genomic screens, association studies, whole genome 
sequencing and annotation data and ancillary biological databases.  For this purpose, we have 
developed “LinkageView”, a tool that enables statistical data to be viewed in the context of Ensembl’s 
[1] Contig- and Cyto- View pages.  Drawn under the ideogram, LinkageView illustrates lod score 
values for markers from a particular study plotted against the position that is determined in base pairs 
by mapping the primers to the chromosome using electronic PCR (e-PCR)[2]. The graphs are 
transparently integrated into the Contig- and Cyto-View pages and feature a sliding selection box to 
display a region of interest enlarged in the Overview and the Detailed View.  Genomic features 
mapping to regions with evidence of linkage are accentuated when LinkageView is used with the 
Distributed Annotation System (DAS) [3] to display supplemental laboratory information as tracks 
containing information such as differentially expressed genes pertaining to the disease under 
investigation. LinkageView is a powerful visual feature that enhances the use of Ensembl as a 
resource for integrative genomic-based approaches for identifying candidate disease susceptibility 
genes. We are currently developing a panel to display association data in a region of interest. 

 
2 Software and files.  
 
Linkage data is traditionally displayed as a graph in which lod scores are plotted along the ordinate 
against the genetic location (in cM) of the markers used in the genetic screen and any subsequent 
analysis. To integrate such data with the physical genome sequence, it is imperative that the abscissa 
be expressed in base pairs so that the position of markers along the abscissa correctly align with, and 
strictly correspond to, the horizontal illustration of the ideogram that is displayed immediately above 
the linkage study graph in the Ensembl Contig View (Figure 1, second panel).   

 
First we downloaded the human genome assembly ( NCBI build 34) from the UCSC genome site [4] 
and the most recent version of the Ensembl annotation system. Then,  we mapped the markers used as 
probes to the actual sequence of the human genome. We used the NCBI UniSTS database 
(ftp://ftp.ncbi.nlm.nih.gov/repository/UniSTS/) as the source of marker probe sequence information to 
convert the map units into base pair coordinates by locating the position of the STSs in human 
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genome build 34 using e-PCR [2] and finally populated the statistical results table in the database. 
 
We developed four BioPerl modules to draw the linkage plot in Contig View using the data uploaded 
in the DAS server for a particular study. The Linkage.pm  module is a constructor for the linkage 
object, essentially a table encapsulating the record for a single linkage point. This allows linkage data 
to be added to the database. Next, LinkageAdaptor.pm, provides the functionality for accessing 
linkage data from the DAS database. A “slice” object is created which defines the region from which 
linkage data will be retrieved and returns the records from the linkage objects that are mapped to the 
chromosome between the coordinates of the slice.  The GlyphSet::lodplot.pm module contains all the 
information for drawing the graph of the statistical data. The WebUserConfig::chrplot.pm module is 
then added to configure the lod plot so that it is displayed in the LinkageView panel in Contig- and 
Cyto- View. Finally the plot image was scored into the Ensembl Contig View and Cyto View by 
modifying the cytocide code so that the linkage plot can displayed into both Contig- and Cyto- View. 

 
3  Figure(s).  

 
 

Figure 1: A screen shot of linkage data displayed in Contig View on a local server 
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Abstract 

Gene and protein names follow few, if any, true naming conventions and are subject to great variation in different 
occurrences of the same name. This gives rise to two important problems in searching biological literature: first, 
can one locate the names of genes or proteins in free text, and second, can one determine when two names denote 
the same gene or protein?  

Several researchers have looked at the first problem of identifying gene or protein names in molecular biology 
texts. A large number of different methods have been applied to this problem, including part-of-speech tagging, 
hidden Markov models (HMM), decision trees, Bayesian methods, rule based systems, regular expressions, and a 
variety of knowledge based resources.  

The problem of determining when two differing strings represent the same gene or protein seems to have received 
much less attention. Few methods for handling such term variations have been developed. A BLAST4-based 
system presented by Krauthammer et al. [4] uses approximate string matching techniques and dictionaries to 
recognize spelling variations in gene or protein names. They have encoded gene names and text in terms of the 
nucleotide alphabet and have used BLAST to look for ‘homologies’ between a query gene name and the text. A 
similar problem was addressed by Cohen et al. [3] who studied contrast and variability in gene names to develop 
heuristics to distinguish between gene or protein names with different meaning from names that are synonyms. 
They found that capitalization could be ignored, parenthesized material and hyphens were optional, and vowels 
tended to be interchangeable. However, they did not implement a system based on these observations.  

Here we describe a system which, given a query gene or protein name, identifies related gene or protein names in 
a large list. The system is based on a dynamic programming algorithm for sequence alignment in which the 
mutation matrix is allowed to vary under the control of a fully trainable hidden Markov model [5], [6]. We have 
used this method to provide an access portal to GenBank [2] in which one may enter a putative gene name and 
retrieve the names (with accompanying GenBank id) that appear to be the closest. From these the user may select 
and access those GenBank records judged by him to be useful matches to his query.  The website is available at 
http://web.ncbi.nlm.nih.gov/IRET/Gene_Prot_Match.  
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A New Tool for Enumerative Combinatorics?
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1 Introduction.

In 1988 Lander and Waterman [1] presented a mathematical framework for approximating
various statistics related to shotgun sequencing, a tool used in planning projects related
to the physical mapping of the genome. More recently [2], that framework has been used
as part of a scheme for inferring population structural features of a community of marine
bacteriophage from a statistical analysis of a shotgun library assembled from that community.
In a shotgun sample for a single genome a maximal assembly of q sequences that covers a
contiguous portion of the genome map is called a q-contig. Good estimates for the expected
number of q-contigs is critical for this recent application. Lander/Waterman does very well
for lower values of q, but Monte Carlo simulations show that, as q increases, the quality of
the required estimates deteriorate.

The result showcased below was developed in an effort to analyze the shotgun sampling
experiment by exact combinatorial counts. A special class of basis events was identified in
terms of which all other events of interest (including contig events) could be expressed by
standard combinatorial methods. The method of counting the events in the special class uses
a construct that appears to be new to the field of combinatorics. It is a type of convolution
in the ring of polynomials.

2 Sampling, Basis Events, and the B-convolution.

A sample (with replacement) of K numbers, called points is selected with uniform probability
from the set [G] = {1, . . . , G}. The sample space consists of GK equally likely outcomes and
can be identified with the set of maps {f : [K] → [G]}. We are interested in clustering
patterns among the points of an outcome. Let p and p′ be a pair of sample points with no
sample points between them. If |p− p′| ≥ C, the pair forms a gap, otherwise it forms a link.
The number C is called the gap threshold. In the context of a shotgun experiment, [G] is the
genome map, the sample points mark the starts (on the map) of the sequenced fragments,
and C is the effective fragment length.

List the K points of an outcome (with possible repetitions) in non-decreasing order and
consider consecutive pairs in the list. Each outcome has an ordered pattern of gaps and
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links that can be represented as a sequence of K − 1 binary digits, each of which records
the status of a consecutive pair, “0” for gap, “1” for link. The jth digit records the status
of the jth consecutive pair in the sorted list. Conversely, such a binary string denotes the
event consisting of all outcomes with such a pattern of gaps and links. For example, 1001011
is an event (K = 8) in which the first consecutive pair in the sorted list of points is a link,
the second and third are gaps, etc. More generally, a symbol such as XX0110X represents
an event in which we are indifferent to the status of pairs in positions 1, 2, and 7, but the
status of the others are specified. Incidentally, this event has a 3-contig (2 links) starting at
position 4. The problem is to determine the cardinality of such a set. Standard counting
methods (principle of inclusion/exclusion) allow us to reduce the problem to a simpler class
of basis events whose binary symbols use only “X” and “0”. Our method of counting such
sets uses the following construct on the ring of polynomials.

Let g and h be polynomials of degrees m and n. The equation below defines a polynomial
of degree m + n + 1.

f(y) =

y∑

x=0

g(y − x)h(x) (1)

We call f the B-convolution of g and h and denote it by g#h. “B” is for Bernoulli, whose
polynomials are required for the reduction of the right side to polynomial form.

We now illustrate with an example how this convolution is used to count the number of
outcomes in a basis event. To that end, for each positive integer j, define the special polyno-
mials: bj(x) = xj and aj(x) = (x + 1)j − xj . Consider the basis event E = X0XXX00XX
(for K = 10). Introduce 10 asterisks to set off the 9 symbols: ∗X ∗0∗X ∗X ∗X ∗0∗0∗X ∗X∗.
Now remove the X’s: ∗ ∗ 0 ∗ ∗ ∗ ∗0 ∗ 0 ∗ ∗∗. The 10 asterisks are partitioned into 2+4+1+3.
Construct the polynomial πE = b2#a4#a1#a3. Count the number of terms, M , in the
partition: M = 4. The cardinality of the event E is πE(G− (M − 1)C). It is a theorem that
πE is independent of the partition order, despite the apparent broken symmetry with a “b”
as the first factor in the convolution.

3 The Expected Number of q-Contigs.

Finally, we summarize the result for the number, xq, of q-contigs in a sample of size K.

For every q there is a set of polynomials, { p
(j)
q | j = 0, . . . , q + 1}, all of degree q − 1, and

depending only on q, in terms of which the expected number of q-contigs is given by

E[xq] = G−K

q+1∑

j=1

(2p(j)
q #bK−q + p(j−1)

q #dK−q)(G− jC), (2)

where di(x) = x(x + 1)ai−1(x) are polynomials of degree i. All of the functions represented
here as polynomials must, nevertheless, be taken to vanish on negative arguments.

We remark that the p’s are integral linear combinations of π’s associated with basis
events, and there are recursion relations among them. We emphasize that the p’s are com-
puted independently of the parameters K, G and C.
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A Latent Process Decomposition Model for
Interpreting cDNA Microarray Datasets

Simon Rogers, 1 Mark Girolami, 2 Colin Campbell, 3
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1 Introduction

We outline a hierarchical Bayesian model which enables the probabilistic analysis of cDNA
microarray data. The parameters in this model are estimated using an efficient variational
technique in which each sample is represented as a combinatorial mixture over a finite set
of latent processes. For determining informative substructure in such datasets the proposed
model has several important advantages over the standard use of dendrograms, such as:

• the ability to objectively assess the optimal number of sample clusters.

• the ability to represent samples and gene expression levels using a common set of
latent variables (dendrograms cluster samples and gene expression values separately
which amounts to two distinct reduced space representations).

• observations are not assigned to a single cluster and thus a gene expression level is
modelled via a combination of latent processes.

In analogy to Latent Dirichlet Allocation [1] we define a Dirichlet probability distribution
for the distribution of K possible processes labelled by a parameter �. For a sample c, a
distribution � over a set of mixture components indexed by the discrete variable k is drawn
from the Dirichlet distribution. Then, for each of the G features (generally uniquely mapping
to genes) g, we draw a process index k from the distribution � with probability θk which
selects a Gaussian defined by the parameters µgk and σgk. The level of expression egc for gene
g for the sample c is then drawn from the k’th Gaussian denoted asN (egc|k, µgk, σgk). This is
then repeated for each of C tissue samples. This is a biologically more realistic representation
than the mixture model which underlies many forms of clustering and the shared latent space
facilitates easy extraction of genes differentially expressed across different processes.

2 Parameter Inference

The likelihood of the cth sample under this model is

p(c|�,�,�) =

Z
∆

( GY
g=1

KX
k=1

N (egc|k, µgk, σgk)θk

)
p(�|�)d�. (1)

Variational inference can be employed to estimate the parameters of this model by in-
troducing a set of sample specific Dirichlet priors p(�|c) and using Jensen’s inequality to
lower bound the log likelihood of all C training samples
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CX
c=1

log p(c|�,�,�) ≥
CX

c=1

Ep(�|c)

�
log

�
p(c|�,�,�) p(�|�)

p(�|c)

��
(2)

and by introducing the variational variable Qkgc such that
PK

k=1 Qkgc = 1 we can obtain
the following bound of the likelihood conditioned on � rather than �

CX
c=1

log p(c|�,�,�) ≥
KX

k=1

CX
c=1

GX
g=1

Qkgc log

�N (egc|k, µgk, σgk)θk

Qkgc

�
(3)

Employing these bounds together, we can define iterative EM-like updates for the model
parameters Qkgc, γkc, µgk, σ2

gk and αk. On termination, normalised γkc represent the con-
fidence in allocating the c’th sample to process k. We can also derive an estimate of the
likelihood enabling comparison between models and an estimate of the best value of K.

3 Numerical Experiments

To illustrate the performance of this model and the resulting algorithm we will briefly illus-
trate its performance on a microarray dataset for lung cancer. This dataset [2] consists of
73 gene expression profiles from normal and tumour samples with the tumours labelled as
squamous, large cell, small cell and adenocarcinoma. 10-fold cross validation was performed
for values of K between 2 and 30 and the likelihood of the held out samples is shown in
figure (a). Figure (b) shows the assignment of samples (each column represents one sample)
to processes (rows). The dotted lines represent the clustering defined in [2]. Clustering by
dendrogram is accurately reproduced by Latent Process Decomposition (LPD). Indeed two
adenocarcinoma samples (66,67) wrongly placed by the dendrogram with small cell carcino-
mas (61-67) and correctly placed by LPD. For other cancer datasets the likelihood peaks at
a distinct value of K which gives a clear indication of the number of latent processes required
to accurately fit the data. Evaluation on further datasets and more details about the method
will be given elsewhere.

0 5 10 15 20 25 30 35
−1460

−1440

−1420

−1400

−1380

−1360

−1340

−1320

−1300

−1280

−1260

(a)

0

1
1

0

1
2

0

1
3

0

1
4

0

1
5

0

1
6

0

1
7

0

1
8

0

1
9

0 10 20 30 40 50 60 70
0

1
10

(b)

References
[1] Blei, D.M and Ng, A.Y. and Jordan, M.I. 2003 .Latent Dirichlet Allocation. Journal of Machine

Learning Research 3:993–1022.

[2] Garber, E et al 2001. Diversity of gene expression in adenocarcinoma of the lung. Proceedings
of the national academy of sciences USA 98:12784–13789.

Dana Jermanis
Microarray Design and Data Analysis

Dana Jermanis
177

Dana Jermanis




 
 

Discovering Statistically Significant Clusters  by 
Using Genetic Algorithms in Gene Expression Data 

 
Hwa-Sheng Chiu1 , Han- Yu Chu ang1 , Huai-Kuang  Tsai1, Tao-Wei Huang 1 , 

Cheng-Yan Kao1 
 
Keywords: genetic algorithms, clustering,  statistically significant , gene expression data, 

microarray 
1 Introduction.   
 
This  study presents an iterative GA  (genetic algorithm)  approach to find significant clusters 
in gene expression data. Clustering genes of similar expression patterns is useful for predicting 
gene functions and pathways.  Many heuristic algorithms have developed to cluster genes on 
microarray data [1].  However, the results of most heuristics may be dominated by some predefined 
criteria, such as the number of clusters and initial mean points of clusters. Moreover, the present 
methods assign each one of genes in the dataset into some cluster while some of them are irrelevant 
to the interested conditions. To automatically cluster informative genes together, we regard 
clustering as an optimization problem of maximizing correlativity among genes in a set . Thus, an 
iterative GA approach is proposed to find the tightest clusters subject to our statistical definition of 
a significant cluster. The proposed method is applied on a yeast cell cycle dataset of 614 genes and 
77 conditions [2]. It efficiently finds 21 statistically significant clusters and discards 105 genes. The 
experiment results show that genes of the same cluster are highly related to their mean pattern, and 
genes not belonging to any clusters are far away from each mean pattern. We proceed to apply the 
proposed method to biclustering. 
 
2 System and method.  
 
The proposed method works as follows. Our GA finds the cluster of the maximal fitness in the 
interested dataset, and removes the corresponding genes in the cluster from the dataset. Then the 
GA start s the whole searching process again in the remaining dataset . Until there are no any 
significant clusters at one run, the iterative process is terminated. In our GA, each chromosome is 
represented as a bit string with g bits, where g is the number of genes in current target dataset. A 
chromosome corresponds to a cluster of genes. If a bit of a chromosome has value of 1, its 
corresponding gene is included in the gene set corresponding to the chromosome. N sets of genes, 
subject to the constraints of a cluster, are randomly generated as the initial population. After 
evaluating the fitness, the sequential steps of family competition [3] and stochastic universal 
sampling (SUS)  are run with a k-point probabilistic-elitism crossover and a bitwise uniform mutation.  
The GA is terminated when the following criterion is satisfied: the improvement ratio between all of 
the children generated and their respective family parents is less than 0.001 in five continuous 
generations.  
n Significant Clusters 
A subset of genes can be regarded as a cluster in our method, if the average pairwise Pearson 
correlation (aPPC) of genes in the subset is more than the one of genes in the whole set excluding the 
subset. Moreover, the cluster is statistically significant if its aPPC is more than the sum of the 
expected pairwise Pearson correlation in the dataset and ασ, where σ  is the expected S.T.D. and α 
is a threshold to decide the significance.  
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n Fitness Function 
Each chromosome Si in the population is evaluated by using the sum of all pairwise Pearson 
correlation of its corresponding genes, instead of using the average one. If only using the average 
Pearson correlation to choose a cluster, the trivial cluster of two genes will be derived. Our GA prefers 
chromosomes of larger sum subject to the constraints of the significant cluster. Besides, we introduce 
the aPPC as the weight to the fitness function, in order to get the set of quite correlative genes. 
n k-point Probabilistic-elitism Crossover  
The crossover is modified from the multipoint crossover. The crossover works by randomly selecting 
k point s in each parent  and splitting them into k segments. Then it glues segments of parents to obtain 
offspring by the probability proportional to the fitness of the segment. If the fitness of the segment of 
one parent is better than the corresponding fitness of the other, the offspring would inherit the better 
segment more likely. 
 
3 Result.  
 
The proposed method is applied on a yeast cell cycle dataset with 614 genes and 77 conditions. 21 
statically significant clusters are derived and 105 genes are discarded. The top-6 statically significant 
clusters are list in Fig. 1. The thick line is the mean pattern of this cluster and the thin line above or 
below to the mean pattern is 1 standard deviation from the mean pattern. As shown, the different 
clusters have the different expression patterns and the standard deviation in all clusters is small. We 
also found that the pairwise Pearson correlations between 105 discarded genes and 21 cluster mean 
patterns are small. The experimental results indicate that the proposed approaches can find tight and 
significant clusters efficiently and filter out irrelative genes effectively. 

 

   
Fig. 1: The top-6 statically significant clusters. T he x-axis represents experiments and the y-axis represents the 
expression levels. Each cluster has different expression patterns from others.  
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J-Express - an integrated tool for processing and 
analyzing microarray gene expression data 
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Inge Jonassen1,2 
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1 Introduction.  
 
A new version of J-Express Pro [1] will soon be released. In addition to upgrading most of the 
existing framework, we have also added functionality for low-level data processing and quality 
control. The MAGE [2] compatibility has also been upgraded, and we are now able not only to read 
data in MAGE format but also create new objects for export. We give a short overview of the 
system, its functionality, and we briefly explain basic principles and special features of the system. 

 
2 Software description. 
 
Microarray gene expression experiments generate relatively large amounts of data that need to be 
processed (normalized, filtered, etc) and analyzed using for example data reduction, clustering, and 
classification approaches. The particular processing and analysis that is appropriate depends on the 
data set; the experimental design, the experimental protocols used, and the nature of the questions 
one wants to address.  
Data, intermediate and final results need to be visualized to facilitate interpretation and 
understanding.  
 
The J-Express tool is developed to offer an integrated tool that at the same time offers a wide range 
of processing and analysis functionality while keeping the user interface simple and intuitive. 
Special features of J-Express include (1) automatic recording of information on all processing and 
analysis steps used to arrive at a result (meta data integrated in a project management system), (2) 
produce high quality graphical results, (3) facilitate easy extension of the system by including plug-
ins or use of an internal scripting language, (4) allow integration with external tools and databases 
through MAGE-ML files or MAGE objects. The implemented MAGE functionality is developed in 
collaboration with the EBI ArrayExpress team and is compatible with the latest adapted policies for 
submission to ArrayExpress. The J-Express tool includes a flexible quality-control, filtering, and 
normalization system, clustering (hierarchical, K-means, and self-organizing maps), projection 
methods (principal component analysis and multi-dimensional scaling), supervised methods 
(feature selection), and tools for integration of external data, e.g., pathway and genome data. 
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3 Availability. 

 
Software available at http://www.molmine.com. 
 
Other relevant web addresses:  
Microarray Gene Expression Data Society: http://www.mged.org 
The Norwegian Microarray Consortium: http://www.mikromatrise.no 
The Norwegian Functional Genomics program: http://www.bioinfo.no 
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Sorting Points Into Neighborhoods (SPIN): a novel
data organization and visualization tool

Ilan Tsafrir 1, Liat Ein-Dor1, Dafna Tsafrir1, Or Zuk1, Eytan Domany1

Keywords: Microarray, data analysis, data visualization, data organization, sorting

Exploratory data analysis is critical in a broad range of research areas, where large collec-
tions of data need to be meaningfully arranged and presented in a human-oriented manner.
We present SPIN , a novel method for the organization and visualization of data, imple-
mented in a simple tool. SPIN utilizes traits of distance matrices to sort objects in a natural
ordering that highlights the underlying structure of the original, multidimensional data. As
an unsupervised analysis tool, SPIN does not rely on any external labels, but rather ex-
plores the inherent characteristics of the data. In the analysis of high-throughput biological
experiments, discretely - labelled data, such as clinical labels of ’sick’ versus ’healthy’, is
traditionally organized by various clustering approaches. However, when the objects are
characterized by one or more continuous variables, e.g. survival intervals for patients, any
sharp separation into distinct clusters will be rather arbitrary. Thus, a different organization
approach, one which emphasizes ordering rather than grouping, could be more relevant.

This work focuses on finding a one-dimensional ordering of a set composed of n data
points, and to present as output the matching (2-dimensional) n by n distance matrix D.
An element Dij of D represents the dissimilarity between objects i and j. Our aim is to find
a permutation of the data points, such that the correspondingly reordered distance matrix
reveals the underlying structure of the data.

SPIN is especially suitable for analyzing high-throughput biological experiments, such
as gene array experiments, where results are typically summarized in an expression matrix,
in which each element denotes the expression level of a particular gene in a specific sample
[1]. In this context two types of distance matrices can be produced: the distances between
all pairs of samples can be calculated based on their expression levels over the measured
genes, and the distance between all pairs of genes can be measured in the sample dimensions
[2]. The sorted distance matrix generated by SPIN is particularly useful in time-series
experiments, where an elongated cluster represents the temporal evolution of a particular
biological module, such as cell-cycle progression (see figure 1c). Another example where the
shape revealed by SPIN has a clear biological interpretation comes from cancer research
where samples are often composed of mixtures of cells: for instance, colon tissue samples
isolated from liver metastases arrayed into an elongated, ellipsoid cluster [3]. The genes that
induced the elongation were characteristic of liver, suggesting that this pattern reflects a
mixture of the metastasis samples with cells originating from the liver. Furthermore, the
degree of cell mixture in each sample may be deduced from its position in the ordering.
Once the genes associated with the contamination are identified in this manner, they can be
distinguished from the cancer related genes that the experiment aims at discovering.

1Department of Complex Systems, Weizmann Institute of Science,
Rehovot 76100, Israel. E-mail: Ilan.tsafrir@weizmann.ac.il
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a b c

Figure 1: A properly ordered distance matrix is indicative of the shape of a set of points. The color
of element Dij reflects the relative distance between points i and j , where black (white) denotes
small (large) distances. The top row depicts the placement of the points in two dimensions. Below
each object is the corresponding sorted distance matrix. The sorted distance matrix allows a human
observer to deduce structural information. The colors of the objects in the top row represent the
linear ordering of the points, where the first point is dark ranging to the last point in white. This
is the same order that SPIN imposed on the distance matrix, i.e. the first row and first column
contain the distances from the first point (black in the PCA image) to all other points. (a) An
elongated shape, in this case a cylinder, displays a clear gradient of distances that increase as one
moves away from the main diagonal. (b) A ring of points is characterized by a cyclic pattern, with
small distances (black) at the corners. (d) SPIN ′s results for yeast cell-cycle expression data taken
from [4], where the cyclic nature is visualized in a ring conformation. Assigning such periodic nature
to genes associated with cell-cycle is in accordance with known biological dynamics and functions.
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Reproducibility, Variance Stabilization, and
Normalization in CodeLinkTM Data with

Application to Cancer in Rats

Sue Geller1, David M. Rocke2, Danh Nguyen3, Raymond Carroll4.
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Although the experimental aspects of microarray methods are maturing rapidly, the
analysis of the array data is still a difficult exercise with many issues that have not been
fully resolved in the literature. One of the issues is that, in order to use parametric model-
based analysis and even most non-parametric methods, the variance of the replicates of
the data needs to be constant across expressions. It was determined by Rocke and Durbin
([4]), that the variance was not constant for spotted microarray data and instead conformed
to a model, which had been used in the analytical chemistry and the environmental science
literature. This is a two error component model, y = α+µeη+", in which there is an additive
error that dominates when µ is small and the proportional error that dominates when µ is
large. In a subsequent manuscript ([1]), they developed a transformation to stabilize the
variance. The applicability of the two component model to Affymetrix data as well as an
algorithm for simultaneously Þnding the constant of the transformation and normalizing the
data was given in Geller, Gregg, Hagerman, and Rocke ([2]). In all these (and other) cases,
a data set was used that consisted of technical replicates, so the effect of the transformation
on variance stabilization is unstudied in sets with multiple technical replicates.

The effect, of lack thereof, of diet on cancer has been a long-standing question. In addition
to the usual usual observational trials, the effect of diet in the presence of carcinogens was
studied on the genetic level in rats using the CodeLinkTM microarray platform ([3]). Three
diets (corn oil, Þsh oil, olive oil) were given with either saline or the carcinogen AOM, and the
rats killed at 12 hours or 10 weeks. Twenty two of the 59 rats had two technical replicates,
one three technical replicates, and three had four technical replicates, making this data set
a useful one for studies of reproducibility and variance stabilization. While many questions
remain unanswered, the following are some of the conclusions of our analysis to date.

� The CodeLinkTM data from these studies appear to conform in broad terms with the
two error component model, y = α+ µeη + ".

� CodeLinkTM data has a great deal of variability among technical replicates.
1correspondence to Sue Geller, Department of Mathematics � MS 3368, Texas A&M University, College

Station, TX 77843-3368 or email to geller@math.tamu.edu.
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� It is possible to transform the gene expressions so that the variance within genes across
arrays is approximately the same regardless of the level of expression of the genes. This
transformation resembles the logarithm at high expression levels and resembles a linear
transformation at low expression levels.

� After transformation, the data for highly expressed genes appear approximately nor-
mally distributed, but for low expression levels there are frequent outliers. These may
be caused by dust or scratches that have only a small effect on highly expressed genes,
but larger proportional effects on genes with low expression.

� The choice of constant for the transformation can be in a broad range and still produce
transformed technical replicates with constant variance and symmetric errors. Thus,
the same constant can be used for all the data to produce a data set with approximately
constant variance regardless of the level of expression of the genes for each set of
technical replicates.

� Normalization in conjunction with stabilization of variance is more effective than nor-
malization and then stabilization of variance, i.e., normalization may be incomplete or
inaccurate if it is done before transformation.
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ChipQC: Microarray Artifact Visualization Tool 
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1 Background  
 

Recent advances in biotechnology have led to the development of several high-throughput 
procedures, such as DNA microarrays, have dramatically increased the amount of information 
obtained in a relatively short time span[1].  Although experiments using these new techniques are 
highly automated, downstream analytical methods still lag behind in terms of automation and 
efficiency[2].  Microarray studies typically investigate gene expression profiling[1, 3], which can be 
greatly skewed by the slightest amount of contamination.  The fabrication or hybridization processes 
would easily introduce areas of high local variability, which can only be accurately detected when 
several replicates are analyzed together[4].  
 

ChipQC is a novel web-based software tool that is joined researched and developed by MIBLab 
at Biomedical Engineering Department of Georgia Tech and Emory University and the Microarray 
Core Facility at National Institute of Diabetes and Digestive and Kidney Diseases. It is designed to 
perform standard error analysis and statistical techniques on multiple array sets (technical or 
biological replicates). Although chip quality control is often overlooked in microarray experiments, it 
the reproducibility and reduction of systematic error afforded by extensive quality control that will 
allow microarray systems to migrate from an experimental research tool to a clinical diagnostic 
device. 

 

2 System Development  
 

ChipQC has evolved from a simple Unix program used to investigating small sections of 
Affymetrix GeneChips to a web-based comprehensive microarray analysis tool that can employed 
on any of six supported chip types, both commercial and “homemade”. ChipQC include calculating 
the coefficient of variation, standard deviation, mean intensity, fold change, and statistical 
significance. ChipQC, using a heat map scheme, graphically represents the error analysis and various 
metrics of each gene at its proper chip coordinates, thus mimicking the analyzed chip's configuration.  
Use of this visualization tool revealed localized areas of high variability pattern in some arrays 
consistent with an edge effect, which persisted even after lowess or linear normalization had been 
applied, demonstrating the need to select and flag specific spots which would potentially yield falsely 
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positive or negative gene expression results.   The latest version of the software still contains the 
orginial Perl core but has been enhanced by C and Java programs, which put common normalization 
schemes and the ability to create histrograms just a click away.  The heatmap image generation is 
made possible by the Boutell GD Perl module (www.boutell.com).  There are six key steps contained 
in the ChipQC workflow (Figure 1). 

 
Figure 1 ChipQC System Diagram 

3 Future Work  
 

The composite image has been used to identify systematic errors presented such as edge effect. 
While we are in the process of reporting such discovery in full detail to the technical community, we 
have been working to add other features such as more normalization options, statistical options, and 
more supported chip types to the existing software.  The hope is to also pursue more substantial 
improvements by implementing the latest image processing methods to enhance image feature 
extraction, expression scoring, and possibly the automated flagging routine.   
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1 Introduction.  
 
To identify viruses causing disease becomes more and more important today. If viruses had been 
identified early, virologists would have had sufficient time to treat them. However, a few systems 
have been developed previously to design probes to identify virus sequences [1-5]. User can select 
all the virus-specific oligonucleotide probes under the group of viruses. However, user cannot 
select viruses of different groups. A system for identifying different host categories of viruses in 
reasonable time is crucial. Probe design for virus sequence identification is very time-consuming, 
especially in avoiding the cross-hybridization of designed probes against the non-target sequences. 
We propose a faster algorithm to implement the program of LIS [6]. We apply LIS algorithm to 
calculate the similarity between each pair of probe and non-target sequences. Our algorithm is 
faster than the method of using BLAST only. In addition, we make use the database technology 
aiding for designing an oligonucleotide microarray that can identify virus sequences selected by 
users. 

 
2 Materials and methods.  
 
We downloaded two kinds of data form different databases. One is virus taxonomy data from the 
universal virus database of the international committee on taxonomy of virus (ICTVDB) [7]. Another 
is the virus sequence from NCBI GenBank database. Finally, we integrated virus taxonomy data and 
virus sequence data to our local database.  
 
The process of probe design contains two sections. They are probe candidates generation and probe 
selection. A virus sequence was divided into many fragments by sliding a window with 5 nucleotides 
a time along the whole virus sequence. The size of window is ranged at 20 to 60 nucleotides. 
Sequence fragments will be stored in probe candidate table in our local database, if and only if the 
sequence fragment satisfies all the following criteria [8]: 
1. Number of any single base (As, Cs, Ts or Gs) does not exceed half of the fragment length. 
2. The length of any contiguous As, Cs, Ts, or Gs does not exceed a quarter of the fragment length. 
3. GC-content of sequence fragment is in the range of 40% to 60%. 
4. No self-complementary is within the sequence fragment. 
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3 Results.  
 
The system was built under Linux Red Hat 9.0 and MySQL 3.x. The LIS program was implemented 
in c programming language. It was compiled with a Gnu-compiler and ran on Linux workstation. The 
web interface was implemented in PHP. Virus sequences can be selected in a web page. As the user 
selects the virus sequences, inputs the temperature and length of probe, the system will select all the 
probes candidates belonging to the virus sequences selected by the user from the probe candidate 
database. 
 
To verify probe with low LIS-identity is specific, we selected 7 species virus under a genus 
(coronavirus) from virus sequence database. The length of probe was set to 50mer and the temperature 
threshold was set between 75oC and 85oC. 9,097 probes candidates were selected from probe 
candidate database. The LIS-identity of each probe was calculated against its non-target sequence. We 
defined cross-hybridization as a probe that is large than 70% similarity to its non-target sequence. 
Table 1 shows the number of probes and the percentage of cross-hybridization of every 5 LIS-identity. 
The lower the LIS-identity is, the less possibility the probe has cross-hybridization to its non-target 
sequences. Although the LIS-identity is approximately proportional to the similarity of probe to its 
non-target sequence, there are still some cases that the LIS algorithm cannot calculate the similarity of 
probe to its non-target sequence accurately. 
 

LIS-identity Number of data Identity > 70% Possibility of being cross-hybridization 
10~15 31,420 134 0.42% 
15~20 28,653 627 2.1% 
20~25 4,031 1,133 28% 
25~30 1,932 1,267 65% 
30~35 947 879 92% 
35~40 453 453 100% 
40~45 182 182 100% 
45~50 41 41 100% 

Table 1. Show the data distribution of each scope of LIS-identity and the correlation between LIS-identity and 
cross-hybridization. 
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Quickly Choosing Choice SNPs for Chips
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1 Introduction.

Oligonucleotide microarrays are currently being used for genotyping of SNPs (Liu, et al,
2003). Given the millions of SNPs estimated to exist (Kruglyak and Nickerson, 2001) and
the large subset already in databases (Thorisson and Stein, 2003), we wish to prune this
number down to a number that will fit on a few microarrays at current feature sizes. After
bioinformatic and biochemical constraints are applied, we had an empirical pool of approxi-
mately 150,000 SNPs with known allele frequencies, call rates, and genomic locations, from
which to select 100,000 SNPs to cover the genome.

We constructed an entropy-based measure of the value of each SNP, which was then
combined with the expected decay of information with distance along the genome to approx-
imate the information provided by each SNP for locations in the genome. Inspired by the
set cover problem, a simple greedy algorithm was used to choose the SNPs that covered the
genome with the most information, combining spacing and allele frequency.

2 Problem formulation

SNP Selection Problem: Given N SNPs, each of which has a genomic location, allele fre-
quency, and call rate (proportion of time SNP information can be detected from a sample),
choose the K SNPs that provide the most uniform information across the genome.

Multiple Enzyme SNP Selection Problem: Given N SNPs as above, where each SNP is
assigned to one of L enzyme classes, choose the K1, K2, . . . , KL best SNPs providing the
most uniform information across the genome.

How do we define the information provided by a SNP about a location? There are
several options, and we choose to measure the information in bits, using a channel capacity
formulation. SNPs occur with a given allele frequency f , are linked with a nearby location
with a recombination fraction r, are called with a frequency q, and have accuracy a. Using
the Haldane recombination formula r = (1−exp(−2∗d/s))/2, we can convert genetic distance
d to recombination fraction, with a scale for decay of information set by s. From this, and
standard measures of mutual information, we obtain that a SNP provides approximately

I = q ∗ [((1 − re) ∗ log(1 − re) + re ∗ log(re) − ae ∗ log(ae) − (1 − ae) ∗ log(1 − ae))] (1)

bits of information about a location d away, where re = (1 − r) ∗ (1 − a) + r ∗ a and
ae = f ∗ (1 − re) + (1 − f) ∗ re.

A nice feature of the information measure is that by changing the genomic scale over
which information decays we can adjust the relative weighting of allele frequency and spacing
between SNPs.

1Affymetrix, Santa Clara CA. E-mail: Earl Hubbell@affymetrix.com
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3 Solving the Problem

We use a natural greedy selection criterion for a SNP. Pick the SNP that provides the least
redundant information about the genome, where redundant information is defined by o− I ,
where o is the information provided by any already selected SNPs about the genomic location
of the chosen SNP.

With this criterion using a priority queue, we choose SNPs from a pool to add to one
or more chips. In the multiple enzyme case, we set up one priority queue for each chip and
cycle through the chips, choosing one SNP per chip to ensure that no chip gets only the
lowest priority SNPs.

In practice, SNPs are very much more clumped than items drawn from a random distri-
bution, and there is a large fraction of low allele frequency SNPs, which implies that even
with good optimization it is difficult to produce an evenly spaced distribution of high minor
allele frequency SNPs.

4 References and bibliography.

Thanks to the whole genotyping team, including Giulia Kennedy, Simon Cawley, Rui Mei,
Jing Huang, Guoying Liu, Geoffrey Yang, Xiaojun Di, and Keith Jones.
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Genome-wide statistical analysis of gene
coexpression: application to GATA transcription

factors in Arabidopsis thaliana
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1 Introduction
Identifying the coexpressed genes from the microarray data can be used to assign potential
functions to new genes and help the discovery of transcriptional regulation networks [1], [2].
Currently, the coexpressed genes are usually analysed by many sophisticated clustering algorithms
e.g. SOM, hierarchical clustering, k-mean clustering. However, these clustering approaches usually
depend on the distance cut-off value or arbitrary k value to group the genes, and these criteria do not
really indicate the significance of the similarity within the clusters. Besides, they assign particular
genes to only one cluster that may cause loss the information where genes may have multiple
biological roles or respond to different transcription factors.

In order to identify the in vivo potential targets of Arabidopsis GATA family transcription factors [3]
using microarray data and avoid the drawbacks of clustering algorithms, we propose a novel robust
approach of assessing the significance of relationships in expression. This approach explores
the probability distribution of correlation scores that occur by chance between the GATA gene and un-
related gene expression profiles. Based on the stable correlation score distributions, the correlation
scale (p-values) associated with the corresponding correlation distance values can be estimated.
Furthermore, for different numbers of probe sets on the array, the e-value can also be calculated. The
p-value and e-value of a correlation value can help us discover potential GATA gene co-expressed
genes with confidence and will be useful indicators for the further researches and applications.

2 Methods
The microarray datasets we used consist of 59 Affymetrix arrays (ATH1) for 14 different
experimental purposes and were obtained from the NASC [4]. The estimation of the correlation
distribution for the GATA gene is achieved through the three iterative steps.

Step1: Random sampling. A gene expression profile is randomly sampled from the actual
expression profiles.

Step2: Randomisation. Shuffled the order of the arrays, and added pseudo-Gaussian
distributed random noise.

Step3: Correlation calculation. The r-value (Pearson correlation coefficient) between the
GATA gene and randomised profiles is calculated.

The procedure is executed 5*105 times to simulate the correlation distribution of unrelated profiles
which can cover all currently possible size of arrays. Each simulation was repeated three times and the
stability of the empirical distribution was assessed by Kolomogorov confidence bands [5]. All
possible factors that could affect the correlation distribution were also examined, such as using

                                                
1Bioinformatics Research group, School of Biochemistry and Molecular Biology, University of Leeds,

U.K. E-mail: bmbcj@bmb.leeds.ac.uk
2Bioinformatics Research group, School of Biochemistry and Molecular Biology, University of Leeds,
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different number of arrays, different size of the arrays, difference experimental datasets, and different
GATA genes.

3 Results
The correlation distributions of all repeated simulations were within Kolomogorov confidence bands
and imply that the distribution simulation process is stable and robust. The shape of the correlation
distribution is only affected by the number of arrays (Figure 1). Based on the p-value derived from the
correlation distribution simulation, we can reveal the GATA coexpressed genes with confidence. An
example result of the top ten genes coexpressed with GATA-2 is shown in Table 1.

Figure 1: Distribution of the correlation coefficient in random, unrelated profiles using different numbers of arrays.

Table1: Top ten genes are correlated to Arabidopsis GATA-2 gene.
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1 Introduction.  
 
At diaDexus, Inc., we utilize genomic and bioinformatic tools to identify and validate cancer-
associated molecular targets for diagnostic and therapeutic applications. These gene discovery 
efforts generate large amounts of sequence data on a daily basis, which poses significant challenges 
to organize and eliminate redundancy between sequences. One approach commonly used to group 
similar sequences is to BLAST the sequences against one another. However, BLAST results can be 
hard to interpret and difficult to reproduce, and may be inconclusive with large sequence sets. With 
the completion of the human genome and its sequence information publicly available, a reliable, 
stable framework now exists and can be utilized to classify and structure large sequence sets. We 
have used the genome as a means of organizing sequence data, and have developed an algorithm to 
quickly isolate non-overlapping clusters of sequences. These clusters allow us to quickly find the 
most prevalent forms of sequences that are of interest to disease target discovery, and also enable a 
systematic approach for oligonucleotide microarray design.  

 
2 Software and Method. 
Using the human genome (Build 30-34) as a template, we developed a process to identify a unique set 
of sequences from a highly redundant set of sequences. This process required an ability to identify the 
highly similar sequences, but not identical, sequences in an efficient and reproducible manner. We 
used the resulting data to identify a high quality, non-redundant set of oligonucleotides to print on 
microarrays for gene expression profiling.   
 
First, approximately 263,000 sequences of specific interest to target discovery, each having different 
quality and length, and generated from different sources and methods, were aligned to the human 
genome using BLAT[2]. Out of the 263,000 sequences, about 16,000 sequences were from the Human 
Refseq mRNA database, 23,000 were Ensembl genes, 129,000 were from UniGene, and 95,000 were 
either generated as a result of internal sequencing efforts or from other proprietary sources. Sequences 
were allowed to map to more than one location on the genome and the coordinates of each mapping 
were stored in a relational database for downstream processing. 
 
After the BLAT alignment, we developed and implemented an algorithm to cluster sequences based 
on their exact coordinates and locations on the genome. In the first step in the algorithm, 
“chromosome walking”, we iterate through every chromosome and walk each chromosome from one 
end to another, in both orientations, defining and separating stretches of overlapping sequences into 
individual “super-clusters”. Sequences are grouped together if their beginning and ending 
chromosomal coordinates overlap one another. After chromosome walking, we were able to very 
rapidly reduce the complexity of the set of the 263,000 sequences, and further group the sequences 
into approximately 80,000 bins or super-clusters.   

                                                 
1 diaDexus, Inc, 343 Oyster Point Blvd, South San Francisco, CA 94080. E-mail: 
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After the first step, many super-clusters contained sub-clusters which had no overlap with the parent 
clusters. For example, a small sub-cluster of sequences would be intronic to a super-cluster whose 
chromosomal coordinates encompassed the sub-cluster. The second step of the algorithm, “exon 
walking”, was used to identify all sets of truly overlapping sequences from the results generated by 
chromosome walking, based on the coordinates of the exons within each super-cluster. 
 
Using exon walking, sequences with non-overlapping exons are separated out of the chromosome 
clusters and given their own bin or cluster. This is accomplished by taking all the sequences in a 
super-cluster, and for each sequence, creating a virtual sequence in which every nucleotide is 
characterized as a bit. The nucleotides that are within an exon are represented as 1’s, and those that 
fall outside exons are represented as 0’s.  By imposing a logical bitwise AND relationship between the 
virtual bit sequences, we were able to quickly and efficiently identify the sequences with overlapping 
regions. Approximately 90,000 bins or clusters resulted after exon walking, a number significantly 
less than the 263,000 we started out with. 
 
We were then able to use the resulting clusters to identify a non-redundant, high quality set of 
oligonucleotides to print on microarrays. About 38,000 pre-designed oligonucleotides[1] from 
proprietary sequences were melded into the clusters obtained from the method described above. We 
then prioritized the clusters them based on a combination of factors. The criteria that we looked for in 
characterizing these clusters were: 
 

1. Clusters with a public annotated gene, transcript, or EST from RefSeq, Ensembl, or 
UniGene.  

2. Clusters with multiple exons. 
3. Clusters with multiple sequences (non-singleton clusters). 
4. Clusters containing oligos with measured, disease-specific, expression in our in-house 

expression profiling studies. 
 
Using the criteria above, we identified 19,000 “high priority” cluster bins. After the high priority 
clusters were selected, we selected the best, most representative, oligo from each cluster for array 
design. This algorithm will be discussed in more detail in the poster, but generally we printed the most 
3′ oligo that most generally represented the sequences in the cluster, and for which we had good 
previous expression results. These oligos were then printed onto several custom oligonucleotide 
microarrays and are currently in use for cancer-target discovery and validation. 
 
In conclusion, we were able to use the genome a powerful framework to organize and efficiently 
cluster a large sequence set into individual sequence clusters. Using these clusters, we were able to 
design high quality microarrays with minimally redundant oligonucleotide sequences.  
 
3 References. 
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Analysis of Microarray Time Course Data

Tanya Logvinenko1, David Schoenfeld2,Douglas Hayden3

Keywords: Microarray Data, Time Course Data, Analysis of Variance, Two-
Sample Comparison, Cluster Analysis, Fold Change.

1 Introduction

With the development of microarray technology, it became possible to study
biological processes over time. For example, of interest can be changes in gene
expression profile over time. In case of a disease, discovering which genes are
induced or repressed at different stages can help in the understanding of the
disease process, as well as in the development of the treatment procedures. We
will address a problem of analyzing time-course microarray data. The data that
will be used is part of the Inflammation and the Host Response to Trauma col-
laborative project (www.gleugrant.org). It was obtained from eight healthy
human volunteers who were randomized into two groups of four individuals
each. One of the groups was exposed to in-vivo LPS (lipo-polysacharide stim-
ulation), whereas the other group was administered a placebo treatment. Six
microarrays per individual were obtained over the course of one day. We will
study the efficiency of different methods of time-course microarray data anal-
ysis applied to this data set.

2 Methods

A variety of methods for analysing time-course microarray data were devel-
oped recently. To detect differentially expressed over time genes, one can apply

1Division of Biostatistics, Massachusetts General Hospital, 50 Staniford St, Suite 560,
Boston, MA 02114. E-mail: tlogvinenko@partners.org

2Division of Biostatistics, Massachusetts General Hospital, 50 Staniford St, Suite 560,
Boston, MA 02114. E-mail: dschoenfeld@partners.org

3Division of Biostatistics, Massachusetts General Hospital, 50 Staniford St, Suite 560,
Boston, MA 02114. E-mail: doug@gcrc.mgh.harvard.edu
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standard statistical models like analysis of variance [3] to expression profiles
of each genes, or examine fold changes of gene expressions over time. A sta-
tistical technique, SAM, for discovering genes differentially expressed between
different samples was developed [5]. Modified to account for the higher degree
of similarity between observations obtained from the same subject, rather than
from different subjects at the same time point, it can be applied to time-course
microarray data. A whole range of clustering procedures can be used for dis-
covering genes with the same expression profiles over time [1, 2, 4]. In cases
when differential expression of genes is caused by a known factor (such as a
disease or a trauma), a control sample can be examined. In such situations, we
propose directly comparing distributions of the gene expressions from the two
groups. We will examine a few techniques and models applied to time-course
microarray data, and present their advantages and disadvantages.
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GOArray: Interpreting microarrays with GODB 
 

Michael V. Osier1,  David Tuck2.  Kevin P. White3, Christopher E. Mason3, 
Hongyu Zhao4, Kei-Hoi Cheung1

 
Keywords: microarray interpretation, Gene Ontology Database, inference, permutation 
 

1 Introduction.  
 
Once a researcher has performed a microarray experiment and determined which genes are 
differentially expressed, the process of interpretation begins.  For the rare case where only a few 
genes appear relevant, this can be an easy task.  When dozens or hundreds of genes are 
differentially transcribed, however, it might be best to allow computers to reduce the effort of 
elucidation.  Several analysis tools have been implemented to do this in the context of the terms in 
the Gene Ontology Database (GODB, http://www.godatabase.org/dev/database/).  GODB is a 
rooted directed acyclic graph (rooted-DAG) of terms which represent a biological concept.  Some 
of the tools that interpret arrays in the context of GODB score by "strict association" in which a GO 
term is scored purely by which genes are directly associated with it.  Other tools score by "inclusive 
association" in which a term is scored by which genes are directly associated with it or one of its 
child terms. 
 
A problem faced by both scoring methods is how to correct for the large number of statistical tests 
that must be performed in the analysis.  The Bonferoni correction, multiplying the p-value by the 
number of tests performed, is overly-conservative to the point of being an impediment since few, if 
any, terms will ever be significant.  Untangling the many interdependencies of the rooted-DAG of 
terms in GO to find an appropriate correction, however, is impractical. 
 
As a way of assessing confidence in the results of the analysis from our tool GOArray, formerly 
named GOMine [1], which uses an inclusive association analysis of microarray data in the context 
of GODB, we have implemented two tests based on a permutation of the microarray data: a False 
Detection Rate to estimate how many significant terms we would expect on average, and a 
Confidence Test of how frequently we observe permuted arrays to have at least as many significant 
terms as the observed data. 

 
2 Methods.  
 
GOArray uses an inclusive association algorithm to identify genes associated with a term in 
GODB.  The statistical analysis for each term tests if, among the genes associated with this term or 
one of its descendants, there is an overrepresentation of genes considered of interest (Genes Of 
Interest, GOI) relative to none GOI (NGOI).  Note that determination of GOI and NGOI is made by 
an outside source, allowing the researcher to answer the question of "what is a gene that is 
differentially expressed?" in a manner appropriate for their experiment.  A z-score and a p-value are 
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calculated for each term based on the overall frequency of GOI [1].  Terms with a p-value less-
than-or-equal-to a user-defined cutoff value are reported. 
 
Permutations of the GOI are then generated, and statistics calculated for each permutation.  For 
each permutation, the number of terms with a p-value less than or equal to the cutoff are counted (Tf).  
For the real dataset, the same statistic is calculated (Tr).  The False Discovery Rate (FDR) is 
determined as the mean Tf divided by the Tr.  The Confidence Test (CT) is the number of 
permutations where the Tf is greater than or equal to the Tr divided by the number of permutations.  
Together, these two tests give a feel for how confident one can be in the results of the analysis. 
 
In the output of GOArray, the list of significant terms, FDR, and CT are reported as are two tree 
representations of the significant terms and an archive of how all statistics are calculated.  An 
HTML format is used so that a) results are viewable in the future, minimizing the chance of data 
loss when application software is retired, and b) GOArray can be easily harnessed by a web 
interface in the future.  GOArray is available from the web site "http://ycmi.med.yale.edu/gomine/". 
 
3 Results and Discussion.  
 
We have used GOArray to analyze a Drosophila expression dataset using a cutoff p-value of 0.001 
and 1000 permutations.  The data was taken from the Arbeitman et al. [2] stage 0-1 hours results, 
available from the NCBI database GEO (http://www.ncbi.nlm.nih.gov/geo/) with the accession 
GSM3612.  All genes with at least a five-fold increase in expression were marked as GOI (1374 
spots), and all other genes as NGOI (7425 spots).  On a 2.4 GHz Xeon processor, the analysis took 
~10 min with permutations and ~0.5 sec without.  The FDR was high (51.4%) and the confidence 
test was marginal (10.7%).  In contrast to what one would expect based purely on the FDR and CT 
results, however, the terms determined to be significant appear to be biologically appropriate.  
Multiple terms were related to rapid cell replication (e.g. "DNA replication and chromosome 
cycle", "S phase of mitotic cell cycle", "pre-replicative complex", etc.).  The only unexpected term 
was "leucyl aminopeptidase activity" (p=0.00007).  The biological role of this metalloexopeptidase 
activity is uncertain.  It may be involved in the modification of signaling peptides, or it could be a 
false positive.  A closer examination of the specific GOI that resulted in this high z-score would be 
interesting.  Given the high percentage of significant terms that seemed biologically appropriate, it 
may be that the FDR and CT are themselves overly conservative measures.  Alternatively, it may be 
that other, more statistically robust, means of separating GOI from NGOI may result in a higher 
confidence in the results.  Indeed, we are examining methods to maximize the power of GOArray.  
The HTML formatted results of this analysis are available from the web site 
"http://microarray.yale.edu/ymd_public/white_science_ratio5.html". 
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1 Introduction.  
 
Support vector machines (SVMs) [4] are gaining broad acceptance as state-of-the-art classifiers for 
microarray data analysis [3].  However, most studies that use SVMs to predict sample class 
consider only a small subset of SVM kernels and parameters.  The effect of the kernel type and 
parameter values is usually not studied in microarray classification.  The choice of kernel and 
classifier parameters is a form of model selection.  Although the machine learning community has 
extensively considered model selection with SVMs [2], optimal model parameters are generally 
domain-specific.  The present study evaluates the impact of kernel type and parameter values on the 
accuracy with which a SVM can classify microarray data.  We hypothesized that classification 
accuracy would vary with the kernel type and parameter values, and that the optimal parameter 
values would vary with the kernel type. 
   
2 Methods.  
 
We evaluated linear and non-linear SVMs.  Two non-linear SVM kernels were tested:  second order 
polynomial and radial basis function (RBF).  In each case, the regularization parameter C was 
varied over [1 10 100 1000 10000].  For the polynomial kernel, gamma serves as inner product 
coefficient in the polynomial.  In the case of the RBF kernel, gamma determines the RBF width.  In 
both cases, gamma was varied over [0.00001 0.0001 0.001 0.01 0.1 1].  Classification accuracy was 
measured as the mean accuracy on held-out test data from 30 iterations of stratified 10-fold cross-
validation.  We used the lymphoma gene expression data reported in [1].   

 
3 Results.  
 
For the linear SVM, variations in C did not produce statistically significant difference in 
performance.  For the polynomial kernel, only a conjunction of low gamma and low C values 
produced substantially degraded performance.  Either high values of gamma or high values of C 
produced optimal classification accuracy.   For the RBF kernel, values of gamma < 0.001 increased 
classification accuracy by over 20% relative to higher values of gamma for the three highest values 
of C.   

 
4  Discussion. 

 
We demonstrate that the ability with which support vector machines can classify microarray data is 
highly dependent upon both kernel type and parameter settings.  As in many other domains, model 
selection is an important issue for microarray data analysis.  In the present study, the regularization 
parameter C exhibited no significant influence on the linear SVM but was an important factor in the 
performance of the non-linear SVM classifiers.  Gamma, playing different roles in the two non-

                                                 
1 Department of Computer Science and Program in Molecular, Cellular, and Integrative Neuroscience, 

Colorado State University, Fort Collins, Colorado. E-mail: petersod@cs.colostate.edu 

Dana Jermanis
202

Dana Jermanis


Dana Jermanis
Microarray Design and Data Analysis

Dana Jermanis
G15.



linear classifiers, also influenced their performance.  For both non-linear classifiers, the influence 
of gamma depended on the regularization parameter C, and vice-versa.  This is an important result, 
because it suggests that the two parameters should be optimized jointly, which is much more 
computationally expensive than optimizing them separately.  Such computational demands are 
particularly important when SVMs are used for feature selection [5].  Feature selection approaches 
that go beyond per-feature evaluations and allow for feature interaction commonly involve 
extensive search of the feature subset space and, consequently, many iterations of training and 
testing predictors such as SVM classifiers.  Thus, further research to optimize SVM model 
selection will be particularly important for feature selection in microarray data analysis. 
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Abstract

The analysis of gene expression data is a challenging field of computational
biology. We represented the behavior of time series gene expression patterns
by a system of differential equations, which we analytically and algorithmically
investigate. Therefore we use an algorithm which computes regions of stability
and instability. It takes advantage of extremal points of polyhedra, which grow
step by step, up to a possible stopping. The overall goal is to correlate the
stability pattern with metabolic states. New numerical results will be presented.

1 Mathematical Modelling of Gene Expression Data

Several approaches to analyze time-series gene expression data have been presented. Chen
et al. [3] proposed to use the differential equation Ė = ME to model gene expression data.
M represents a matrix with constant entries and E(t) the vector of mRNA and protein
concentrations at time t. The vector Ė represents the change of concentrations in time. The
modelling approach suggested by De Hoon et al. [5] is based on Chen et al.. However, only
mRNA measurements and different preconditions are used. In 2001, Sakamoto and Iba [6]
proposed a more flexible approach Ėi = fi(E1, ..., En) ∀i = 1, ..., n with n being the number
of genes and fi being a function in E1, ..., En. Genetic programming is used to construct the
model which has also been proposed by Cao et al. To be more effective Sakamoto and Iba
also used the least mean square method along with the genetic programming. The method
worked very well for small samples. For a large-sized network they will search for methods
of pre-processing to reduce the given networks to small-sized sub-networks. Our approach
is a further extension, since we firstly make M dependent on E and secondly analyze the
system for stability.

2 Data Sets

Our initial experiments were based on artificial data sets. Thereby, we could for example
control the innode degrees. Currently, we are working on the time-series gene expression
data set from a diauxic shift of yeast. This data-set and the experimental background can
be found in [4].
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3 Mathematical Modelling

Step 1 Based on the data of microarray experiments we want to develop a system of
differential equations

(CE) Ė = M(E)E ,

which describes the cell’s process. The expression levels of the genes at time t are described by
the vector E(t) = E1(t), ..., En(t), n being the number of genes in the microarray experiment,
and M(E) being a matrix depending on E.
How can M(E) be calculated? For the time being we will cluster the data and use least
squares to solve this problem.

Step 2 In the second step we want to analyze the system of differential equations for
stability using an algorithm of Brayton and Tong [2, 1].
i) We apply Euler’s discretization on the time-continuous system of differential equations
(CE) by which we describe the metabolic process. Based on our good differentiable approx-
imation of the biochemical processes, the time-discretization by Euler’s method supports
and simplifies the analysis and approximate resolution of the continuous process (CE). This
method is not a very refined approximation but convenient and a strong tool, here. We get
a set of matrices M = {M0, ..., Mm−1} which we analyze for stability.
ii)We apply the algorithm of Brayton and Tong on the set M of matrices. This set is stable,
if for every neighborhood of the origin U ⊂ C

n there exists another neighborhood of the
origin Ũ such that, for each M ∈ M′ it lasts MŨ ⊆ U . Brayton and Tong proved that
M is stable, iff B̆ is bounded, where

B̆ :=

∞
⋃

k=0

Bk , with Bk := H

(

∞
⋃

i=0

M
i

k′Bk−1

)

and k
′ = (k − 1) modulo m ,

for k ∈ N and B0 ∈ C
n a bounded neighborhood of the origin.

The algorithm constructs polytopes Bi consecutively and checks whether B̆ is bounded and
therefore whether the set M is stable.
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1 Introduction: Non-Unique Probe Selection

We are interested in selecting oligonucleotide probes for DNA arrays [1]. In large transcript
families, such as alternative splice variants of a gene, or in a large family of closely homologous
genes (e.g., human heat shock proteins), it is often impossible to find enough unique 25-mer
probes that can be taken as a signature for a specific variant. Therefore we consider non-
unique probes [2].

For this study, we assume that we have many potential probe candidates and the task is
to select an appropriate subset of them for use on the chip. We assume that we know (an
approximation to) the probe-transcript affinity matrix A that relates transcript expression
level to observed signal. We have y = A ·x+c, where y ∈ Rm are the observed probe signals,
x ∈ Rn contains the transcript expression values, A ∈ Rm×n contains the affinity coefficients
between probes and transcripts, and c models additional noise or unspecific hybridization.
A probe i that matches a transcript j leads to a high affinity value Aij ≈ 0.1 to 1, say. The
target set of probe i is denoted by T (i). A probe i that is unrelated to transcript j leads to
a low affinity value of less than 10−4, say.

From the m� n probe candidates whose affinity values form the m rows of the affinity
matrix A, we would like to select at most µ ≤ m rows. We write H for the hybridization
matrix defined by Hij := 1 if j ∈ T (i), and Hij := 0 otherwise. We denote the index set of
the chosen rows by D for design. We have D ⊂ {1, 2, . . . ,m} and desire |D| ≤ µ. Let AD

and HD denote the matrices obtained from A resp. H by removing all rows whose index
is not in D. The requirements on D are that the equation y = AD · x must be stably and
robustly solvable for the n expression levels x, given the |D| probe signals y.

2 Condition Optimization

Let A be an m×n matrix of full rank n ≤ m, and let σ1 ≥ σ2 ≥ · · · ≥ σn > 0 be the singular
values of A. Then the condition of A is defined as cond(A) := σ1/σn. If A does not have
full rank n, then σn = 0, and we set cond(A) :=∞. The condition measures how changes in
the measurement y influence the solution x of the minimization problem ‖y−A · x‖ → min:

We have ‖∆x‖‖x‖ ≤ cond(A) · ‖∆y‖‖yA‖
, where yA is the projection of y on the range of A.

We assume that cond(A) <∞, i.e., that the affinity matrix that consists of all candidates
has full rank n, and that the associated hybridization matrix H satisfies the minimum and
average coverage constraints minj

∑
i Hij ≥M and

∑
i,j Hij ≥ nA. We let
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D := {D ⊂ {1, 2, . . . ,m} : |D| ≤ µ, cond(AD) <∞, minj
∑
i H

D
ij ≥M,

∑
i,j H

D
ij ≥ nA}

denote the set of admissible designs under the side conditions. It is assumed that D is not
empty; otherwise we have to increase µ or decrease M or A. The combinatorial problem is
to minimize cond(AD) among all D ∈ D.

As far as we are aware, the condition optimization problem has not been posed before in
the mathematical literature. It appears to be a difficult problem because the singular values
of two matrices AD and AD−i, where D − i := D \ {i}, are not related in an obvious way,
and also because the landscape of admissible designs potentially has many local minima. In
spite of these difficulties, we propose a greedy heuristic to obtain a good admissible design.

Greedy Condition-based Design

Input: An m× n affinity matrix A and hybridization matrix H
1. D ← {1, 2, . . . ,m}
2. B ← ∅, C ← +∞
3. while (|D| > n)
4. c← +∞, i∗ ← 0
5. for each i ∈ D
6. if (minj

∑
i′ H

D−i
i′j ≥M) and (

∑
i′,j H

D−i
i′j ≥ nA)

and (cond(AD−i) < c) then c← cond(AD−i), i∗ ← i
7. if i∗ = 0 then break
8. D ← D − i∗
9. if (|D| ≤ µ) and (c < C) then B ← D, C ← c

10. if (B = ∅) then B ← D, C ← c
Output: Design B with condition C = cond(AB)

The procedure starts with a full design and iteratively removes a single row to locally mini-
mize the condition while still satisfying the coverage constraints(lines 5–6). If the resulting
design is admissible it is compared against the current best admissible design B (line 9).
This is repeated until the design size equals the number of targets (line 3) or no smaller
design satisfying the coverage constraints can be found (line 7).

We evaluated the greedy heuristic against the
optimal selection for small artificial matrices with
18 probe candidates and 4 targets. It was at-
tempted to reduce the number of probes as far as
possible with a minimum and average coverage re-
quirement of 3 probes per target. Although the
greedy heuristic does not always find the optimal
solution, its performance is reasonably close to the
optimal design (found by exhaustive search) and
much better than choosing random subsets. The
typical behavior is shown to the right: Removing
a few probes improves the condition; removing too
many will eventually worsen the condition again.
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1 Introduction.  
 
Lack of reliable bioinformatic tools, which would incorporate the phisico-chemical characteristics 
of the nucleic acids as part of a synthetic oligomer probe design criterion, is a major challenge of 
modern microarray research. One of these phisico-chemical parameters, which reduces the binding 
effectiveness  of microarray probes, is the propensity  of long target RNA molecules to form stable 
secondary structures. Different 3-D foldings such as hairpins and stacked regions have the  
potential to pre-empt target nucleotides, thus blocking regions of the long RNA molecules from 
hybridizing to their intended probes. Our computational analysis indicates that, although raising the 
probe-target hybridization temperature and implementation of shearing techniques remove some of 
the target secondary structure problems, they cannot eliminate all of the stable short helices across 
the RNA molecule. These temperature resistant structures create potential problems for the on-chip 
probe annealing that is not predicted by consideration of probe structure alone. Identification and 
masking of the target RNA stable secondary structure sequences and the blocked regions of the 
target molecule should be included as one of  the algorithms used for the design of  synthetic oligo 
probes. 
 
2 Experiment and Methods.  
 
Thermodynamic analysis of the secondary structures was performed for a set of ten out of fifteen 
different urease genes present in Brucella suis genome using the Mfold 3.1 software [1].  This 
program package utilizes the nearest neighbor energy approach, which assigns free energies to 
loops rather than to base pairs [2]. Our calculations were performed for the RNA secondary 
structure predictions at four different temperatures, chosen as being those most often utilized in 
laboratories as the hybridization temperatures for microarrays: 37˚C, 42˚C, 52˚C and 65˚C for full 
length RNA molecules at buffer conditions of  1.0 M sodium concentration and  no magnesium ion.  
The free energy increment for computing the suboptimal foldings, ∆∆G, was set to 5% of the 
computed minimum free energy ∆G. The default values of the window parameters, controlling the 
number of foldings automatically computed by Mfold 3.1 were picked based on the sequence 
length. 
 
The computations revealed that for approximately 300 bp long sequences at 37˚C about 7 % of the 
double stranded helices within the suboptimal ∆G range are at least 6 bp long with the minimum 
free energy of the overall folding containing these structures ranging from -930 to -980 10th of the 
kcal/mol.  For the same sequence at 42˚C also about 7 % of the double stranded helices within the 
suboptimal ∆G range are at least 6 bp long with the minimum free energy of the overall folding 

                                                 
1 Department of Biology, Virginia Polytechnic Institute and State University, 4083 Derring Hall, 

Blacksburg, Virginia, U.S.A. E-mail: vratushn@vt.edu 
2 School of Computational Science, George Mason University, PW1 Rm. 441, Manassas, Virginia, U.S.A. 

E-mail: jweller@gmu.edu 

Dana Jermanis
208

Dana Jermanis


Dana Jermanis
Microarray Design and Data Analysis

Dana Jermanis
G18.



containing these structures ranging from -860 to -820 10th of the kcal/mol.  At 52˚C about 9 % of 
the double stranded helices within the suboptimal ∆G range are at least 6 bp long with the 
minimum free energy of the overall folding containing these structures ranging from -640 to -600 
10th of the kcal/mol. At 65˚C about 12 % of the double stranded helices within the suboptimal ∆G 
range are at least 6 bp long with the minimum free energy of the overall folding containing these 
structures ranging from -380 to -350 10th of the kcal/mol.  These data suggest that the temperature 
raise up to 65˚C although removes a substantial part of the secondary structure but doesn’t 
eliminate competing structure or cause complete unwinding of all molecules. Below is an 
illustration of an optimal and suboptimal folding for the ureA1 mRNA at 37˚C and 65˚C [3]: 
 

  
  

Figure 1:  A   37˚C, ∆G=-111.33 kcal/mol                              B    65˚C, ∆G=-37.5 kcal/mol              
 
A computational shearing simulation was performed 37˚C, 42˚C, 52˚C and 65˚C with the 37˚C, 
42˚C, 52˚C and 65˚C 10 nucleotide window and the sheared fragment size of 200, 100 and 50 
nucleotides.  The obtained results indicate that although shearing has a major effect on the 
elimination of the secondary structure formation,  up to 12 % of the double stranded helices within 
the suboptimal ∆G range are at least 6 bp long with the minimum free energy of the overall folding 
containing these structures ranging from 30 to -110 10th of the kcal/mol.   

 
3 Conclusions.  
 
Computational analysis of the secondary structures at a range of temperatures of the full length 
mRNA sequences as well as the sheared fragments revealed a set of stable secondary structures, 
which do not disappear with either raise of the hybridization temperature, shearing or both, and 
may cause problems during the probe annealing stage of the microarray experiment. Therefore, we 
suggest to develop a new microarray probe design criteria based on the presence of the stable 
secondary structures in the target mRNA sequence. 
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1 Introduction.  
 
Design of diagnostics based on microarray technology inherently involves a multiple genome 
comparison.  Unique regions must be unequivocally identified; this process can not rely solely on 
comparison of annotated gene sequences, especially when annotation is tentative or incomplete. A 
three-way comparison of published and annotated genomes of Brucella. melitensis and B. suis, and 
a draft sequence of the B. abortus genome identified a group of unique known and hypothetical 
gene coding sequences in these species [1]. The comparison was performed using a prototype of the 
GenoMosaic toolkit [2].  Although only B. suis was found to have a significant number of unique 
genes, patterns of genes that exist in only two out of three genomes were also identified. These 
patterns will discriminate unambiguously between B. suis, B. melitensis, and B. abortus, and are 
important for explaining the differences in virulence and host specificity of the three Brucella spp.  
The existence and in vitro transcription behavior of the differentiating genes were confirmed by 
PCR.  
 
Brucella is a facultative intracellular pathogen with approximately 3 Mb genome, split between the 
two chromosomes the size of 1.85 Mb and 1.35 Mb. Human brucellosis is quite common but often 
not diagnosed. There are six recognized Brucella species that differ in their host preference. B. 
abortus preferentially infects cattle, B. melitensis infects sheep and goats, and B. suis infects pigs.  
All three of these species and B. canis can infect humans, although B. melitensis is associated with 
the most serious human infections. The Brucellae are grouped with the α-proteobacteria and are 
related to other cell-associated parasites of plants and animals [3]. The true pattern of Brucella 
intracellular survival and proliferation, and the reasons for the different virulence patterns among 
the species are not conclusively known.  
 
2 Experiment and Methods.  
 
Reverse transcriptase (RT-PCR) analyses were performed for identified unique and differential 
regions of three Brucella spp.: B. abortus, B. melitensis and B. suis, to determine whether the 
identified differentiating genes are transcribed in vivo. To compensate for the absence of completed 
annotation in B.abortus, the identified differentiating open reading frames from B. melitensis and B. 
suis were used to develop the RT-PCR primers. The same primers were used to interrogate each of 
the three genomes, testing for the existence and expression of these genes in B. Abortus.  Patterns 
of identified unique and differentiating genes that exist in only two out of three genomes were 
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confirmed by PCR. Both PCR and RT-PCR reactions were performed for 104 unique genes or 
partial differential genes detected in the three genomes by whole genome sequence comparison[2].  
23 unique genes, and 79 differential genes common between the two of the three species were 
tested for transcription.  Table 1 summarizes transcripts detected for genes in each differentiating 
sequence island.  
 

Genomic Brucella suis Brucella melitensis Brucella abortus 
location Predicted Observed NB Predicted Observed NB Predicted Observed NB 

S1 4 4 0 1 1 0 0 0 0 
S2 18 17 1 0 0 0 0 0 0 
M1 0 0 0 1 1 0 0 0 0 
A 0 0 0 0 0 0 1 1 0 

SM1 1 1 0 2 2 0 0 0 0 
SM2 25 16 9 24 6 18 0 0 0 
SA1 11 3 8 0 0 0 9 7 2 
SA2 11 7 4 0 0 0 11 6 5 
MA1 0 0 0 30 21 9 26 23 3 

 
Table 1:  Summary of RT-PCR results for differential ORFs.  

A – B.abortus, M – B.melitensis, S – B.suis, 1 – chromosome I and 2 – chromosome 2 and NB – no band. 
 
Several groups of genes with potential significance for virulence were detected as differentials and 
shown to be transcribed.  Some of these genes were likely of phage or plasmid origin, suggesting 
possible mechanisms for their appearance as differentials.   
 
3 Conclusions.  
 
In three very closely related pathogen genomes, systematic genome-wide comparison was used to 
identify targets for a diagnostic microarray. RT-PCR tests confirmed computational predictions. 
PCR amplification of the genomic DNA confirmed the presence of the predicted amplicon even 
where transcription was not detected, and transcription was not detected in any case where we had 
predicted that the target would be absent.  However, in some cases, predicted differentiating genes 
did not appear to be transcribed under the conditions of the experiment, as the predicted amplicon 
was not observed even though the gene was detected by PCR in the genomic DNA. All of the 
identified differentials have been used in development of a Brucella microarray containing probes 
for both common and differentiating targets.  
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MeSH Key Terms for Validation and Annotation of Gene
Expression Clusters

Andreas Rechtsteiner and Luis M Rocha 1
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Integration of different sources of information is a great challenge for the analysis of gene expres-
sion data, and for the field of Functional Genomics in general. As the availability of numerical data
from high-throughput methods increases, so does the need for technologies that assist in the validation
and evaluation of the biological significance of results extracted from these data. In mRNA assaying
with microarrays, for example, numerical analysis often attempts to identify clusters of co-expressed
genes. The important task to find the biological significance of the results and validate them has so far
mostly fallen to the biological expert who had to perform this task manually.

One of the most promising avenues to develop automated and integrative technology for such tasks
lies in the application of modern Information Retrieval (IR) and Knowledge Management (KM) algo-
rithms to databases with biomedical publications and data. Examples of databases available for the field
are bibliographic databases containing scientific publications (e.g. MEDLINE/PUBMED), databases
containing sequence data (e.g. GenBank) and databases of semantic annotations (e.g. the Gene Ontol-
ogy Consortium and Medical Subject Headings (MeSH)).

We present here an approach that uses the MeSH terms and their concept hierarchies to validate
and obtain functional information for gene expression clusters2. The controlled and hierarchical MeSH
vocabulary is used by the National Library of Medicine (NLM) to index all the articles cited in MED-
LINE. Such indexing with a controlled vocabulary eliminates some of the ambiguity due to polysemy
(terms that have multiple meanings) and synonymy (multiple terms have similar meaning) that would
be encountered if terms would be extracted directly from the articles due to differing article contexts
or author preferences and background. Further, the hierarchical organization of the MeSH terms can
illustrate the conceptual/functional relationships of genes associated with MeSH terms. MeSH terms
can be associated with genes through co-occurrence of these in MEDLINE citations, i.e. the genes
occur in titles or abstracts and the MeSH terms are assigned by experts.

To identify MeSH terms associated with a group of genes we used the tool MESHGENE developed
at the Information Dynamics Lab at HP Labs (http://www-idl.hpl.hp.com/meshgene/). When presented
with a list of human genes, MESHGENE uses some sophisticated techniques to search for these gene
symbols in the titles and abstracts of all MEDLINE citations. MeSH terms and the number of co-
occurrences can be retrieved3. Gene symbols that are aliases of each other are pooled from several
databases. This addresses the problem of synonymy, the fact that several symbols can refer to the same
gene. MESHGENE employs some sophisticated algorithms that disregards symbols that are likely to
be acronyms for other concepts than a gene. This addresses the problem of polysemy, i.e. possible
multiple meanings of a gene symbol4 .

We applied our approach to gene expression data from herpes virus infected human fibroblast cells
[1]. The data contains 12 time-points, between 1/2 hrs and 48 hrs after infection. Singular Value
Decomposition was used to identify the dominant modes of expression. 75% of the variance in the
expression data was captured by the first two modes, the first exhibiting a monotonly increasing expres-
sion pattern and the second a more transient pattern. Projection of the gene expression vectors onto this

1CCS-3, Los Alamos National Laboratory. E-mail: andreas@lanl.gov
2Masys et al. [2] presented a proof-of-concept utility related to this approach.
3MESHGENE also returns ’scores’, a statistical measure of association that attempts to take into account how

often one would find a certain gene-MeSH term co-occurrence by chance.
4Both of these techniques improve on some of the short-comings of the approach by Masys et al. [2]
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first two modes identified 3 statistically significant clusters of co-expressed genes5 . 500 genes from
cluster 1 and 300 genes from clusters 2 and 3 each were uploaded to MESHGENE and the MeSH terms
and co-occurrence values were retrieved. MeSH terms were also obtained for 5 groups of randomly
selected genes with similar numbers of genes. The log was taken of the co-occurrence values and for
each MeSH term these log co-occurrence values were summed for each group over the genes in that
group. A matrix with 8 columns for the 8 groups of genes and with 14,000 rows with the MeSH terms
was obtained. To analyze this association matrix we used a Latent Semantic Analysis (LSA) approach.
We applied SVD to this gene-group vs. MeSH term association matrix. The first 2 modes that capture
most of the variation (and therefore most times also information) in the association matrix were highly
associated with MeSH terms that occurred uniquely or disproportionally in the 3 gene clusters. MeSH
terms highly associated with the 5 groups of randomly selected genes were associated with the lower
modes. These modes seem to just capture ’noise’ in the association matrix. This result by itself is of
great interest for gene expression analysis. We were able to show that the 3 clusters of genes not only
separated in ’expression space’ but also in the MeSH term space with which they are associated through
the literature. Further, our results indicate that the genes within the 3 clusters are not only similar in
expression space (i.e. co-expressed) but are also more coherent in MeSH space (and therefore probably
also functionally coherent) than the randomly grouped genes. These two observations support, and in
some way validate, the clustering results obtained from the expression data.

We also inspected the MeSH terms most associated with the 3 clusters for functional information
and compared the results to a manual annotation of clusters 1 and 2 that was done by biological ex-
perts6. Many MeSH terms highly associated with cluster 1 were related to viruses, indicating that many
genes in cluster 1 must have been reported in the literature in connection with these. A disproportionate
number of MeSH terms for cluster 1 were also related to oncogenesis, transcription regulation, antigene
processing, antibody formation, and Major Histocompatibility Complexes I and II. The manual anno-
tation by the biological experts identified a disproportionate high number of genes for cluster 1 related
to all of the above biological processes or cellular components suggested by the MeSH terms. MeSH
terms highly associated with cluster 2 were related to immune response, T cells, macrophages, infec-
tions, inflammation, cytokines and cytokine receptors. Manual annotation supported the above findings
by identifying a disproportionate number of genes in cluster 2 related to these concepts. For cluster
3 highly associated MeSH terms were related to connective tissue and connective tissue diseases (note
the herpes infected cells were human fibroblast cells), enzymes involved in apoptosis, immune response
and oncogene proteins. (No manual annotation of cluster 3 genes was performed.) The results indicate
that the MeSH terms associated with the genes in the 3 clusters are informative about functions of many
of the genes in these clusters, and would at least be a good guide for the biological expert trying to
investigate the functions of these in more detail.

We are working on further exploration and improvements on the above methodology. We are ex-
ploring, for example, different measures of association between MeSH terms and genes. We also ex-
plore the usefulness of our approach for other areas of Functional Genomics, like protein function
inference.

References
[1] E.P. Browne, B. Wing, D. Coleman, and T. Shenk. Altered cellular mRNA levels in human

cytomegalovirus-infected fibroblasts: Viral block to the accumulation of antiviral mrnas. Journal
of Virology, 75(24):12319–30, 2001.
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5A manuscript describing this SVD based algorithm is in preparation.
6A manuscript of this study is in preparation.

Dana Jermanis
213

Dana Jermanis


Dana Jermanis
Microarray Design and Data Analysis



 
 

Evaluation of Statistical Methods for cDNA 
Microarray Differential Expression Analysis 

 
Wei Sha1,  Keying Ye2,  Pedro Mendes3 

 
Keywords: microarray data analysis, differential expression, t-test, SAM, ANOVA, mixed model 
 

1 Introduction.  
 
There are many statistical methods to identify differentially expressed genes in cDNA microarray 
experiments. A straightforward method is to use the traditional two sample t-test [1]. Tusher et al. 
[2] proposed the Significance Analysis of Microarray (SAM) method. Kerr et al. [3] and Kerr and 
Churchill [4] were the first to propose the study of gene expression data using analysis of variance 
(ANOVA) models. These models perform both normalization and identification of differentially 
expressed genes. However, none of these methods have yet gained wide acceptance, and it has 
perhaps been difficult to decide which method performs better than the others. Thus, the evaluation 
of these methods for differential expression is an important issue. The performance of four 
statistical methods for differential expression was compared in this simulation study. Gene 
expression data was simulated, and then analyzed by a) Welch t-test b) SAM c) ANOVA gene 
model d) mixed ANOVA model. The relative performance of these methods in terms of accuracy in 
detecting differentially expressed genes was evaluated. 

 
2 Simulating microarray data.  
 
Artificial gene networks were generated following one of three topologies, Erdös-Renyi random 
networks, Watts-Strogatz small-world networks [5], and Albert-Barabási scale-free networks [6]. 
Details of artificial gene networks can be found in our recent paper [7]. These networks were used 
to generate gene expression data using the program Gepasi [8]. This program allows us to generate 
different type of experiments, such as null mutants, or time courses following treatments. Noise 
arising from array, spot, and other sources was simulated and added by PERL script at three 
different levels following the normal distribution. In this study, we simulated three cDNA 
microarray experiments in a reference design by using three different gene networks. In each 
simulated microarray experiment, there were 100 genes, six treatments and three replicates. 

 
3 Data analysis and results.  
 
Simulated data were normalized by median center before analyzed by t-test, SAM and ANOVA 
gene model. Simulated data were not normalized before analyzed by mixed ANOVA model, since 
this method itself does normalization. Bonferroni adjustment was used for t-test, ANOVA gene 
model and mixed ANOVA model. ANOVA gene model and mixed ANOVA model are shown as 
follows.  

                                                 
1 Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, 1880 Pratt Dr., 

Blacksburg, VA 24061, USA. E-mail: wsha@vt.edu 
2 Dept. of statistics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. 

E-mail: keying@vt.edu  
3 Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, 1880 Pratt Dr., 

Blacksburg, VA 24061, USA. E-mail: mendes@vt.edu 
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jkkjjkjk TAy εµ +++=                                                             -------       ANOVA gene model 

 

ijkkijijkkjiijkijk TGAGATTAGy εµ +++++++= )()()(    -------    mixed ANOVA model 

 
The false positive rates and false negative rates were calculated for each method. Results are shown 
in Table 1. We found that all these methods have good performance when noise level is low. 
However, as noise increases, the mixed model performs better than others.  
 

 
 Low noise Medium noise High noise 
 False 

positive 
False 

negative 
False 

positive 
False 

negative 
False 

positive 
False 

negative 
t-test 1.33 0 3.70 44.44 5.67 52.00 
SAM 1.33 0 3.70 22.22 5.67 48.33 

ANOVA 
gene model 

0 0 0 18.52 0 48.33 

Mixed 
model 

0 0 0 18.52 0 35.33 

 
Table 1:  False positive rate (%) and false negative rate (%). 

 
Although we have studied only a limited number of data sets, out findings may provide some 
guidance on the selection of differential expression methods. To get more convincing results, we 
have automated the data analysis process in PERL and SAS. Hundreds of data sets are now being 
analyzed in these programs. The results from these data sets will also be shown on the poster. 
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How Noisy are DNA Microarray Data? 
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1 Abstract 

What factors are important in improving consistency in replicated measurements? Every stage 
of a microarray experiment has the potential to introduce "noise" [3,6]. This work analyses 
variability in highly replicated measurements (up to 32x) of DNA microarray data (using wild type 
E. coli as the model organism [1,2,4,6]) and quantifies the noise attributed by differences in the 
biological, experimental and technological setup of the experiments. Replicability is assessed 
quantitatively using correlation analysis as a global measure and differential expression analysis at 
the level of individual genes. The factors introducing variability that are considered in our study are 
differences in cDNA targets (complementary to independently prepared mRNA preparations), 
filters, imaging technology (Affymetrix MAS4.0 or MAS5.0, dChip[7]), DNA microarray formats 
(nylon filters and Affymetrix GeneChipsTM) and improvements in labeling. Our findings show that 
the major source of variance comes from biological factors such as using different cDNA targets. In 
nylon filter experiments, higher correlation (0.95) is observed when biological factors are kept 
consistent as opposed to experimental conditions (filters) (0.92). Changes in both filters and cDNA 
targets result in a significant drop in correlation (0.86). GeneChip measurements show an average 
correlation in the 0.81-0.85 range when a given image processing software is used. However, when 
two different software are compared (dChip [7] versus MAS 4.0 or 5.0), these values drop to 
around 0.78.  We also find that signal intensities obtained from different microarray platforms do 
not correlate well with one another (not higher than 0.4) possibly due to probe effects. Differential 
gene expression analysis on the same data supports the findings from the correlation analyses.  We 
observe that changing the biological factors alone introduces 2-3 times more false positives than 
experimental differences (using standard t-test on log transformed data [8] with p<0.005). As the 
differences are compounded, these numbers sharply increase up to 10 times the false positive 
levels. We present ways in which biological variations can be minimized such as harvesting the 
RNA as quickly as possible to prevent the effects of temperature shifts or osmotic stress and 
adopting standard cell-specific media for the growth of cells. Low correlation between the different 
microarray platforms suggests that the sets of replicates may not be combined. However, studies [5] 
have shown that signal ratios and overall differential expression profiles maybe comparable. 

 
2 Results 
 

Results obtained from pre-synthesized nylon filter 
experiments 

Average 
Correlation 

Average Number of  False Positive 
Genes (t-test with p<0.005) 

Duplicate measurements from each filter (same target) 0.974 0 
Same targets hybridized to different filters 0.951 25.88 
Different targets hybridized to the same filters 0.917 68.38 
Different targets hybridized to different filters 0.859 124.03 

Table 1. Comparing the effects of biological and environmental variables: Average correlation 
and false positive count of 32 measurements (of genes from wild type Escherichia coli) 
obtained using different cDNA targets and filters (excluding timeframe and labeling). 

                                                 
1 These authors contributed equally to this work. E-mail: {suman, shung, gwhatfie, pfbaldi}@uci.edu 
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Correlation E1 E2 E3 E4   C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

Filter E1 1.00       
 E2 0.90 1.00      
 E3 0.60 0.75 1.00     
 E4 0.73 0.86 0.92 1.00    

MAS 4.0 C1 0.34 0.29 -0.01 0.13  1.00  
 C2 0.35 0.30 -0.03 0.12  0.87 1.00 
 C3 0.34 0.30 -0.01 0.14  0.83 0.84 1.00
 C4 0.35 0.31 0.01 0.15  0.80 0.84 0.79 1.00

dChip C1 0.35 0.30 0.00 0.15  0.80 0.84 0.79 0.77 1.00
 C2 0.34 0.29 0.01 0.15  0.77 0.80 0.76 0.84 0.87 1.00
 C3 0.34 0.30 0.02 0.15  0.86 0.82 0.79 0.76 0.91 0.83 1.00
 C4 0.34 0.30 0.01 0.15  0.80 0.81 0.84 0.76 0.88 0.84 0.88 1.00

MAS 5.0 C1 0.36 0.30 0.00 0.14  0.92 0.86 0.83 0.80 0.81 0.78 0.86 0.81 1.00
 C2 0.37 0.31 -0.02 0.14  0.85 0.92 0.83 0.83 0.84 0.80 0.82 0.80 0.90 1.00
 C3 0.37 0.33 0.01 0.16  0.84 0.85 0.92 0.81 0.81 0.78 0.81 0.85 0.87 0.87 1.00
 C4 0.35 0.31 0.02 0.16  0.78 0.81 0.77 0.86 0.76 0.82 0.76 0.76 0.82 0.84 0.81 1.00

 
False Positives Count Filter MAS4.0 dChip MAS5.0

Filter 0
MAS4.0 674 0
dChip 662 102 0
MAS5.0 678 9 101 0

Table 2. Comparison of different microarray platforms: (a) Correlation between measurements from pre-
synthesized nylon filter and Affymetrix GeneChipTM experiments (processed with dChip, MAS 4.0 
and MAS 5.0) (b) Matrix showing number of false positive genes identified when comparing filter 
and Affymetrix GeneChipTM data (t-test with p<0.005). 
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Global profiling of human transcriptome during distinct stages of carcinogenesis presents a challenge, which 
requires novel experimental models and advanced analytical tools. We developed such a model of the stepwise 
transformation in vitro, which is based on human primary fibroblasts[1]. Upon hTERT expression spontaneous 
variants with inactivated INK4A locus arose,  allowing further transformation by H-Ras. In the present study we 
showed that cells with concomitant expression of H-Ras and dominant negative p53 were endowed with more 
transformed features, which were sufficient for tumorigenic potential in vivo. Distinct stages along the 
multistage carcinogenesis were selected for microarray profiling.  
Unsupervised analysis of the stepwise transformation, using SuperParamagnetic Clustering (SPC) [2], identified 
specific genetic signatures that differentiate samples according to the INK4A locus status, presence of functional 
p53 and H-Ras overexpression. Several important conclusions were drawn from our analysis. Dramatic 
downregulation of growth inhibitory molecules, putative tumor suppressors and proapoptotic factors were 
evident at the earliest stages of the neoplastic process. In contrast, robust induction of protein translation 
machinery, antiapoptosis genes and multiple cancer specific antigens characterize progression from a slow to a 
fast growing stage. Inactivation of wild type p53 in the absence of INK4A resulted in upregulation of multiple 
genes required for cell cycle progression, mitosis regulation and rapid proliferation resembling “proliferation 
signature” found in many aggressive human tumors. Lastly, genes involved in chemotactic attraction of 
endothelial cells as well as in inflammatory response and metastasis were induced in a synergistic manner in 
cells expressing both H-Ras and dominant negative p53, adding novel facets to H-Ras transforming activities. 
The detailed understanding of the alterations in the transcriptional programs occurring during human 
carcinogenesis will ultimately lead to the identifications of the novel anticancer targets. 
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The expression of the three major genes clusters associated 
with human carcinogenesis

G7 G4 G8 

 
Days in culture 21 30 40 40 40 193 319 480 600 480 480 480 

INK4A status + + + + + + - - - - - - 

hTERT     Up Up Up Up Up Up Up Up 

p53   Down* Up** Down*  Down*     Down* Down* 

H-Ras V12          Up  Up 

*   GSE insertion: cause inactivation of p53�  
**�p53 activity is increased in fibroblasts during senescence� [3] 
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Figure 1: The mean expression of the 3 clusters that are correlated with the malignance process. The clusters 
were identified by unsupervised analysis using the SPC procedure. The table represent the status of 3 
manipulated genes: p53 that was repressed using GSE, hTERT, inserted to the cells in day 40, and Ras, inserted 
into two samples: with and without GSE. Cluster G7: 397 down regulated genes, that correlated with INK4A 
locus expression and anti-correlated with cell proliferation rate. Cluster G4: 250 up regulated genes, that anti-
correlated with INK4A locus expression and with Cluster G7;   correlated with cell proliferation rate. Cluster 
G8: A cluster of 168 genes, which showed associated with p53 activity, cell proliferation and tumor 
aggressiveness.  

 
 
Figure 2: stepwise malignant transformation model of the human diploid fibroblast and the underlying 
transcriptional changes. Microarray profiling revealed specific genetic signatures, associated with the particular 
stages in the in vitro transformation model (selected genes in the boxes are colored according to their expression 
level: bright  for high expression and dark for lower expression). These alteration  reflect the biological features 
acquired by cells spontaneously (derX, t(X;17) or induced by engineered mutations (GSE56 and H-Ras) along 
the process. We hypothesize that genetic signatures identified by our study provide a conceptual framework of  
similar transcriptional alterations associated with transition from normal tissue to hyperplasia, dysplasia and 
then to cancer. 

 
Data Analysis 
Gene expression analysis was done on 12 data points with two replicates for each one of the data points. For 
probe-level data analysis, Affymetrix® Microarray Suite software 5.0 (MAS 5.0.) was used as follows. First, the 
abundance of each transcript represented on the array was estimated and was labeled as either present, absent, or 
marginal.  Then absent /present and variance filters were applied; only those genes that were present in at least 
one data point in both repeats and had variance > 2 were kept. For each gene (row), the log2 of the expression 
was mean-centered (subtracting the average) and normalized to generate the final gene expression matrix. SPC 
[2], ANOVA, T-test and fold change were used to analyze the data.  
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Abstract 
 

We propose a method for clustering that produces tight and stable clusters without forcing all points 
into clusters. Many existing clustering algorithms have been applied in microarray data to search for 
gene clusters with similar expression patterns. However, none has provided a way to deal with an 
essential feature of array data: many genes are scattered randomly and do not belong to any of the 
significant biological functions (clusters) of interest. In fact, most current algorithms have to assign all 
genes into clusters. For many biological studies, however, we are mainly interested in the most 
informative, tight and stable clusters with sizes of, say, 20-60 genes for further investigation. Tight 
Clustering has been developed specifically to address this problem. The tightest and most stable 
clusters are identified in a sequential manner through an analysis of the tendency of genes to be 
grouped together under repeated resampling. We validated this method in the expression profiles of 
the Drosophila life cycle and mouse embryonic development. The result is shown to better serve 
biological needs in microarray analysis. 
 

1. Methods 
 

1.1 Algorithm A 
 

The following algorithm is used to select candidates of tight clusters when the number of clusters k in 
the K-means algorithm is pre-specified. The subsampling procedure is used to create variabilities so 
that a pair of points stably clustered together can be distinguished from those clustered by chance. 
    (a) Take a random subsample X' from the original data X, say with 70% of the original sample size. 
Apply K-means with the pre-specified k on X' to obtain cluster centers C(X', k)=(C1, C2,…,Ck). 
    (b) Use the clustering result C(X',k) as a classifier to cluster the original data X according to the 
distances from each point to the cluster centers. Following the convention of Tibshirani et al. [1], the 
resulting clustering is represented by a co-membership matrix D[C(X',k), X] where D[C(X',k), X]ij, 
the element of the matrix in row i and column j, takes value 1 if point i and j are in the same cluster 
and 0 otherwise. 
    (c) Repeat independent random subsampling B times to obtain subsamples X(1), X(2),…,X(B). The 
average co-membership matrix is defined as D =mean( D[C(X(1),k), X],…, D[C(X(B),k), X] ). 
    (d) Search for a set of points V={v1,…,vm}∈{1,…,n} such that 

jivvD >1-α ∀i,j, where α is a 

constant close to 0. Order sets with this property by size to obtain Vk1, Vk2,…. These V sets are 
candidates of tight clusters. 
 

1.2 Sequential identification of tight clusters 
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The following algorithm is used to identify a tight cluster that is stably chosen by consecutive k. We 
first define a similarity measure of two sets Vi and Vj to be s(Vi, Vj)=|Vi∩Vj|/|Vi∪Vj| where |V| is the 
size of set V.  
    (a) Start with a suitable k0. Apply Algorithm A on consecutive k starting from k0. Choose the top 3 
tightest clusters for each k, namely {Vk0,1, Vk0,2, Vk0,3}, {Vk0+1,1, Vk0+1,2, Vk0+1,3},… 
    (b) Stop when s(Vk',l, V(k'+1),m)>β. Here β is a constant close to 1, k'≥k0 and l,m∈{1,2,3}. Identify 
V(k'+1)m as the tightest and most stable cluster. Remove it from the whole data. 
    (c) Decrease k0 by 1 and repeat step (a) and (b) to identify the next tightest cluster. 
 

2. Result 
 

We applied our algorithm to a cDNA microarray data [2]. In Figure 1., the heat map [3] of 15 tight 
clusters when α =0.1, β =0.6, B=10 and k0=25 is presented. The four life cycle periods are separated 
by black marks above the heat map. Figure 2. gives a side-by-side comparison of Tight Clustering and 
K-means algorithm. The left cluster is the first cluster identified by Tight Clustering in Figure 1. The 
right cluster is the corresponding cluster in K-means clustering when k=15. The two clusters have 61 
common genes that were ordered and shown in the upper region. K-means, however, includes 
additional 67 genes with more variable patterns in the cluster and is likely to introduce many more 
false-positives. This figure shows the ability of Tight Clustering to produce tight and informative 
clusters for biologists to follow up, mainly because it does not require assigning all genes into clusters. 

             
 
The method is further applied to a set of mouse embryonic development expression profile (data not 
yet published). Tight Clustering identifies a cluster of 26 genes containing seven mini chromosome 
maintenance (MCM) deficient genes. When using K-means with k=30, 50, 70, the resulting clusters 
containing these MCM genes are much larger (96, 60, 77 respectively). For k=100, MCM genes were 
distributed in two different clusters (size 31 and 15), making it harder to detect the co-regulation of the 
MCM genes. 
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A Method for 3D Visualization of Microarray Data

L. G. Volkert,1 M. Tamboli,1, P. Siddula,1 and J. I. Maletic1

Keywords: microarray analysis, microarray visualization, data visualization, 3D visualiza-
tion

1 Introduction.

Microarray based technologies allow researchers to simultaneously measure the expression
levels of thousands, and even tens of thousands of genes, providing a new and powerful means
of discovering, characterizing, and analyzing genes and their expression patterns. The need
for new types of analysis tools is warranted by the exponential increase in the number of
gene expression experiments being conducted, and thus concomitantly by the amount of data
generated. Existing visualization tools do not provide the analyst a simple means for viewing
the complex relationships present in the data. We present a novel visualization method that
aims to provide such a mechanism in a way flexible enough to allow the user to choose a
combination of visual metaphors that provide the most explanatory view of the data for the
question at hand. Our approach utilizes a method for 3D visualization originally developed
for aiding in the analysis of large software systems [1]. An initial implementation of this
concept currently supports the use of up to nine visual metaphors such as (x,y)-placement,
height, and color. The large scale and scope of microarray data make it an ideal domain for
utilization of this type of data visualization tool.

2 Visual metaphors.

Our tool renders a three dimensional (3D) visualization to support the simultaneous display
of multiple attributes on partitioned information spaces. The tool is decoupled from the data
source so that it may be utilized as a standalone generic data visualization tool approriate
for a wide variety of data domains. This is possible because the input data is an XML
file containing the mapping information for rendering the supplied data attributes with user
selected visual metaphors. Data attribute values can be mapped to various visual metaphors
including a poly-cylinder, a container (group of poly-cylinders), the height or depth of a
cylinder, and the cylinder color, shape, texture and relative position within a container.
Certain visual metaphors are better for presenting enumerated data versus continuous values
and we have developed guidelines for proper mapping for the user.
We present a simple example using a subset of the first 400 probes listed after the hous-

keeping probes from three Affymetrix GeneChip Mouse Expression Array 430A chips. In the
following discussion we use the terminology developed by the Minimum Information About
Microarray Experiments (MIAME) standards [2]. Each of the 400 reporters are aranged
in identical relationship to each other as poly-cylinders in three seperate contaners, each
container representing data from a different hybridization. The poly-cylinders oriented in
the downward direction represent reporters with an Absent detection value as obtained from
the unfiltered .txt file produced by the Affymetrix image anaylsis process. The polycylin-
ders oriented in the upward direction represent reporters with either a Present (dark) or a
Marginal (light) detection value.

1Department of Computer Science, Kent State University, Kent, OH, 44242. E-mails:
volkert@cs.kent.edu, mtamboli@cs.kent.edu, psiddula@cs.kent.edu, jmaletic@cs.kent.edu
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Figure 1: An example of a 3D data visualization of 400 reporters from three hybridizations of
an Affymetrix 430a Mouse genechip. The poly-cylinders oriented in the upward direction represent
the signal expression levels forPresent (dark) or Marginal (light) reporters and those oriented in the
downward direction represent signal expression levels values for Absent reporters

3 Discussions and directions of future work.

Complex fuctional relationships also exist among the genes represented on a chip. A set
of genes may be related in terms of belonging to the same regulatory pathway or the same
protein family. Thus a potentially interesting view would be to cluster data into functional
profiles as per the molecular function, cellular component, and biological process. Genes
with similar molecular function could be grouped together in containers representing differ-
ent functions, which would potentially aid in recognizing similarities and differences in the
expression profiles of groups of genes. The possibilities for useful mappings are only limited
by the imagination of the user.
Our tool, while still a prototype, is quite robust and efficient. It allows for rendering of

over 100,000 poly-cylinders while still maintaining quick user interaction. Users can select
individual objects in the visual presentation space and manipulate them separately. This is
a distict advantage over full-space-only manipulation tools. Additionally, the tool supports
filtering via transparency control on selected attribute values and the ability to drill down to
the underlying input data. We are currently in the process of developing a collection of data
preperation scripts to automatically construct a variety of XML input files from standard
Affymetrix chips. These scripts will then be embedded into a GUI that will enable easy
access to this exciting new visualization method.
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A Robust, Noise-Insensitive Variable Selection
Algorithm for Molecular Profiling Data

Michael Wagner1 and Zhongming Yang 1

Keywords: variable selection, L1-SVM, molecular expression profiling.

1 Introduction

Variable Selection is a standard, well-known combinatorial problem in machine learning with
wide applicability and a number of successful published algorithms (see, e.g., [3] for a recent
overview). Given a number of descriptors (e.g., gene or protein expression measurements)
for samples and a classification of the samples, the variable selection problem consists of de-
termining which combination of descriptors (genes) constitutes the “best” set of predictors
of class membership of the samples. Variable Selection has an obvious and important appli-
cation for biomedical research. Molecular profiling of tissues and blood samples for mRNA
expression levels (using microarray technology) and, more recently, for protein expression
(using chromatographic affinity or antibody chips and mass spectrometry, see, e.g., [4]) have
enabled the simultaneous measurement of thousands of molecular expression levels. One
obvious use of this kind of data is to determine the combination of genes or proteins which
can be used to diagnose disease.

Besides the general difficulties with the variable selection problem due to its combinatorial
nature, biological data presents additional complications. It is inherently very noisy, both due
to technical variability in the measurements and naturally occurring biological variability.
Secondly, sample sizes are typically small, and the numbers of descriptors (genes, proteins)
very large, making it especially difficult to obtain statistically significant results.

2 L1-based Variable Selection

We present a new algorithm based on a variant of the well-known and widely popular linear
support vector machine. Using the L1-norm to measure the size of the weight vector instead
of the standard Euclidean norm is well-known to yield sparse discriminating hyperplanes[1].
As an illustration of this, the left panel of Figure 1 shows the final values of the feature
weights wi for an implementation of the standard 2-norm SVM (libsvm[2]) as well as the L1-
SVM on the Wisconsin breast cancer testproblem[1], where 30 clinical features were used to
describe 568 patients. One immediate scheme to perform dimensionality reduction on a given
dataset now is as follows: Solve the L1-SVM problem once on the entire dataset, filter out all
features with small |wi|, then solve again, repeat if appropriate. However, precautions must
be taken in order to make this a reasonable idea: the data must be scaled appropriately
in order to ensure that two wi’s are indeed comparable, and, secondly, we should like to
account for the fact that the data will in general be noisy, and thus we want to ensure that
we are not dealing with artifacts created by noise. Our algorithm now deliberately adds a
controlled amount of noise to the data and ranks features based on their sensitivity to this
additional noise, as manifested in the distribution of the resulting weight components wi. In
short, we propose ranking the features according to the z-scores of their weights from several
L1-SVM runs on perturbed data.

1Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH. E-mail: [mwagner,

zhongming.yang]@cchmc.org
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Figure 1: Left Panel: Resulting weights of L1-SVM and a standard SVM on a testprob-
lem. Only nonzero w′

is are represented. Classification accuracies are comparable, while the
L1-SVM (l1svm-s) naturally selects a small feature subset. Points labeled with l1svm-m
represent weights used as a result of running the new algorithm described here. Right panel:
Comparison of variable selection strategies on a JRA microarray dataset.

3 Results

To illustrate the potential of our algorithm we present results on one dataset that motivated
us to work in this direction in the first place. As part of a program project study at Cincinnati
Children’s Hospital, 38 patients with various forms of juvenile rheumatoid arthritis were
profiled using microarrays on peripheral blood samples. The question is whether we can
distinguish polyarticular JRA versus all others based on mRNA expression levels, and if yes,
which combination of genes can be used to predict the classification accurately. We compare
2 variable selection methods: the commonly used F-statistic, which ranks genes based on
the ratio of between group variance and within group variance, and our L1-SVM algorithm
briefly outlined above. The right panel of Figure 1 shows the cross-validated leave-one-out
classification accuracies (obtained with a simple linear SVM) for both methods. As can be
seen from the non-monotone behavior, the noise in this small dataset is significant, as one
would typically expect monotonically increasing accuracy for increasing numbers of features.
We also see that the L1-SVM variable selection method is significantly more robust and
achieves much better classification results. Experiments on several other testproblems have
shown that our L1-SVM based variable selection technique is at least as good as various
competing techniques, and sometimes significantly superior.
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nonlinear relationships of genes from expression 

 
Chaolin Zhang1,  Yanda Li1,  Xuegong Zhang1,* 

 
Keywords: gMap, microarray, interactive visualization, nonlinear projection, Isomap 
 

1 Introduction.  
 
DNA micro-array technologies have made it possible to monitor the expression of thousands of 
genes across a set of conditions or cases simultaneously, enabling us to study the functional or 
regulatory relationship among genes. Assuming that genes with similar expression profiles have 
similar functions or are in the same regulatory pathway, various methods of gene clustering and 
dimension reduction by projection are commonly used to extract and represent the underlying 
knowledge. Two critical problems of these methods are measuring the relations between genes and 
visualizing these discovered relations in a way that is easy for biologists' analysis. 
 
Due to the high-complexity of gene systems, distance metrics such as correlation and Euclidean 
distance may not always capture the relationships among genes in the event of time shifts or the 
different timing rates of biological processes, etc [1].  
 
In these cases, nonlinear manifold might exist in the high dimensional space of gene expression 
data. By measuring the distance of genes with geodesic distance, the nonlinear manifold can be 
linearized and preserved more faithfully when the data is projected into the low dimensional space. 
Zhou, et al [3] demonstrated the effectiveness of “shortest path analysis” (which is actually an 
equivalence of geodesic distance) in transitive functional annotation. In our study, we employed a 
more systematic framework of applying geodesic distance to extract the relationship among genes. 
An easy-to-use tool named gMap (g means both geodesic and gene) was developed for this purpose. 
Another important advantage of gMap is that it includes a number of interactive features to 
facilitate the scrutiny of biologists upon the expression data. 

 
2 Methods and interactive features. 
 
At the center of gMap is the Isomap algorithm proposed by Tenenbaum, et al [2]. Instead of 
measuring the similarity/dissimilarity of genes with correlation or Euclidean distance (or with any 
other distance metric) directly, we use their geodesic distance estimated by their shortest path.  The 
authors of [2] proved that when sufficient data (in our context, number of genes) are given, the 
estimated geodesic distance can be arbitrarily accurate. 
 
After obtaining the geodesic distance matrix of all gene pairs, we project the relationship of genes 
into the low dimensional embedding. Particularly for micro-array data analysis, gMap can display 
genes in a 2D or 3D scatter-plot composed of 2 or 3 major components. A number of flexible 
interactive features are developed based on the scatter-plots, such as capture, query, sort, cluster, 
etc, which facilitate the interpretation of results. A part of them is list as follows: (1)Capture. To 
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interpret the biological meaning of a component or the local pattern of a set of genes in the 
embedding, users can select any gene(s). These selected/captured genes are marked out in the 
scatter-plot and more information of them, such as gene name, descriptions and expression profiles 
can be given and visualized. (2) Query. When users have a set of interested genes in advance, they 
can examine/query these genes to investigate their distribution in the embedding and in turn their 
relationship. (3)Sort. This feature is extremely useful for cell-cycle data. It allows users to re-order 
all (cell-cycle related) genes according to their phases in the life period. 

 
3 Applications and results. 
 
To demonstrate the utility of gMap, we applied our tool to a simulated dataset and three typical real 
micro-array datasets. The data sets are: CAKE model (a simulated genetic network), colon cancer, 
yeast cycle and response of human fibroblasts to serum. References of data source are not listed 
here due to the limit of space.  
 
We found that gMap can preserve more information in the low dimensional space because of the 
linearization effect of geodesic distance, which makes it possible to identify weak relationships or 
patterns in terms of correlation or Euclidean distance measure. Figure 1 shows the comparison of 
gMap and a previous classical method MDS in the residual variance of projection, which reflects 
ratios of information preserved after projection. The residual when the order is 2 or 3 by gMap is 
less than the counterpart by MDS, especially when array number is not so small. Larger residual at 
the tail is due to the approximation of geodesic distance. We also observe clusters of genes are 
more compact in the low dimensional embeddings by gMap compared with MDS.  
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Figure 1: Comparison of gMap and MDS in the residual variance of projection.  (+) gMap and (o) MDS.          

A. CAKE model, B. colon cancer, C. yeast cell cycle, D.  response of human fibroblasts to serum 
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Gene Co-regulation vs. Co-expression

Ya Zhang1, Hongyuan Zha2, James Z. Wang3, Chao-Hsien Chu4

The Pennsylvania State University, University Park, PA 16802

Keywords: Microarray, gene expression, co-regulation, regulon, regulator
One important goal of analyzing gene expression data is to discover co-regulated genes.

For a relatively long time, it has been assumed that similar patterns in gene expression pro-
files usually suggest relationships between the genes. According to [3], genes targeted by the
same transcription factors tend to show similar expression patterns along time. Analyzing
expression profiles of genes targeted by the same transcription factors revealed complex re-
lationships between co-regulated gene pairs, including co-expression, time shifted, inverted,
and inverted and time-shifted relationships. To investigate how co-regulation corresponds to
co-expression, we retrieved regulator-regulon pairs from the Yeast Promoter Database [1] and
examined the expression profiles of the regulons with the same regulator. We plotted expres-
sion profiles of target genes regulated by several regulators, respectively (Fig. 2). The gene
expression data were generated by Cho et al[2]. They sampled 17 time points at 10 minutes
time interval, covering nearly two full cell cycles of yeast Saccharomyces cerevisiae. As shown
from the plots, the relationships among co-regulated genes are very complex and beyond the
description of the four relationships identified by Yu et al [3]. We further identified the par-
tial co-expression relationship between genes: gene profiles may simultaneously rise and fall
in a sub-range of the time course rather than the overall time course. For example, among
the set of genes regulated by ABF1, genes CDC19 (Y AL038W ) and PGK1 (Y CR012W )
show similar expression profile in the second half of the time course (Figure 1(B)). Partial
time-shift relationship is exemplified by genes PGK1 (Y CR012W ) and CDC9 (Y DL164C)
(Figure 1(C)). Moreover, we also observed partial inverted and partial co-expression rela-
tionship between genes PDR3 (Y BL005W ) and SNQ2 (Y DR011W ) (Figure 1(D)). The
above observation suggests that a regulator may only function in some particular stage of
cell development, and therefore genes may be co-regulated in part of the time course, which
corresponds to certain phase of cell cycle or cell development.

A gene may be regulated by multiple regulators. When genes sharing multiple reg-
ulators, their expression profiles are more likely to be similar. For example, genes HO

(Y DL227C), CLN1 (Y MR199W ), and CLN2 (Y PL256C), who share regulator CCBF ,
SCB, and SWI6, exhibit close expression patterns (Figure 2). However, for some genes
regulated by several regulators, its expression profile may only reflect the effect of a dom-
inate regulator. For example, regulators of gene HO (Y DL227C) include BAS1, CCBF ,
MATalpha2, and SCB. However, according to the plots of gene expression profiles, HO

(Y DL227C) is highly correlated genes regulated by CCBF and SCB (Figure 2). Similar
phenomena is shown by gene PGK1. The regulator of PGK1 (Y CR012W ) includes GCR1,
CPF1, and ABF1. In this case, PGK1 (Y CR012W ) showed similar expression profile to
some genes regulated by GCR1 and ABF1 in the second half of the time course (Figure 2).

Current analysis of microarray gene expression focuses on relationships based on overall
correlation in expression profile, identifying clusters of genes whose expression levels simulta-
neously rise and fall throughout a time course. However, genes may be regulated by different
regulators over a time course. Co-regulating in part of the time course does not guarantee

1School of Information Sciences and Technology. E-mail: yzhang@ist.psu.edu
2Department of Computer Science and Engineering. E-mail: zha@cse.psu.edu
3School of Information Sciences and Technology. E-mail: jwang@ist.psu.edu
4School of Information Sciences and Technology. E-mail: chu@ist.psu.edu
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Figure 1: Expression profiles for co-regulated genes. The time-series gene expression data are from
[2].

a global similarity in gene profiles. Therefore, new clustering algorithms are needed to ad-
dress this issue. Several biclustering algorithms have been proposed to discover sets of genes
that co-regulated in only part of the experiments conditions under study. However, these
algorithms are not applicable to clustering gene expression time-series data because they
ignored the internal relationship between time points. When analyzing the time-course gene
expression data, it is necessary to consider the internal connection between time points and
preserve the time locality in time-course gene expression data.
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Figure 2: Expression profiles of co-regulated gene groups. Each curve represents the expression
profile of a gene. Each sub-plot represents gene expression profiles of a co-regulated gene group. The
gene expression time-series data are obtained from [2]. The time range is from 0 min to 160 min.
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Deconvolution of cDNA Microarray Images and 
Significance Testing for Gene Expression Levels 

 
Hye Young Kim1, Min Jung Kim1, Yong Sung Lee2, Young Seek Lee3, Tae 

Sung Park4, Ki Woong Kim4, and Kim Jin Hyuk1 
 
Keywords: microarray, deconvolution, significance testing 
 

1 Introduction.  
 
The functional characterization and optimization of the microarray scanner are essential for the 
accurate quantitation of microarray data [1]. The most commonly used fluorescent dyes, Cy3 and Cy5, 
are relatively unstable, have different incorporation and quantum efficiencies, and are detected by the 
scanner with different efficiencies [2]. For these reasons, most microarray images are produced with 
different scanner settings, such as laser power and photomultiplier tube (PMT) gain between chips and 
between fluorescence dyes. However, there is neither a criterion for adjusting the scanner settings nor 
a proved relationship between the intensities of pixels in the microarray image and the 2-D 
fluorophore concentration (the quantity of fluorophores in unit area). Therefore, this manual 
adjustment must be checked for the accurate conversions of gene expression levels into the pixel 
intensities. 
 
2 Software and files.  
 
Several research papers indicate that the microarray scanner has dynamic range and that normalization 
between fluorescence labels is non-linear and depends on slides [3]. The relationship between 
fluorophore quantities and intensity reported by a scanner is linear only within a certain range of 
intensities, being dominated by noise below and subject to saturation above that range. There are 
many differences between the photochemical characteristics of both fluorescent tags. Therefore, the 
identical scanner settings for the Cy3 and Cy5 images do not convert the 2-D fluorophore 
concentration representing the gene expression levels into the images under the same condition.  
 
Deconvolution is an image processing techniques, which is utilized for improving the contrast and 
resolution of digital images captured in the microscope. The synchronous deconvolution of both Cy3 
and Cy5 images makes possible the reduction of the errors originated from scan process as well as the 
enhancement of the images. In a point of view that most gene expressions are not significantly up- nor 
down-regulated in cDNA microarray experiment, the spot intensity distributions of Cy3 and Cy5 
images should be overlapped in a wide range. Thus, the synchronous deconvolution can make the 
equal prevalence of the spot intensities of Cy3 and Cy5 images as much as possible and increase the 
resolution of image intensity. 
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A New HMM-based Clustering Technique for the Analysis of 
Gene Expression Time Series Data 

 
Yujing Zeng 1,  Javier Garcia- Frias1   

 
Keywords: gene expression time-course data, clustering, temporal dependences, hidden Markov 
model (HMM) 
 
1 Introduction.  
 
This paper proposes a novel Hidden Markov Model (HMM)-based clustering technique for the 
analysis of gene expression time series data. The proposed model, called the profile-HMM, is 
specifically designed to explicitly take into account the dynamic nature (time dependences) of 
temporal gene expression profiles, which is ignored by standard clustering methods. In this model, 
gene expression dynamics are represented by a special set of paths, with each path characterizing a 
stochastic pattern. The profile-HMM is trained to represent the most likely set of stochastic patterns 
given the dynamic microarray data, and the clustering result is obtained by grouping together the time 
series that are most likely to be related to the same pattern. The novelty of the method is that the 
behavior of all expression data is modeled by a single HMM and all the clusters are implicitly and 
simultaneously defined in the model during the training procedure. An attractive property of the 
proposed clustering algorithm is its ability to aut omatically identify the number of clusters. As 
demonstrated on real dynamic gene expression data collected for the study on the transcriptional 
program of sporulation in budding yeast, the proposed method outperforms standard clustering 
techniques such as K-means, single-linkage and average-linkage. 
 

2 Simulation.  
 
We utilized the experimental data from [1], which reported the result of a study on the transcriptional 
program of sporulation in budding yeast. The study used DNA microarrays, which contained 97% of 
the known or predicted genes of Saccharomyces cerevisiae, to explore the temporal program of gene 
expression during meiosis and spore formation. Changes in the concentrations of mRNA transcripts 
from each gene were measured at 7 uneven time intervals. In their original paper, the authors 
identified 477 genes grouped in 7 clusters, with each cluster associated with a different temporal 
pattern of induced transcription according to visual inspection and prior studies.  
 

When applied over the 477 genes described above, the proposed clustering method is able to 
determine the number of clusters automatically.  Moreover, the number of clusters is relatively stable 
with respect to the model complexity, as long as the complexity stays in a reasonable range: when the 
total number of states in the profile-HMM ranges between 49 and 350, the resulting number of 
clusters is always between 16 and 21, and all the resulting clustering structures are very similar. In the 
rest of this section, we consider the result of the simplest model (49 states, which results in 16 
clusters) for further analysis. 
 
In order to validate the proposed clustering method, 3 widely used algorithms, K-means, single-
linkage, and average-linkage hierarchical clustering, were also implemented on the same dataset. The 
number of clusters was always fixed to 16, so that we could compare the performance of these 3 
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methods with that of our proposed approach. Several validation indexes were calculated for all the 
clustering results (including the original model in [1]), and their values are shown in Table 1. 
 

As shown in Table 1, the clustering result produced by the proposed algorithm has much better 
homogeneity than the single-linkage result, but worse separation. The incorporation of both properties 
in the validation process, provided by the DB index, seems to show a better performance for the 
single-linkage approach. However, by checking the details of the clustering results, we found that 14 
out of 16 clusters in the single-linkage approach are singletons, and more than 96% of genes (461 out 
of 477 genes) are clustered into one big group. Intuitively, it is clear that such a clustering structure 
cannot describe the real patterns in the dataset. These results obtained by visual inspection are 
confirmed by the Silhouette index, which shows that the single-linkage result is the worst of all the 
results considered in Table 1. The average-linkage method provides a similar result with fewer 
singletons. However, most clusters in the average-linkage approach still have a very small number of 
members, and one of the clusters contains the profiles of more than 2/3 of the input genes. Similar to 
the single-linkage result, when compared with the profile-HMM result the average-linkage result has a 
worse evaluation for the homogeneity and the Silhouette indexes. 
 

Criterion Profile-HMM K-means Single-link. Average-link.  Model in [1] 

  Homogeneity 0. 3222 0.2590     0.5428 0.3732          0.3240 
Separation 0.9941 0.7881     1.1290 1.2279          0.8193 

DB index 0.8605 1.1439 0.4201 0.4513 1.2278 

Silhouette index 0.2952 0.2668 -0.1353 0.2410 0.2820 
Table 1: Validation indexes for different clustering methods applied over the proposed dataset 

 
 

A similar analysis was performed to compare the profile-HMM with K-means. In this case, most 
indexes, especially the DB and Silhouette indexes that consider the tradeoff between separation and 
homogeneity, show that the proposed algorithm outperforms the K-means approach. We also 
compared our result with the model described in the original paper [1]. The most evident difference 
between the two clustering approaches is in the number of clusters (16 in our method versus 7 in [1]). 
Usually, increasing the number of clusters leads to a better homogeneity within clusters, but may 
degrade the separation between different clusters. However, we can see in Table 1 that this does not 
occur here. In fact, our result provides more compact clusters (.3222 homogeneity coefficient versus 
.3249 in the original model) with a better separation index (0.994 versus 0.8193). This shows that the 
profile-HMM method succeeded in capturing different dynamics existing in the data while keeping 
each cluster homogeneous. Its advantage over the original method is also proved by all the other 
indexes.  
 

In addition to the inspection of the characteristics of the clustering results as a whole, shown in Table 
1, we also performed a cluster-by-cluster comparison between the results obtained by the proposed 
method and those of the original model. Although the details cannot be shown here due to space 
constraints, we found that the profile-HMM identified different patterns that get mixed in the same 
subgroup by the original model, and assigned them into different clusters, providing an improved 
description on the global patterns of the data.  
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1 Introduction.  
Gene expression time-course data is usually obtained by performing microarray experiments at 
consecutive time points. The analysis of these data is helpful to reveal the mechanisms regulating 
different cellular processes. Different from other microarray data, the pattern represented by each 
profile is decided not only by the observations at different time-points, but also by the order of these 
observations. This sequential dependence is crucial for clustering processing and validation.   
 

Our research addresses the problem of clustering validation for time-course data by proposing a novel 
hidden Markov model (HMM)-based clustering validity index. In the index definition, we use a 
specially designed HMM to model the data distribution under the constraints of the clustering result. 
The evaluation is calculated based on the likelihood of each time series given this HMM. The main 
novelty of the proposed index is its ability to take account of the temporal dependences in the 
sequential data. Contrary to other validity indexes, in the proposed model the observations at different 
time-points are not considered independently, and the dependences in each time-interval are modeled 
and used to evaluate the clusters quality explicitly. In other words, if these dependences change 
because of permutations among time-points, the validation result is able to reflect such a change 
accurately. The simulation discussed in next subsection was designed to test this ability. 
 
2 Simulation.  
In this experiment, we generated two datasets which have the same observations but in different order. 
Any object in both datasets has 9 attributes, which can be divided into two categories. The first 
category includes 4 attributes, whose values are i.i.d. samples from zero-mean Gaussian distributions. 
Since there is no useful information for clustering in these 4 features, we called them noninformative 
features. The rest 5 attributes, called informative features, are generated from three different basic 
patterns, as shown in Figure 1(a). To generate similar but distinct sequences, random variables with 
different distributions are added to each component of the basic patterns, which is shown in Figure 
1(b, c). As shown in Figure 1(d), all the informative features are observed at the first 5 consecutive 
time-points in dataset I, which shows three distinctive patterns. Dataset II is generated by permuting 
the order of the attributes in dataset I so that each informative feature is separated by noninformative 
features, as shown in Figure 1(e).  Since all the noninformative features are i.i.d. and unrelated with 
the basic patterns, the dependence between a noninformative and an informative feature is very weak, 
and, therefore, interleaving the two kinds of features reduces the sequential dependences in the whole 
data.  
 
In order to corroborate the effectiveness of the proposed HMM-based index, the partitions with 
different numbers of clusters, from 2 to 10, were obtained using one of the most popular and simplest 
methods, K-means. As shown in Table 1, although the datasets share the same observations, the 
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proposed algorithm produces different evaluations for the two datasets, and suggests different optimal 
numbers of clusters for them. 

 
Figure1: Illustration of the generation of the simulation data. (a) three basic patterns for the informative features; 
(b) density function of the noise model added on the first two patterns; (c) density function of the noise model 
added on the third pattern; (d) simulation dataset I; (e) simulation dataset II. 

According to the results of the proposed index, the optimum number of clusters for dataset I is 
estimated as 3, which agrees with the original model generating the data. Notice that because of the 
bimodal noise added to the third basic pattern, this cluster shows a more disp ersive distribution than 
the other two and tends to be split into several groups. This is reflected in the curve of the proposed 
index, which displays a sub-optimum for the partition with 6 clusters. In dataset II, the sequential 
dependences are reduced by permutation, so that the noise model becomes overwhelming and gets 
emphasized in the clustering evaluation. As shown in Table 1, although a sub-optimum is shown for 
the partition with 3 clusters, the proposed index suggests that the optimal number of clusters for 
dataset II is 6.  
 
Comparison has been performed with the results of the Silhouette [1] and Davis-Bouldin indexes [2]. 
Both indexes ignore the sequential dependences in the data and give the same evaluation on both 
datasets, which, as shown in Table 1, is similar to the result of the proposed index for dataset II. 

Index 2 3 4 5 6 7 8 9 10 

HMM-based index for 
Dataset I 0.5000 0.7042 0.4845 0.3590 0.6542 0.4793 0.3987 0.2058 0.2101 

HMM-based index for 
Dataset II 

0.5000 0.6115 0.4196 0.4960 0.6156 0.4473 0.3741 0.1915 0.1959 

Davis-Bouldin index  0.6607 0.4407 0.8404 0.6252 0.4306 2.2809 2.2748 2.2252 2.2057 

Silhouette index  0.5388 0.7134 0.5593 0.6688 0.7260 0.6536 0.4945 0.4133 0.3422 

Table 1: Values of different indexes for the two simulation datasets 
 

3 Conclusion.  
We have illustrated the ability of the proposed index to capture the sequential dependence of time 
series data. This ability is reflected in the higher robustness of the HMM-based index to deal with data 
corrupted by noise models more general than the Gaussian one, which is a very attractive property in 
the context of gene expression data analysis. 
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1 Introduction.

Microarray experiments have been used to measure genes’ expression levels under different
cellular conditions or along certain time course. Initial attempts to interpret these data begin
with grouping genes according to similarity in their expression profiles. The widely adopted
clustering techniques for gene expression data include hierarchical clustering, self-organizing
maps, and K-means clustering. Bayesian networks and neural networks have also been
applied to gene clustering. Sharan & Shamir [3] provided a survey on this topic. Clustering
techniques typically discover the inherent structure of the genes expression profiles based
on some similarity measures. The clustering results largely depend on how the similarity
measure corresponds to the biological correlation between genes. Before reliable conclusion
about biological functions can be drawn from the data, the gene clusters obtained from
microarray analysis must be investigated with respect to known biological roles of those
clusters.

The current analysis of whole-genome expression focuses on relationships based on global
correlation over a whole time-course, identifying clusters of genes whose expression levels
simultaneously rise and fall. However, genes may be regulated by different regulators in a
long time course. Co-regulating in part of the long time course does not guarantee a global
similarity in gene profiles.

Biclustering of microarray gene expression data has recently been introduced by Chen
& Church [1] as a means to discover sets of genes that co-expressed in only part of the
experiment conditions under study. Essentially, overlapping in gene clusters is allowed, and
many subtle gene clusters are revealed. Since then, several other algorithms have been
developed to bicluster gene expression data [4]. However, existing biclustering algorithms
do not consider the differences between time-series gene expression data and multi-condition
gene expression data. The relations between time points are ignored, and the time points are
clustered independently. It is marginally biologically meaningful if two genes show similar
expression pattern in non-consecutive time points. It is therefore necessary to preserve the
time locality in time-course gene expression data.

2 Method.

We present our time series biclustering algorithm to cluster time course microarray data.
The aim of this clustering is to discover genes that are co-regulated in an interim of the time
course but do not show highly correlated gene expression over the whole time course. The
mean square residue score H is used as a measurement for the biclustering. While enforcing
H to be smaller than a user-selected parameter δ, we try to simultaneously maximize H,
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2

the number of genes, and the length of the time course in the cluster. The bicluster is
first initialized as the entire data matrix. We adopt a deletion-based method to eliminate
genes with expression profiles deviating from those of the majority. A row (gene) is removed
from the bicluster if the ratio of the mean square residue score of the row to that of the
bicluster larger than a user-defined threshold. Similarly, time points are removed. To ensure
that the time points in a bicluster are always consecutive, in time point deletion, we only
allow the deletion to be exerted on the border time points – the first and the last column
in the bicluster. The deletion has demonstrated the capability to reduce the mean square
residue score of the resulting bicluter [1]. The deletion stops when the mean square residue
score of the resulting bicluter is less than δ. Some previously deleted genes may have strong
correlation with genes in the bicluster in terms of similarity in the interim of expression
profile in the bicluster. These genes are then add into the bicluster, and it is guaranteed
that the addition will reduce the mean square residue score. Similarly, the time points
adjacent to the border of the bicluster may be considered for addition into the bicluster.

3 Results and Discussion.

We test our algorithm on the yeast cell cycle data provided by [2]. Figure 1 presents some
clusters obtained by our time series biclustering algorithm. The solid lines represent the
interims of gene profiles that are in the biclusters, and the dash lines represent the deleted
time points. Clearly, the variability of expression profile in the biclustered range is smaller
than the that in the range of deleted time points. By deleting some time points in the two
ends, we are able to discover some subtle genes clusters. However, further investigation of the
gene clusters with respect to known biological roles of cluster members is desired. Further
experimental confirmation may be required to reveal the true ‘biological relationships’ among
genes.
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Figure 1: Expression profile of gene clusters.
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1 Introduction.  
High-density short oligonucleotide microarrays are a widely used tool for measuring gene 
expression on large scale [3]. A key issue for short oligonucleotide probes, such as the one used by 
Affymetrix, Inc., is the way of selecting probe sequences with high sensitivity and specificity. The 
use of multiple probe pairs (11-20 pairs), referred as probe set, to target a single gene is the current 
approach to this problem. One of each pair exactly matched the DNA fragment of the gene (PM 
probe) and the other contains a single mismatch base in the middle (MM probe). The sensitivity of 
the gene expression signal is given by the PM values and the MM values, offering a measure of 
non-specific binding, improve the specificity.  However, around 30% of the pairs consistently have 
a negative signal, indicating that the MM values are unreliable as pure measure of non-specific 
binding [5, 7]. Moreover the variation of the order of magnitude of the probe signals within a probe 
set suggests that not all the probes have optimal sensitivity [2]. Given the above limitations, it 
becomes crucial to design a model for the extraction of gene expression signals from 
oligonucleotide arrays. Many recent studies have focused on statistical methods [1, 2] to summarise 
these expression levels, choosing not to use the MM probes for the unreliability mentioned above. 
In this work we chose to use a probabilistic model to describe both the sensitivity and the 
specificity of the probe set including in the model the MM observed signals. The model, gamma 
Model for Oligonucleotide Signal (gMOS) [4] proved to perform well both on publicly available 
data set and on a real case study. To improve the specificity of the model we take in account the 
correlation between MM probes and PM probes, using a different approach that allows us to learn 
the parameter of the joint distribution of PM and MM from the observed data. The modified gMOS 
(mgMOS) is tested on a temporal profile of a cell line, UB/OC-1, [6] derived from epithelial cells 
in the cochlear duct at embryonic day 13.5 (E13.5).  The extracted profiles are compared with a real 
time RT-PCR profile and with profiles obtained with both the Affymetrix MAS v.5 and with 
different statistical methods.            

 
2 Material and Methods.  
For each probe set we model the PM signal (y) and MM (m) using a gamma probability functions. 
The gene expression signal (s) is then derived from the joint probability of y and m. In the basic 
gMOS we assume independency in the probe set. The  joint probability of y  and m is defined as: 

),|(),,|(),( bampbaypmyp iiii α=   

and i=1,…N.  N is the number of probe pairs in a probe set. The parameters ba ,,α are estimated 
using Maximun Likelihood. The parameter b does not vary within the probe set, modeling the 
genetic affinity of corresponding short oligonucleotide with the gene sequence as constant within 
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the probe set. The mgMOS is a latent variable model that defines this genetic affinity as varying 
within the probe set. This difference is defined by modeling the correlation between y and m that is 
also detectable from the observed y and m signals. In the modified model the parameter b now 
varies within the probe set. The joint probability distribution of y and m becomes:  

iiiiiiii dbbpbampbaypmyp )(),,(),,|(),( ∫= α   

The equation is tractable for Gamma distributions. Given )exp(
)(

)( 1
i

c
i

c

i dbb
c

dbp −
Γ

= − it is 

possible to calculate the joint distribution of y and m and therefore obtain the estimate of the signal 
s with the above equation. The parameters are again estimated using Maximum Likelihood.  
3 Results and conclusions.  
 
The two methods are tested on benchmark data and on a temporal profile of the transcription factor 
gata3 from an inner ear cell line. The temporal profile consists in 12 time points sample in 14 days 
of development after differentiation. The method gives very promising results both for the 
application to real dataset (Figure 1) and for further theoretical exploitation.  

 

  
Figure1: Correlation of PM and MM for one time point of the gata3 profile. The plot the left 
shows the contours of the distributions obtained with gMOS; the plot on the right shows 
contours obtained with mgMOS. The plot clearly shows that mgMOS better fits the observed 
data. 
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1 Introduction.

What is the distance between two possible evolutionary trees? Biologists use a variety of
distance metrics [2], like RF, TBR, SPR, and NNI. The mathematicians Billera, Holmes and
Vogtmann have proposed a new metric [1], which resembles the usual Euclidean metric used
in geometry and statistics in a way that the other tree metrics do not: there is a unique
shortest path between any two trees. Their hope is that it will help to adapt statistical
techniques from Euclidean geometry, to compute better trees or to understand relationships
between possible trees. Unfortunately the metric, which we shall call geodesic distance, is not
obviously easy to compute. In this poster we observe that it is, however, easy to approximate:
we give simple upper and lower bounds which differ by a multiplicative factor of at most

√
2.

2 Geodesic distance and the bounds

When two fully-resolved trees T1, T2 have the same topology, we treat the two trees as points
in the Euclidean space whose coordinates are the edge weights; see Figure 1. The geodesic

distance is the Euclidean distance
(∑

e
δ(e)

)1/2
, where δ(e) = (w1(e)−w2(e))

2 and wi(e) is
the weight of edge e in tree Ti.
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Figure 1: On the left, three tree topologies; the lengths of the two non-terminal edges in each tree
form the coordinates of a planar part of tree-space. In the middle, the shortest path between two
trees with topology T3 is a line segment, while between two trees with topologies T1 and T2 the
shortest path includes some topology changes. The relevant parts of tree-space can be unfolded to
straighten the path. On the right, the lower bound path is not constrained to lie in the tree-space.
The upper bound path is constrained to go through the parts corresponding to T1 and T2 and the
parts that they share. Again, the relevant parts of tree-space can be unfolded to straighten the path.
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Every fully-resolved topology gives a Euclidean space. Trees with polytomies are shared
by the topologies produced by different resolutions. These shared trees connect the corre-
sponding spaces, giving the overall tree-space. The geodesic distance between two trees is the
length of the shortest path between them in tree-space, which generally includes topology
changes. If there are many possible ways to order the topology changes, finding the shortest
path may be difficult.

A lower bound on the geodesic distance is Dlo(T1, T2) =
(∑

e
δ(e)

)1/2
where now, if

e is not an edge of T1, w1(e) = 0, and visa versa. This does not correspond to a path in
tree-space, except when T1, T2 have the same topology.

The upper bound is given by the length of a particular path in tree-space. The path
goes directly from T1 to a strict consensus tree of T1 and T2, and then to T2. By un-
folding the space to straighten the path (see Figure 1) we can find the edge weights on
the consensus tree which give the best bound. We get the formula (Dhi(T1, T2))2 =[(∑

e∈(T1−T2)
δ(e)

)1/2

+
(∑

e∈(T2−T1)
δ(e)

)1/2
]2

+
∑

e∈(T1∩T2)
δ(e). The ratio Dhi/Dlo

is maximized when the common edges have the same weight, and the edges in T1− T2 con-
tribute the same weight a as the edges in T2−T1. In this case Dhi = 2

√
a and Dlo =

√
2
√

a.

3 Unweighted trees

When all the edges have weight one, the upper bound path is always the shortest path, and
the geodesic distance is the square root of the RF distance. This is easy to compute.

Tree metrics are useful for understanding distributions of evolutionary trees [3], such as
those produced by parsimony or maximum likelihood search methods. Here, we use geodesic
distance to get a visual sense of the distribution of a set of equally-optimal tree topologies
on different species of the genus Caesalpinia.

Figure 2: On the left, a layout of a distribution of unweighted phylogenies, reflecting RF distance.
On the right, the same trees laid out to reflect geodesic distance gives a similar picture. The layout
heuristic (MDS) places points so that their distances reflect distances between corresponding trees.
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1 Introduction.  
 
Although structural studies of proteins have been traditionally carried out on systems that have 
been functionally well-characterized, structural genomic projects are reversing this tendency. 
Structural genomics projects are producing many three-dimensional structures of proteins that have 
been identified only from their gene sequences. As a consequence, the structures of many proteins 
that are poorly characterized in terms of function and biochemistry are now being determined. It is 
therefore important to develop computational methods that will predict sites involved in productive 
intermolecular interactions that might give clues about functions.   
The conservation of amino acid residues has been shown to be strongly dependent on the 
environment in which they occur in the folded protein and amino acid substitution tables that give 
the likely substitutions of amino acids in particular local environments have been derived from the 
structural alignment of the database HOMSTRAD (HOMologous STRructure Alignment 
Database),[1,2,3]. We have developed a method to distinguish those evolutionary restraints placed 
on protein structure from additional restraints due to particular functions mediated by interactions 
with other molecules using these environment-specific substitution tables.  Though there are several 
techniques available to predict the functional site, majority of the techniques do not use all the 
available structural and sequence information, and are not able to distinguish between evolutionary 
restraints that arise from the need to maintain structure and those that arise from function. The 
method presented here takes advantage of all the available sources i.e sequence, structure and 
evolutionary information. 
   
 
2 Method.  
 
The method compares two input distributions (observed substitution pattern – calculated from the 
homologous protein sequences, expected substitution pattern – derived from the environment 
specific substitution table) and assigns a score for each alignment position to assess their statistical 
similarity.  
 
Given two distributions P and Q, the commonly used measure of statistical similarity between two 
arbitrary probability distributions, is the Kullback-Leibler (DKL [4],) divergence defined as: 
  

DKL[P||Q] = Σi Pxi log(Pxi/Qxi);  DKL[P||Q] ≥ 0  
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As this measure has the disadvantages of being asymmetric and unbounded, a better measure 
of statistical similarity as defined by Jensen-Shannon (DJS [5], as suggested by Yona and Levitt [6].) 
was used to find the divergence score between the two distributions P (“Observed substitution 
pattern”) and Q (“Predicted substitution pattern”).  Given two (empirical) probability distributions P 
and Q, for every 0 ≤ λ ≤ 1, the λ-JS divergence is defined as: 

 
 DJS

λ[P||Q] = λDKL[P||R] + (1 - λ) DKL[Q||R]; 0 ≤ DJS
λ[P||Q] ≤ 1 where: R = λP + (1 - λ)Q 

  
R is the common source distribution of both distributions P and Q, with λ as a prior weight.  This 
measure is symmetric and ranges between 0 and 1, where the divergence for identical distributions is 
0.  The divergence score is calculated for each position t of the multiple sequence alignment. If the 
score at an alignment position is high then two distributions at that position is different. The positions 
where environment-specific substitution tables make poor predictions of the overall amino acid 
substitution pattern are thus identified. 

 
 

3 Results.  
 
We find that the clusters of high scoring residues apparently subjected to these additional restraints in 
evolution correlate well with the functional sites in protein defined by experimental methods. The 
definition of protein functional sites is surprisingly difficult.  There will be strong evolutionary 
pressure for the residues involved in protein interactions that mediate the function to remain 
unchanged.  This will be true for cofactor binding, enzyme-substrate interactions, protein interactions 
in multiprotein complexes, allosteric effectors and so on.  We define all these sites as functional sites. 
Functional residue clusters include all residues that contribute to the maintenance of a functional 
interface.  This broader interface definition includes residues that participate directly in protein-ligand 
contacts and others beneath the site that are crucial for the maintenance of the interface. The method 
predicts all these residues as functional. 
 
Alignment accuracy is important for the prediction to be accurate.  The method is applied to a set of 
well-characterised protein families and is able to identify functional sites.   The technique is fast, 
automatic and predicts functional sites with a high degree of accuracy.   
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1 Introduction 
The rapid growth of sequence databases has elevated the need for computational annotation of protein 
models. Not surprisingly, a variety of protein annotation resources have emerged, some examples 
include Pfam [1], SMART [3] and COG [5].  The Conserved Domain Database (CDD) [4] imports 
these and other publicly available alignment model collections, and adds curated domain definitions.  
The incorporation of several different source databases has created redundancy, ranging from 
duplication to hierarchical parent-child relationships, which may be caused by differing levels of 
representation in source databases.  In addition, a fairly large subset of domains in CDD describes 
lineage-specific protein families with narrow taxonomic coverage.  We describe a taxonomic-filter 
approach which is exclusively directed to the removal of such domain models, as we intend to offer a 
resource aimed at annotating “ancient” conserved domains. 
 
2 Estimating a Domain’s Age 
We define a set of nodes in the taxonomic tree of life which cover all branches 
represented by a significant amount of sequence data.  We pick these taxonomic nodes so 
that the presence of a protein or domain family in more than one node indicates a certain 
minimum age (unless caused by horizontal gene transfer).  Focusing on cellular organisms 
only, the final list has 66 taxonomic nodes (ex: mammalia, alphaproteobacteria, etc).  The 
number of taxonomic nodes covered by a domain family gives a rough indication of that 
domain’s age. 
 
3  Taxonomy Filter  
We count the number of preferred taxonomic nodes a conserved domain detects in the NCBI NR 
(Non-Redundant) protein database, using pre-calculated RPS-BLAST results stored in the CDART 
database [2]. We recognized 1319 out of 13436 protein domains (~10%) in CDD version 1.63 to be 
specific to only one of the 66 taxonomic nodes. The majority of these protein domains originate from 
Pfam (8.5%), followed by COG (1.0%) and other databases (~0.5%).  We investigate whether the 
presence of low-complexity regions or low sequence diversity in the domain model alignments 
correlates with narrow taxonomic distribution, and whether apparent narrow taxonomic distribution 
may be caused by bad performance of the search model.   
 
4 Figures and tables.  
  

Table 1:  Analysis of protein domains with low taxonomic coverage 
   

                                                 
1Bioinformatics Program, Boston University, 44 Cummington St., Boston, MA  02215, USA.  E-mail: 

cherukur@ncbi.nlm.nih.gov 
2NCBI, National Institutes of Health, Bldg. 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA.  E-

mail: bryant@ncbi.nlm.nih.gov 
 

Dana Jermanis


Dana Jermanis
248

Dana Jermanis
Molecular Evolution

Dana Jermanis
H3.



Protein Domains with Low 
Taxonomic Coverage 

Source Database 
Total number of 
protein domains Number % 

Pfam 5426 1146 21.12 
COG 4099 129 3.15 
SMART 642 28 4.36 
Cd 347 13 3.75 
LOAD 53 0 0.00 
KOG 2869 3 0.10 
CDD [V1.63] 13436 1319 9.82 

 

 
 

Figure 1: Sequence Diversity Index vs. Low complexity Index of protein domains with only one 
preferred taxonomic node hit 
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Heterogeneous Maximum Likelihood Methods for the
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1 Introduction.

Proteins evolve by means of random genetic drift (Kimura 1983) and adaptive evolution.  Adaptive
events result in an organism being more fit than previous members of the same group (Hughes 1999).
Our aim is to identify where these events have occurred using a Maximum Likelihood approach.
Maximum Likelihood (ML) is a complex statistical method (Edwards 1972).  Current
implementations of this type of analysis appear to contain certain weaknesses and limitations (Suzuki
and Nei 2001).  As such, ML and Bayesian methods have come under increasing criticism regarding
their reliability; empirical evidence suggests that they may not be using realistic models of sequence
evolution (Yu et al. 2003).

2 Aims and Objectives.

The aim of this work is to design new methods for robustly inferring the evolutionary history of extant
sequences and for precisely identifying signatures of adaptive evolution events by using rigorous
computational optimisation procedures.  Our approach requires the minimum of user input in order to
find adaptive evolution events.  A phylogenetic tree is constructed from a sequence alignment and
assumed to be correct.  For each internal node of the tree, we evaluate silent (Ds) and replacement
(Dn) substitutions between it and adjoining nodes, both ancestral and descendent.  Heterogeneity is
achieved by dividing the data into categories according to rules describing the substitution process
(Foster, 2003).  Unlike other approaches, this method performs analysis across entire lineages of a
phylogenetic tree as apposed to a single branch (Fig 1).  Additionally, we examine whether or not the
replacement substitutions were subsequently changed.  We perform a similar analysis for silent
substitutions.  In this way, a path through the tree is maximised, identifying where the number silent
and replacement substitutions differ significantly from each other, indicating evolutionary events.

Figure 1: A) Alternative approach B) Lineage analysis implemented in the method described here.
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3 Discussion and Further Work.

This approach directly addresses claims that current ML methods are sensitive to violations of the
assumptions regarding which model of evolution to use.  The software will be tested on both real and
simulated data sets, where the likelihood can be verified using the existing Adaptive Evolution
Database.  The output of this work will be a software product that is capable of performing analyses
on multiple sequence alignments, using methods that are closer to biological reality and more user-
friendly than existing methods.
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Homogeneous Phylogenetic Models: Invariants and
Parametric Inference

Nicholas Eriksson 1
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We study the model on phylogenetic trees in which each node is a binary, observable

random variable Yi and the transition probabilities are given by the same matrix A =
( a00 a01

a10 a11 ) on each edge. We write the joint probabilities as pσ1σ2...σn := P (Y = σ). Let ρ(i)
denote the parent of node i in the tree.

The homogeneous Markov model is a fundamental model for statistics. We believe that
an understanding of the homogeneous model will lead to more general results. For example,
by adding nodes to subdivide edges, we can think of the homogeneous model as a discrete
approximation to a continuous Markov model. We are interested in two questions from [4]
that are of fundamental importance to the use of statistical models in biology.

1. Given observations σ = (σ1, . . . , σn), describe the set of parameters aij such that pσ

is maximal among the coordinates of p.

2. Which (parameter independent) relations on the probabilities p(Y = σ) does the
model imply?

Problem 1 has been studied in [3, 6] and shown to be of importance for sequence alignment
problems. To solve Problem 1, first we write the joint probabilities in terms of the parameters
a00, a01, a10, a11

pσ1σ2...σn = aσρ(2)σ2aσρ(3)σ3 . . . aσρ(n)σn .

That is, the probability of observing σ is the product of the aij that correspond to the tran-
sitions on the edges of the tree. Next, transform to logarithmic coordinates bij = − log(aij).
The condition that pσ1...σn is maximal among the coordinates of p becomes the linear system
of inequalities

bσρ(2)σ2 + · · ·+ bσρ(n)σn ≥ blρ(2)l2 + · · ·+ blρ(n)ln for all (l1, . . . ln) ∈ {0, 1}n.

The set of solutions to these inequalities forms a polyhedral cone. If the cone is full dimen-
sional, then σ1, . . . , σn is the most likely observation for some choice of the parameters. Such
a sequence is called a Viterbi sequence. The collection of the cones of all Viterbi sequences
is the normal fan of the Viterbi polytope, PT . This polytope is three-dimensional and has
one vertex for every Viterbi sequence. Given this polytope, we can quickly solve Problem 1
for any σ1, . . . , σn. Our main result is an explicit description of the polytope for a class of
binary trees. For an example, see Figure 1.

Theorem 1 If T is a binary tree with n > 3 nodes in which all leaves are an odd distance
from the root, then there are exactly 8 Viterbi sequences. Furthermore, the polytope PT has
the same combinatorial structure for all such trees.

Problem 2 is solved by computing the ideal of polynomial invariants among the proba-
bilities pσ1...σn . The invariants vanish for a given distribution (pi1...in) essentially when that
distribution comes from our model. Therefore, invariants have been used in phylogenetics to
identify good trees for aligned sequences, see [1, 2]. In the observed, homogeneous Markov

1Department of Mathematics, University of California, Berkeley, CA 94720-3840 E-mail:
eriksson@math.berkeley.edu
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model, the invariants can be computed using the theory of Gröbner bases of toric ideals
(see [5]). We are able to calculate the ideal of invariants for trees with 11 nodes. These are
computations in 2048 indeterminants, which we believe to be the largest number of indeter-
minants ever in a Gröbner basis calculation. We conjecture that binary trees require only
linear and quadratic generators for the ideal of invariants.

Example 1 Let T be the path with 4 nodes. Then the ideal of invariants has 32 minimal
generators. Four generators are linear (e.g., p0100 − p0010), twenty-four are quadratic (e.g.,
p0001 · p0010 − p0000 · p0101), and four are cubic (e.g., p1000 · p1100 · p1111 − p0000 · p2

1110). We
believe that the ideal of invariants of a path is always generated by these three types of
relations.

00

10

01

Figure 1: Let T be the pictured tree with 15 nodes. By Theorem 1, since all leaves are at an odd
distance from the root, exactly 8 of the 215 = 32768 possible observations are Viterbi sequences and
therefore the polytope PT has 8 vertices. The polytope is displayed with the x-coordinate counting
0→ 0 transitions, the y-coordinate counting 0→ 1 transitions and the z-coordinate counting 1→ 0
transitions. For example, the front left vertex (14, 0, 0) corresponds to the all zero observation, which
is Viterbi sequence with the parameters a00 = 1, a01 = 0, a10 = 1, a11 = 0.

References
[1] Allman, E. and Rhodes, J. 2003. Phylogenetic invariants for the general Markov model of

sequence mutation. Mathematical Biosciences, 1–33.

[2] Cavender, J. and Felsenstein, J. 1987. Invariants of phylogenies in a simple case with discrete
states. Journal of Classification, 4:57–71.

[3] Gusfield, D., Balasubramanian, K., and Naor, D. 1994. Parametric optimization of sequence
alignment, Algorithmica 12, 312–326.

[4] Pachter, L. and Sturmfels, B. 2003. The geometry of statistical models for biological sequences,
eprint: arXiv q-bio.QM/0311009
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Convergent evolution of domain architectures

Julian Gough, 1

Keywords: evolution, domain, structure, superfamily, architecture

1 Introduction.

A domain is the smallest unit of evolution in the de�nition from the SCOP database of known
protein structures. Small proteins consist of a single domain, and some larger proteins consist
of more than one domain. A part of a protein is only considered a domain in its own right
if it is observed elsewhere in nature on its own or in combination with di�erent partner
domains. In SCOP, domains which share a common evolutionary ancestor belong to the
same superfamily. The domain architecture of a protein is described by the order of the
domains and the superfamilies to which they belong. The repertoire of architectures present
in the genomes has arisen by the duplication and recombination of the ancestral superfamily
domains.

The question which is addressed here, is to what extent the architectures observed in
the genomes are due to functional necessity or due to evolutionary descent. Convergent
evolution is de�ned here as more than one independent evolutionary event (recombination)
leading to the same domain architecture. If the shu�ing of domains is functionally driven
then we expect to �nd a great deal of evidence of convergent evolution, whereas a failure to
detect convergent evolution points to evolutionary descent.

2 Analysis

From the SUPERFAMILY database 70 genomes were chosen to represent a wide and even
spread across all kingdoms of life. The subset of 4075 multi-domain architectures in these
70 genomes whose sequences are completely covered by domain assignments was used in this
work.

The proteins with each domain architecture were �rst clustered into phylogenetic groups.
If an architecture is observed in every genome belonging to a particular branch of the phy-
logenetic tree, then the most likely explanation is that the architecture was inherited from
the root node of that branch.

Any architecture which forms more than one distinct phylogenetic group is a candidate
for convergent evolution. The two explanations alternative to convergent evolution are:
horizontal gene transfer and gene loss. Both of these cause the true evolutionary group
descending from a common ancestral architecture to be split into more than one observed
phylogenetic group. To ascertain whether, for any given architecture, phylogenetic groups
should be joined to form a single evolutionary group, two di�erent principles were used:

(1) If two proteins come from the same complete-architecture evolutionary ancestor, then
they will have a closer homology than the components of non-related proteins sharing the
same architecture. Furthermore they will have homology across the entire length. BLAST

1RIKEN Genome Sciences Centre, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.

E-mail: gough@supfam.org
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groups phylogeny (1) multi-d (1) mono-d method (2) (1) or (2)
1 2891 3517 428 3665 3911
2 460 399 210 270 149
3 191 98 109 66 12
4 69 22 69 21 0
5 64 12 33 15 0
>5 400 27 86 38 3
>1 29% 14% 54% 10% 4%

Table 1: The number of architectures for di�erent methods.

was used with local scoring, to link groups sharing a protein with an E-value < 0.00001 and
a local alignment across n/(n+1) of the residues of the longer sequence (up to 0.9), 'n' being
the number of domains.

(2) The individual domains belonging to two proteins sharing the same complete-architecture
ancestor will have diverged for the same length of time, and in the same environment as each
other. In two proteins which have convergently evolved the same architecture, the compo-
nent domains will have a di�erent evolutionary history from each other. Sequence identity
from SUPERFAMILY alignments of the individual domains (from a pair of sequences) was
used to link groups sharing a protein with no domains more than 10% di�erent in identity
from all of the other domains.

Table 1 shows four di�erent results. The �rst column corresponds to the phylogenetic
groups, before any method is applied. The second and third columns relate to method (1).
As well as being applied to the set of multi-domain architectures (�rst column) it was also
applied to the set of mono-domains (second column). Since the mono-domain proteins are
by de�nition descended from a common evolutionary ancestor, they should all be listed as
having a single evolutionary group. This (control) clearly highlights the weakness of method
(1); some evolutionarily related proteins have diverged beyond the point of recognition by
BLAST. This is expected to be much worse for the mono-domains since they are more
ancient.

The weakness of method (2) is that di�erent superfamilies have a di�erent propensity to
diverge and change their sequence identities at di�erent rates within the same protein. It is
expected that both methods overestimate the extent of convergent evolution, and the archi-
tectures forming more than one evolutionary group should only be considered as candidates
for further investigation.

3 Conclusion

The vast majority of proteins are descended from a single ancestor with a unique domain
architecture, and convergent evolution of domain architectures is relatively rare. Although
further work is required to produce an accurate estimate of the extent, we can conclude from
this work that at least 95% of all architectures (including mono-domain) observed in the
genomes are due to evolutionary descent rather than functional necessity (see introduction).
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Extracting the phylogenetic signal from Mutual 
Information estimates 

 
Rodrigo Gouveia-Oliveira1,  Anders Gorm Pedersen1 

 
Keywords: mutual information, phylogeny, parametric bootstrap 
 
 
Predicting interaction between protein sites (in the same or different proteins) is an interesting 
problem, which has been tackled in different ways.  One common approach to the problem is by 
measuring the Mutual Information between sites in an alignment, as: 
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where a and b are columns of the alignment, and i and j run through all categories (aminoacids, or 
nucleotides).  
High Mutual Information between two sites means these sites tend to co-vary, and thus the 
knowledge of one improves our guesses on the other. If biological sequences were independent this 
would pinpoint interacting sites. However, biological sequences share a common ancestry, and that 
also gives rise to joint variation, as illustrated in the figure: 
 

 
 
Figure 1: A hypothetic phylogeny, the extant sequences and the Mutual Information matrix between the 4 

sites of the sequence. Two independent events result in a set of sequences with very high mutual information 
between sites 1 and 4. 
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Several authors have noticed this problem and tried to extract the phylogenetic signal from the 
Mutual Information estimates (Felsenstein 1985; Gulko and Haussler 1996;Akmaev et al. 
1999,2000; Wollenberg and Atchley 2000). Specifically, (Wollenberg and Atchley 2000) used 
parametric bootstrapping to simulate the density function of Mutual Information in a sequence due 
to phylogeny and chance. They then used it as a null-distribution for testing the Mutual Information 
values observed in their sequences.  
In this work we extend their analysis by investigating the use of null models that explicitly include 
parameterizations of site-specific features. This allows us to obtain null-distributions that are 
specific to individual pairs of sites (or class of pairs). 
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Pruned PDM Method for Detecting Recombination

Dirk Husmeier 1

Keywords: phylogenetics, interspecific recombination, sliding window methods, Markov
chain Monte Carlo, probabilistic divergence measure.

1 Introduction
The underlying assumption of most phylogenetic tree reconstruction methods is that there
is one set of hierarchical relationships among the taxa. While this is a reasonable approach
when applied to most DNA sequence alignments, it can be violated in certain bacteria
and viruses due to interspecific recombination. The resulting transfer or exchange of DNA
subsequences can lead to a change of the branching order (topology) in the affected region,
which results in conflicting phylogenetic information from different regions of the alignment.
If undetected, the presence of these so-called mosaic sequences can lead to systematic errors
in phylogenetic tree estimation.

The idea of a recently proposed method for detecting evidence of recombination in DNA
sequence alignments is illustrated in the left panel of Figure 1. Consider a given alignment
of DNA sequences, D, from which we select a consecutive subset Dt of predefined width W ,
centred on the tth site of the alignment. Let S be an integer label for tree topologies, and
consider the marginal posterior probability of tree topologies S conditional on the ‘window’
Dt, P (S|Dt), which is numerically computed with Markov chain Monte Carlo by marginal-
izing over the branch lengths of the phylogenetic tree and the parameters of the nucleotide
substitution model. The basic idea of the probabilistic divergence method (PDM) for detect-
ing recombinant regions is to move the window Dt along the alignment and to monitor the
distribution P (S|Dt). We would then, obviously, expect a substantial change in the shape of
this distribution as we move the window into a recombinant region. To quantify the degree
of change, a probabilistic divergence measure is computed, as discussed in (2).

A shortcoming of the PDM method is that its performance deteriorates as the number
of taxa increases. This is because for an increased number of taxa the posterior distribution
over tree topologies, P (S|Dt), becomes more diffuse unless the size of the data set Dt is
increased. An increased amount of data Dt, however, corresponds to an increased length of
the sliding window, which compromises the spatial resolution of the detection and is not an
option for short alignments.

2 Method
A possible remedy to this problem is to reduce the vagueness of the posterior distribution
by reducing the cardinality of the support of 〈P (S|D)〉, where 〈.〉 denotes an average over all
window positions. This can be effected with a pruning scheme based on the Robinson-Foulds
(RF) distance (3). First, identify a set of principal tree topologies, for instance, those that
maximize 〈P (S|D)〉. Next, assign each non-principal tree topology to the principal topology
with the minimum RF-distance. Finally, renormalize the posterior distributions P (S|Dt)
and recompute the PDM signal. An illustration is given in Figure 1. The reduction in the
vagueness of P (S|Dt) is likely to reduce the noise in the PDM signal. Note that similar
pruning methods are used in machine learning to improve the generalization performance
of a predictor. Also note that the pruning of the support of 〈P (S|D)〉 can be justified in a
Bayesian way as bringing the data-based prediction in line with our prior assumptions about
the expected frequency of recombination events.

1Biomathematics & Statistics Scotland, JCMB, The King’s Buildings. Edinburgh EH9 3JZ, UK.
E-mail: dirk@bioss.ac.uk
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3 Results
The method was applied to a DNA sequence alignment of ten strains of Hepatitis-B virus
with the following Genbank accession numbers: D00329, X68292, V00866, M57663, D00330,
M54923, X01587, D00630, M32138 and L27106. Without pruning, the probabilistic diver-
gence signal, shown in the left panel of Figure 2, contains erratic oscillations that obscure
any breakpoint patterns. This is dramatically improved with the pruning method (middle
and left panels of Figure 2). Note that three clear breakpoints occur, which were also found
in an independent earlier study (1). Also note that for sufficiently small values of the cutoff
threshold K, the results are rather independent of K.

.

S

P(S|D  )
Dt

D
t’

t

Divergence

S

P(S|D  )
t’

Nearest neighbour assignment

cutoff

S

P(S|D)

Figure 1: Left: PDM method. The figure shows the posterior distribution P (S|Dt) of tree topolo-
gies S conditional on two subsets Dt and Dt′ selected by a moving window. When the window
is moved into a recombinant region, the posterior distribution P (S|Dt) can be expected to change
significantly, which leads to a large probabilistic divergence score. Right: On the average poste-
rior distribution of tree topologies, averaged over all sliding window positions, a cutoff threshold is
defined. Tree topologies above this threshold are kept as “principal topologies”. Tree topologies
below the threshold are assigned to the principal topology with the minimal RF distance. After this
re-assignment, the posterior distributions P (S|Dt) are re-normalized.
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Figure 2: Detection of recombination in a DNA sequence alignment of ten strains of Hepatitis
B virus. The graphs show the probabilistic divergence signals obtained with a window size of 500.
From left to right: No pruning, pruning down to 7 and 3 tree topologies.
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H12. Phylogenetic analyses detect site-specific perturbations in asymmetric 
mutation gradients  
Neeraja M. Krishnan1, Hervé Seligmann1, Sameer Z. Raina1 , and David D. Pollock1 
 
Keywords: deamination gradient, Hidden Markov Model, single-strandedness, Monte Carlo Markov Chain, mRNA secondary 
structure, protection against mutations 
 
1. Introduction 
 
During replication in mitochondria portions of the heavy strand remain single-stranded and exposed to mutations for 
varying periods of time. Thus deaminations from cytosine to thymine (C T) and adenine to hypoxanthine (A H, 
which leads to A  G substitutions) accumulate [1, 2] on that strand. Previous likelihood-based analyses in vertebrates 
indicated that while C T substitutions accumulate rapidly and then saturate with increased time spent single-stranded, 
A G substitutions accumulate proportionally to single-strandedness [3]. Here, we present two new phylogeny based 
Bayesian methods for modeling this substitution response profile at the single site level, and apply them to a set of 
complete primate mitochondrial genomes.  
 
2. Methods 
 
Our first approach assumes a “base” model with a symmetric substitution probabilities matrix; asymmetric increase in 
a specific substitution type (according to model of [4])is added as a linear function of single-strandedness, measured by 
DssH, with the slope and intercept of the response model as unknown parameters. The second approach implemented a 
Hidden Markov Model (HMM) with a correlation in rates between sites as a function of distance between them, to 
determine and compare details of the response curve for different substitutions, and to detect consistent regional 
deviations from the expectations of our model. To build complex models at each site with relatively small 
computational burden, complex models were evaluated based on the distribution of likely ancestral sequences obtained 
using a general-time reversible (GTR) model. Equilibrium frequency ratios were evaluated based on the corresponding 

substitution probabilities and reversibility constraints. For e.g. .  In particular, C T deaminations 
appear to increase linearly for only a very short genome section, reaching a plateau that is best explained by some form 
of protection or repair mechanism. 
 
3. Results and Discussion 
 
In all primate groups2, A G substitution probabilities increased linearly with DssH, although there were large 
differences between the two primate sub-groups (‘high’ and ‘low’), as predicted by previous analysis (Raina et al, 
unpublished data). We confirm previous speculation that C T substitutions increase rapidly at low single-
strandedness values, and then remain approximately saturated for the rest of the genome [2]. Variations in the 
frequency ratios (G/A and C/T) in the form of dips and rises in specific genes exist (Figures 1 and 2). These correlate 
significantly with site-specific mRNA secondary structure, suggesting that secondary structure provides at least some 
protection from mutations.  There are also considerable differences in the details of the C T response between the 
‘high’ and ‘low’ groups. The relative steepness of the early increase in C T response corresponds to the relatives 
steepnesses of the A G responses, but the plateau is lower for the group with the steeper slope (Figure 1). The larger, 
steep-sloped group also has unexplained drops in the COI and cytb regions, while the smaller group has an 
unexplained hump at DssH = 0.8 before reaching a slightly slower and constant level.. These analyses suggest that 
complex yet identifiable changes in mutation processes have occurred during the evolution of primate mitochondria, 
and the methods presented here should be useful in elucidating the mechanistic bases and historical patterns that have 
emerged. 
 
1 Biological Computation and Visualization Center, Dept of Biological Sciences, Louisiana State University, Baton Rouge, LA 
70803, USA. 
2 The groups termed ‘high’ and ‘low’ consist of species: Cercopithecus, Cynocephalus, Gorilla, Homo, Hylobates, Macaca, Pan, 
Papio, Pongo; and Cebus, Colobus, Lemur, Nycticebus, Tarsius, Trachypithecus, Tupaia, respectively and ‘combined’ consists of 
all the eighteen species. These were chosen based on previous analyses (Raina et al., unpublished data). 
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4. Figures 

 
 Fig. 1a,b. C T and A G response profile for the high, low, combined primate datasets. 
 

 
Fig. 2. Site specific G/A ratio adjusted for DssH as a function of % of alternative structures where that site is in a loop. 
Numbers of sites pooled into categories according to % loopiness are indicated. 
 
5. References 
 
[4] Bielawski, J.P. and Gold, J.R., 2002 Mutation patterns of H- and L- strand DNA in closely related Cyprinid fishes. Genetics 161: 1589-97 
[1] Clayton, D. A., 2000 Transcription and replication of mitochondrial DNA. Hum Reprod 15: 11-7 
[3] Faith, J. J. and Pollock D. D., 2003 Likelihood analysis of asymmetrical mutation bias gradients in vertebrate mitochondrial genomes. 
Genetics 165: 735-45 
[2] Graziewicz, M.A., Day, B.J., and Copeland W.C., 2002 The mitochondrial DNA polymerase as a target of oxidative damage. Nucleic Acids 
Research 30: 2817-24 
[5] Tanaka, M., and Ozawa, T. 1994 Strand asymmetry in human mitochondrial DNA mutations. Genomics 22:327-35 

Dana Jermanis
Molecular Evolution

Dana Jermanis


Dana Jermanis
267



Length distributions of exons and introns imply the
evolutionary constraints for exon/intron length

Yiyu Jia,1 Yan Zhang1, Chee Keong Kwoh1, Vivek Gopalan2

Keywords: Intron, Exon, SNPs, Skewness, Jackknife

1 INTRODUCTION

In the postgenomic era, a valuable and interesting undertaking is to investigate the distribu-
tion of the number of exon and intron over their lengths. We made experiments on several
large intron/exon databases. We observed that both of distributions of exon length from
GenBank and Homo Sapiens genome database had single peaks. However, as the most devel-
opmental complex organism, the distribution of Homo sapiens database was more symmetric
than GenBank. This maybe implies an evolutionary constraints for exon length. Since these
distributions do not be any parameterized distributions when tested by χ2 GOF test, we used
resampling methods, including bootstrap and jackknife, to analyze the distribution of exon
and intron lengths. Unlike exons, we found that distribution of intron length had several
peaks. Coupled with the fact that SNPs in intron sequences account for a large proportion in
the total quantity of SNPs, we conclude that introns are under looser evolutionary constraint
than exons and introns are functionally more complex than exons.

2 MATERIALS AND METHODS

We used two databases, which refer to GenBank release 132 and Homo Sapiens genome
database. To make sure that the sequences are low homologous and independent, we purged
original databases to be 40% similarity because pairwise sequence alignment methods often
fail to correctly align protein pairs with 20-30% pairwise sequence identity and significant
sequence identity. Several statistical methods, including χ2 GOF testing, Skewness testing,
Bootstrap, and Jackknife, were used for the analysis. Skewness is a signed measure that
describes the degree of symmetry in a distribution; Jackknife after bootstrap could be a
technique for providing information on the influence of each observation on the functionals.

3 RESULTS AND DISCUSSION

Our first discovery from purged ExInt database is that 40.677% of the total nucleotides
are located in exon region. We got one “mixed” ExInt by deleting sequences, which only
contain pure phase0, phase1 or phase2 introns. We also investigated the Homo Sapiens
genome database. Their distributions were plotted in Figure 1. According to our results,
the exon distribution peaks at lengths of 34 and 37 amino acids residues. After making
χ2 GOF testing, we found that those distribution were neither exponential distribution nor

1Bioinformatics Research Centre, Nanyang Technological University Singapore. Yiyu Jia’s E-
mail: yyjia@pmail.ntu.edu.sg; Yan Zhang’s E-mail: yzBirc@pmail.ntu.edu.sg; C.K. Kwoh’s E-
mail: asckkwoh@ntu.edu.sg

2Department of Biochemistry, National University of Singapore. Vivek Gopalan’s E-mail:
vivek@bic.nus.edu.sg
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(a) (b) (c) (d)

Figure 1: Exon and Intron length distribution

Table 1: The shape description for exon length distribution
Methods ExInt mixed phases ExInt Homo sapiens

Skewness value 4.961943 4.651485 3.889752

Poisson distribution. Meanwhile, we investigated the intron length distribution, which is
shown in figure 1 (d). Compared with exon, intron length distribution has total three peaks,
which make it seems more “nonregular” than exon length distribution. Hence, how and why
these peaks formed could be interesting questions. After doing the Jackknife after bootstrap
analysis on standard deviation methods, we saw that the points, which are particularly
influential to the standard variance for distribution of intron, are much more than exons’.
From table 1, it can be seen that exon length distribution of homo sapiens is the most
symmetric, the “mixed” one is the second to it, and the ExInt, which could be considered as
whole population including homo sapiens and other organisms, is the most asymmetric. Does
this phenomena imply evolution constraints for exon length? Because evolution requires only
function instead of biochemical structure, we may hypothesize that the amino acids residues
with the length 30− 40 most likely form functional segments of protein.

4 CONCLUSION

In this article, we show that the distribution of exon length is amazingly regular than that of
intron length. By comparing the distributions of the length of exon and intron, we conclude
that there is much looser evolution constraints for introns than for exons. These observa-
tions fit the Neutral Theory, which predicts that gene regions of functional “importance”
should evolve more slowly than less important regions. Further more, introns are much more
functionally complex than exons. In fact, it is observed that the numbers of protein-coding
genes do not increase exponentially in complex organisms and hence cannot provide large-
scale cellular connectivity, which does increase exponentially. Our study on SNPs supports
this point. In the level of phenotype, the polymorphism of genes will lead to the different
features of an individual. According to dbSNP, there is 67.93% SNPs located in intron re-
gions. Hence, we believe that it is much more challenging to study the function of intron
than exons. This is probably one way to solve the questions about the origin and evolution
of introns. Treating introns as regulation part of multi-tasked gene networks could be a
prospective direction. Investigating other organisms than homo sapiens for clear inside is
our future work as well.
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Evaluating Indels as Phylogenetic Markers for the
Prokaryotes

Timothy G. Lilburn1 Yufeng Wang2
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1  Introduction

Currently, the standard for inferring molecular phylogenies of the Prokaryotes uses SSU rRNA
sequence comparison. This approach is not perfect, as it cannot satisfactorily shed light on the
oldest pages in the evolutionary history of the Prokaryotes and, furthermore, some of the “higher
level” taxa established using these sequences contain groups that are similar in sequence but that
stand out as dissimilar in phenotype. The use of rare genomic changes (RGCs) to infer phylogenies
has been proposed [7] as a way of supplementing or even supplanting other data. Numerous studies
using RGCs to resolve difficulties in phylogeny have been published. R. S. Gupta has pioneered the
use of indels to examine the phylogeny of the Prokaryotes [2]. In a recent review [3] Gupta defined
a set of 25 indels in 21 proteins that were used to establish the root of the Prokaryotic tree and the
evolutionary history of this domain.

As for many of the RGCs proposed as characters for inferring phylogenies, the statistics of indels
are not well understood [6]. Furthermore, since an indel is defined only in relation to other
sequences, the alignment parameters used in the multiple sequence alignment could affect the size
and placement of an indel and, therefore, the results of the phylogenetic inference. However, as the
mechanisms giving rise to insertion and deletion events are relatively complex, the probability that
an indel would appear in the same place in a protein through two separate events is thought to be
very low [4]. This means that shared indels are most likely the result of shared descent and have a
high phylogenetic information content. The problems of lateral gene transfer, recombination and
paralogy can still obscure this information and some researchers have shown that indels can be
misleading [1].

2  Methods and Data

In this poster we attempt to assess the robustness of indels as phylogenetic characters. Firstly, we
assessed the effects of different alignment algorithms and parameters on the appearance of Gupta's
25 indels. We screened 148 Prokaryotic genomes for homologues to the 21 protein set, using the E.
coli proteins as the query sequences in a blastp search. The protein sets were aligned using
ClustalW and T-Coffee and screened for all indels, including the 25 defined by Gupta. Column
statistics for the alignment were generated and only indels occurring in conserved regions were
considered. With the sequences in the alignment arranged in order of their place in the Bergey’s
Taxonomic Outline of the Procaryotes (DOI 10.1007/bergeysoutline200310), indels that
corresponded to taxonomic groups were easy to see. The sequences were also arranged according to
Gupta’s phylogeny and indels supporting or contradicting each classification were scored.

1 Bioinformatics Department, American Type Culture Collection, 10801 University Boulevard,
Manassas, VA USA. E-mail: tlilburn@atcc.org
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Finally, we attempted a phylogenetic analysis that characterizes the indels more rigorously than
previously. Gupta scored the indels on a presence or absence, plus/ minus basis, regardless of their
length. Simmons and Ochoterena have developed a method called “simple indel coding”  [8] that
allows indels to be scored in a more sophisticated way as multistate characters. The method has
been automated in the GapCoder algorithm [10] and we used the algorithm to score all the indels in
the alignments. As the number of indels in each alignment was relatively small, the GapCoder
scores were simply examined to see if using the indel as a multistate, rather than binary character
contradicted, supported or supported and enhanced the classifications.
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A triplet approach to approximations of
evolutionary trees
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1 Introduction.

Recently, methods for evolutionary tree construction using partial topological relationships
between the species have been proposed and analyzed. Among these are quartet methods [3]
which compute unrooted topologies for subsets of cardinality four and combine them to form
an unrooted evolutionary tree, and rooted consensus methods. In this paper, we study two
variants of the rooted consensus approach: the maximum agreement subtree problem (MAST)
and the maximum triplet consistency problem (MTC).

Let T be a rooted, unordered tree distinctly leaf-labeled by a set of labels S. For any
subset S′ of S, T |S′ denotes the tree obtained by first deleting from T all leaves which are not
in S′ and all internal nodes without any descendants in S′ along with their incident edges,
and then contracting every node having just one child. In the maximum agreement subtree
problem (MAST) the input is a set T = {T1, T2, ..., Tk} of rooted, unordered trees, where
each Ti ∈ T is distinctly leaf-labeled by S, no Ti ∈ T has a node of degree 1, and the goal
is to find a subset S′ of S of maximum cardinality such that T1|S′ = T2|S′ = ... = Tk|S′.

In the complementary problem of MAST, called co-MAST, the goal is to find a subset S̃ of
S of minimum cardinality such that T1|(S \ S̃) = T2|(S \ S̃) = ... = Tk|(S \ S̃).

Next, a rooted triplet on S is a constraint of the form ({i, j}, k), where i, j, k ∈ S,
which specifies that the lowest common ancestor of i and j is a proper descendant of the
lowest common ancestor of i and k. The maximum triplet consistency problem (MTC) is the
following: given S and a set R of rooted triplets on S, find a rooted, unordered tree with
leaves distinctly labeled by S which satisfies as many of the triplets in R as possible.

It is known that that MAST restricted to three trees is already hard to approximate. It is
also known that another special case of MAST consisting of instances containing only trees of
height 2 is hard to approximate. However, Amir and Keselman [1] gave a factor 4 algorithm

with O(kn5) running time for co-UMAST2. In this paper, we obtain a factor (3− 6 log log n
log n

)

approximation algorithm for co-MAST, i.e., the complement of MAST.
Let m be the maximum number of leaves in an agreement subtree of T . Removing our

approximate solution to co-MAST from S yields an approximate solution to MAST of size
≥ n− 3(n−m) = 3m− 2n. This gives a constant approximation factor for MAST whenever
m > 0.67n and a good approximation factor for MAST if m is large (which seems to be the
case in practice); e.g., if m ≥ 0.95n then 3m− 2n ≥ 0.85n.

It is known how to construct a tree which is consistent with all of the rooted triplets in
a given set in polynomial time, if such a tree exists. One knows that MTC is NP-hard; also
approximation algorithms for MTC are known.

In the consensus approach for the unrooted case, typically input constraints specifying
topologies of quadruples of leaves (quartets) are considered. Unfortunately, the consistency
problem for quartets is MAX SNP-hard [3]. Despite this, it was shown that the corresponding
maximum quartet consistency problem admits a PTAS when the input instance is complete,

1Department of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden
2UMAST is defined like MAST except that all trees are unrooted and T |S′ now denotes the tree

obtained by first deleting from T all nodes which are not on any path between two leaves in S′ and
their incident edges, and then contracting every node with degree 2. co-UMAST is the complement
of UMAST.
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i.e., contains a constraint for each possible quadruple of leaves. In this paper, we make
progress on the open approximation status of MTC by presenting a PTAS for MTC in the
dense case where the number of different input triplets is Ω(n3).

2 A (3− 6 log log n
log n

)-approximation of co-MAST

Let H = (V,F) be a hypergraph with vertex set V and edge set F ⊆ 2V . A vertex cover of
H is a subset C of V such that for every F ∈ F , there exists a vertex v ∈ C with v ∈ F .
A minimum vertex cover is a vertex cover with as few vertices as possible. The size of a
minimum vertex cover of H is denoted by τ(H).

Fact 1 ([2]). Let H = (V,F) be a 3-uniform hypergraph on n vertices. A vertex cover C of

H of size at most (3− 6 log log n
log n

)·τ(H) can be computed in polynomial time.

Fact 1 can be applied to co-MAST as follows: Construct a 3-uniform hypergraph H =
(S,F), where for each cardinality 3 subset S′ of S, S′ belongs to the set of hyperedges F if
and only if Ti|S′ 6= Tj |S′ for some {i, j} ⊆ {1, 2, ..., k}. By testing all cardinality 3 subsets
of S one at a time, H can be constructed in O(n4k) time.

Lemma 2.1 Let C be a vertex cover of H. Then T1|(S\C) = T2|(S\C) = ... = Tk|(S\C).

Hence, to obtain a factor (3 − 6 log log n
log n

) approximation for co-MAST, compute an approx-

imative minimum vertex cover of H as described in the proof of Lemma 2 and output this
as the solution.

3 A PTAS for dense MTC

An instance of MTC is complete if the set R of triplet topologies contains one topology for
every one of the

(
n
3

)
possible three-leaf subsets over S. Here we study the more general

problem of dense instances of MTC, i.e., instances where R contains Ω(n3) resolved triplets.
Jiang et al. [3] have studied the complete problem in the setting of quartets, and given a
PTAS for complete MQC. We adopt the method from [3] to construct a PTAS also for dense
MTC.

Topt is decomposed into a tree consisting of kernel with the leaves grouped into bins
of finite sizes. For each possible such decomposition an approximate optimal assignment of
leaves to bins can be found in polynomial time. Hence, the dense MTC can be approximated
in the following way:

Theorem 3.1 There exists a constant c such that for each ε > 0, there is a polynomial time
algorithm which, for each instance R of dense MTC, produces a tree Tk that approximates
Topt in such a way that |RTk ∩R| ≥ |RTopt ∩R|−(c/k+ε) ·n3 ≥ (1−c/(c′k)−ε/c′)|RTopt ∩R|
where c′ is a constant satisfying |RTopt ∩R| ≥ c′n3.
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Dual Multiple Change Point Model Leads to More

Accurate Recombination Detection

Vladimir N. Minin, 1 Karin S. Dorman, 2 Marc A. Suchard 3
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Recombination is an important force in the evolution of HIV, promoting the developing
of multiple drug resistant strains and deterring the construction of therapeutic vaccines.
Consequently, research interests expand in recombination detection methods using multiple
sequence alignments that accurately identify the recombination sites. We extend a com-
putational method to detect homologous recombination [3] to improve its recombination
detection resolution. In the original model an alignment is partitioned into K segments,
where K is an unknown parameter. Each partition k ∈ 1, . . . , K has a vector of phylogenetic
parameters (Θk, τk) associated with it, where Θk is a vector of parameters describing the
nucleotide substitution process and τk is a bifurcating tree topology describing evolutionary
relationships between sequences. End points of the partitions ξk are called change-points.
Recombination is inferred if there is at least one change-point ξk such that τk−1 6= τk.
This model was successfully applied to test recombination hypotheses in HIV strains by
Suchard et al. [2]. Modeling spatial variation of all parameters with a single change-point
process results in prior correlation between sites where substitution parameters vary and
sites where topologies change. This can lead to loss of accuracy of recombination site identi-
fication, when recombination occurs near the boundary of regions with varying evolutionary
pressures. Here, we develop a dual Multiple Change Point (MCP) model that decouples
substitution parameters change-points from topology break-points by introducing two a pri-

ori independent change-point processes to describe the variation. We use reversible jump
MCMC sampling to approximate the posterior distribution of model parameters [3].

To demonstrate improved accuracy, we start with a previously used test example in-
volving mtDNA sequences from 4 primates and generate a series of datasets with simulated
recombination events near a site where evolutionary pressures change greatly. In Figure 1
we plot inferred most probable recombination sites against simulated recombination sites for
the single and dual MCP models. The single MCP model shows strong attraction between
inferred recombination sites and the evolutionary pressure change. The dual MCP model
yields more accurate inference with small variation about the diagonal caused by randomly
distributed informative sites. For better interpretation of this variation, we divided all in-
formative sites into two classes: supportive or contradictory of the recombinant structure,
denoted in Figure 1 as light and dark gray circles respectively. As expected, the greatest
inaccuracies in detection occur when the simulated recombination event is located in an
uninformative region, especially those bordered by contradictory sites.

We also apply the dual MCP model to the gag gene sequenced from HIV-1 isolate VI557
and 9 different subtype consensus sequences. VI557 is a reported recombinant, with ambigu-
ous support [1]. Figure 2 depicts the marginal posterior probabilities of the different possible
topologies for each site in the alignment. We see one region near the 5’ end in the alignment
with large uncertainty in the topology, but no change in the most probable topology. This
suggests little support for recombination in this alignment.
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Figure 1: Simulation results. Inferred most probable recombination sites are plotted against sim-
ulated recombination sites near a substantial change in evolutionary pressures (fixed at site 464,
dashed line). Circles on the diagonal denote informative sites that support (light gray) or contradict
(dark gray) the recombinant structure.
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Figure 2: HIV results. Plot shows the locations of the gene products within the gag gene and the
marginal posterior probabilities of the two most likely tree topologies (light gray, dark gray) and the
sum of the marginal posterior probabilities of all other topologies for each site in the alignment(dashed
line).

The dual MCP model inherits a major strength of the original MCP model in its real-
istic modeling of spatial phylogenetic variation using a parsimonious number of parameters.
Using two change-point processes results in better sampling of topologies during MCMC
simulations (not shown) and increases the accuracy of recombination site identification.
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Internal Gene Duplication Patterns
in Transmembrane Protein Evolution
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1 Introduction.

It has been revealed that transmenbrane (TM) topology (the number of TM segments (TMSs), the
TMS position and the orientation of TMS to the membrane lipid bilayer) evolved by internal gene
duplication [1-3].  A large number of TM proteins, such as Bacteriorhodopsin, Na+/Ca2+ exchanger
and the major facilitator superfamily, have been recognized to have internal repeats that presumably
have arisen from the duplication event [2-4].  In this study, we have searched comprehensively for
sequences with internal repeat by partial sequences comparison within a single sequence from
prokaryotic genomes, and investigated evolutionary pathways of TM topologies by analyzing in detail
duplication patterns observed in the sequences.

2 Materials and Methods.

We extracted putative 52,686 TM protein sequences out of 239,359 ORFs of 87 prokaryotic (72
bacterial and 15 archaean) genomes in GenBank by using DetecSig [5], SOSUI [6] and their TM
topologies were predicted by ConPred [7].  Next, partial sequences (PSs) containing one or
consecutive 2~6 TMSs (1~6-tms) and flanking loop regions were extracted from all the predicted
TM proteins.  To judge whether or not two PSs were homologous in each TM protein sequence, we
defined the threshold values of sequence identity for 1~6-tms PSs (detailed procedure not described
here).  The threshold identity values thus obtained are 48.4, 33.8, 29.8, 28.2, 27.1 and 26.2% for 1-
tms, 2-tms, 3-tms, 4-tms, 5-tms and 6-tms PSs, respectively.  The PSs of the same size were
compared one another within a single TM protein sequence to find internal repeats which satisfy
the defined conditions, i.e., larger sequence identity between them than the thresholds determined
above.

3 Results and Discussion.

Finally, we found 377 TM protein sequences in total appeared to have evolved by internal duplication,
which were distributed over 70 out of 87 genomes (Figure. 1).  Various duplication patterns are
observed in the detected sequences.  One duplication pattern is “diploid-type”, which occupies 99.4,
8.3, 34.4, 54.3 and 21.8% among the detected TM protein sequences for 4, 6, 8, 10 and 12-tms TM
proteins, respectively.  If “quasi-diploid-type” is classified as “diploid-type”, these fractions increase
to as much as 99.4, 41.6, 75.8, 64.9 and 70.1%.  Other duplication patterns than "diploid-type" are
prevailing in the TM protein sequences with the odd numbers of TMSs.  The case of 7-tms TM protein
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is interesting in particular.  There are
mainly three duplication patterns
recognized: from primordial 4-tms TM
protein with the duplication of 3-tms
element, from 3-tms TM protein with
the duplication of 3-tms element and the
generation of a new TMS, and from 5-
tms to 7-tms, as illustrated in Figure 2.
The function of the sequences with the
first pattern is assigned to “rhodopsin
pump” [7], and the second is reported as
“zinc transporter”.  A similar
evolutionary pathway to the second one
was reported earlier for “lysosomal
cystine transporter” [8].  The function of the third one is not known yet at this stage, being remained
for future research.

Figure 2: Schematic presentation of three duplication patterns for the evolution of 7-tms TM proteins.
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type”; hatched bars, “quasi-diploid-type”; dotted bars, others.
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A liberal Supertree approach to test the Ecdysozoa
hypothesis

Gayle K. Philip1, Christopher J. Creevey1, James O. McInerney1

Keywords: Coelomata, Ecdysozoa, supertree

1 Introduction.

Researchers have often been divided on the relationship of nematodes to arthropods and vertebrates.
Traditionally, vertebrates and arthropods have been grouped together with nematodes occupying a
basal position. This classic hypothesis, named “Coelomata” argues that vertebrates and arthropods are
more closely related as they have a true body cavity (coelem), which nematodes lack. However, a
recent hypothesis now joins the nematodes with the arthropods in a molting clade, the Ecdysozoa.
Since the publication of the Ecdysozoa hypothesis, evidence has appeared both for and against it [1,2].
It was our aim to test these hypotheses through the construction of a supertree [3] from all the single
gene families identified from all the available eukaryotic genomes.

2 Materials and Methods.

Our approach was to identify single gene, orthologous families containing a minimum of four
members, from ten fully characterised eukaryotic genomes. The ten genomes consist of three
vertebrates, two arthropods, one nematode, two yeasts, one apicomplexan and one plant species.
Hypotheses of relationships for each gene family were re-constructed. The supertree software program
Clann (http://bioinf.may.ie/software/clann) was then used to find the supertree that best described the
relationships from all the source trees.

3 Discussion.

The tree that best described the relationships in the 780 source trees is shown in Figure 1. We recover
this tree using a variety of methods and we have not been able to find a method that does not recover
this tree.

In conclusion, it can be seen that our supertree supports the traditional Coelomata hypothesis with the
vertebrates more closely related to the arthropods.

                                                  
1 National University of Ireland, Maynooth, Co. Kildare, Ireland. E-mail: gayle.k.philip@may.ie
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4 Figures.

Figure 1. The supertree best describing the relationships in the 780 source trees.
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Joint Bayesian Estimation of Alignment and

Phylogeny

Benjamin D. Redelings, 1 Marc A. Suchard 2

Keywords: Phylogeny, Alignment uncertainty, Bayesian, MCMC

We describe a model and algorithm for simultaneously estimating multiple alignments
for biological sequences and the phylogenetic trees that relate the sequences. Unlike cur-
rent techniques that base phylogeny estimates on a single best estimate of the alignment,
we take into consideration the myriads of near-optimal alignments. We also avoid the trap
of conditioning on an inaccurate external guide tree in constructing the alignment by esti-
mating the alignment and phylogeny simultaneously. This eliminates the bias towards the
guide tree that is inherent in phylogenies based on alignments constructed with progressive
alignment [3]. The availability of the phylogeny during alignment construction also allows
for more accurate models of both substitution and insertion/deletion that do not over-count
single indels and substitutions that are shared between multiple taxa by common descent.
Furthermore, this allows us to use shared indels as evidence in clustering taxa on the tree.
We note that improved substitution models, such as those allowing invariant sites and rate
variation between sites, may improve alignments in the joint estimation framework, whereas
currently these models are only available in constructing phylogenies.

We use a continuous-time Markov chain process to describe the substitution process,
with extensions for varying rates between sites. While current models implicitly condition
on the alignment, we introduce an alignment prior, which allows us to treat the alignment as
a parameter to be estimated. Our multiple alignments are built up from pairwise alignments
along each branch of the tree. The alignment model is constructed from a hidden Markov
model (HMM). We use a HMM with affine gap penalties, which avoids treating long indels as
several unit-length indels. In addition to modeling alignments more accurately, this extension
is important when using indels to group taxa as it does not exaggerate the number of rare
events shared between taxa.

We take a Bayesian approach that allows us to estimate probable phylogenies and align-
ments, as well as measures of their support, by using Markov chain Monte Carlo (MCMC)
techniques to sample from the joint posterior distribution for the phylogeny, alignment,
and model parameters. We construct our Markov chain from straightforward Metropolis-
Hastings steps for updating branch lengths and substitution parameters and several unique
steps for updating the alignment and the topology that rely on dynamic programming. To
update the alignment, we use modified versions of the two MCMC steps (branch alignment
re-sampling, internal node re-sampling) proposed by [2]. In addition, we introduce a novel
MCMC proposal to improve mixing that re-samples both a branch alignment and the inter-
nal node at one end of the branch. This proposal decreases burn-in substantially because it
allows portions of the alignment to be aligned or unaligned without going through an un-
favorable intermediate. We also introduce a new proposal to update the topology based on
nearest-neighbor-interchange proposals, with some modifications to deal with internal nodes
that lose definition when the topology is changed.

One problem that has intrigued molecular biologists is the question of whether the Ar-
chaea form a monophyletic group. To date, some analyses have supported monophyly of

1Department of Biomathematics, UCLA, Los Angeles, CA E-mail: bredelin@ucla.edu

2Department of Biomathematics, UCLA, Los Angeles, CA E-mail: msuchard@ucla.edu
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2

Homo YVTIIDAPGHRDFIKNMITGTSQADCAVLIVAAGVGEFEAGISKNGQTRE

Sulfolobus FFTIIDAPGHRDFVKNMITGASQADAAILVVSAKKGEYEAGMSVEGQTRE

Halobacterium EFTIVDCPGHRDFVKNMITGASQADNAVLVVAADDG−−−−−−−VAPQTRE

Pyrococcus YITIIDAPGHRDFVKNMITGASQADAAVLVVAATDG−−−−−−−VMPQTKE

Escherichia HYAHVDCPGHADYVKNMITGAAQMDGAILVVAATDG−−−−−−−PMPQTRE

Figure 1: Topology and alignment for a part of EF-Tu. Darker regions represent residues or gaps

which are well resolved. Homo (a Eukaryote) and Sulfolobus (an eocyte) share an indel which is not

present in the other Archaea, supporting paraphyletic Archaea.

Homo GAAGCUAAGC-----AGGGUCG-GGCCUGGUUAGUACUUGGAUGGGAGACCGCCUGGGAAUACCGGG

Sulfolobus GAAGUUAAGCCGCUCACGUUAGUGGGGCCGUGGAUACCGUGAGG----AUCCGCAGCCCCACUAAGC

Haloarcula GAAGAUAAGC-----CCACCAGCGUUCCAGGGAGUACUGGAGUGCGCGAGCCUCUGGGAAA-UCCGG

Escherichia GAAGUGAAAC-----GCCGUAGCGCCGAUGGUAGUG-UGGGGUC----UCCCCAUGCGAGAGUAGGG
Anacystis GUUGUGAAAC-----AUACCUGCGGCAACGAUAGCUCCCGGGUA----GCCGGUCGCUAAAAUAGCU

Figure 2: Alignment uncertainty for part of the 5S rRNA. Darker regions represent residues or

gaps which are well resolved. The latter half of the alignment is ambiguous (shown), especially in

regard to Sulfolobus. This makes the position of Sulfolobus difficult to resolve on the tree.

the Archaea, and some have placed the eocyte Archaea as sister taxa to Eukaryotes. This
lack of resolution results partly from the fact that the inference depends on distantly related
sequences that are difficult to align. Joint Bayesian estimation of alignment and phylogeny
is an ideal method with which to approach this problem; joint estimation can deal with
alignment ambiguity, avoids problems of bias in ambiguous alignments, and makes use of
more information in the data than current phylogenetic reconstruction methods. To address
the issue of the Archaea monophyly, we analyze both the 5S rRNA, and the EF-Tu/EF-1α

gene. For each gene, we analyze data sets consisting of 5 taxa and 12 taxa.
The 5S rRNA left the location of the eocyte Archaea unresolved on the tree. However,

based on EF-Tu/EF-1α, we find strong evidence against monophyly in that the eocytes are
placed as sister taxa to the Eukaryotes (see Figure 1). Furthermore, we find strong support
that the remaining Archaea are also paraphyletic. Our strong support for this topology
stems from our methodology’s use of evidence from common indels shared by eocytes and
Eukaryotes. According to [1], about 75% of residues in EF-Tu have very well resolved
homology; joint estimation can make use of the information from the 25% of residues with
less resolved homology without being overconfident in their alignment. Our methodology
can show alignment uncertainty in addition to uncertainty on trees. Figure 2 shows one
important reason for the inability of the 5S rRNA to resolve the topology near the root; while
some of the alignment is well resolved, approximately half of it is unusable for phylogenetic
reconstruction because it is too ambiguous.
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1 Introduction.   
 
The reversible phosphorylation of eukaryotic cellular protein by protein kinases is an important 
mode of cellular signal transduction, modulating the activity, localization, stability, and protein-
protein interaction potential of many proteins.  Protein kinases have also become the topic of 
intense interest in the pharmaceutical industry, with multiple approved drugs and many more in 
clinical testing.  However, the experimental determination of phosphorylated amino acids and their 
cognate kinases and phosphatases remains experimentally challenging.  I have assembled a large 
(>1900 sites; >700 proteins) catalog of human phosphorylation sites as a basis for examining the 
conservation of phosphorylation sites.   Pairwise comparisons of all human proteins to the complete 
proteomes of two yeasts (S.pombe and S.cerevisiae), fly (Drosophila), nematode (C.elegans), sea 
squirt (Ciona), two fish (Fugu and Danio) and mouse identify patterns of conservation which shed 
light on the evolution of phosphosignalling pathways and protein kinase specificities and may 
enable the prediction of substrates for particular kinases.   
 
2 Methodology.  
 
The phosphosite catalog was built by extracting information from PhosphoBase [1], and the 
Ingenuity LifeSciences[2] database, and the primary literature.  The existence of the correct amino 
acid at the specified position was verified, and corrections applied where consistent shifts in 
numbering were identified (such as numbering the first amino acid after the signal peptide as +1).   
 
Human RefSeq proteins were downloaded and the top pairwise match (WuBLAST 2.0, with Smith-
Waterman option) used for further analysis.  Hits were not filtered for reciprocal best similarity; 
this allows identifying all cases of a conserved amino acid in a recently expanded protein family, 
but may overcount conservation for the same reason.  Unassembled genomes were searched with 
TBLASTN, all hit traces assembled with phrap, and the candidate protein translated using a 
GeneWise alignment of the query protein versus concatenated contigs from phrap. 

 
3 Evolutionary history of amino acids phosphorylated in human.  
 
Comparison of the degree of conservation of phosphorylated amino acids versus the background 
conservation of Ser, Thr and Tyr shows that phosphorylated positions are only slightly more likely 
to be conserved across multiple eukaryotes than a randomly drawn amino acid of the same type.  
Only for positions conserved across all the proteomes looked at are enrichments of 2-fold or more 
observed, and this effect may be due to a few protein families.   
 

                                                 
1 Computational Sciences, Millennium  Pharmaceuticals Inc.  640 Memorial Drive, Cambridge MA 
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The language ‘serine-threonine’ kinases might engender the naïve assumption that Ser and Thr are 
equivalent, an equivalence which is not present in the data.  Threonine is a much smaller fraction of 
the catalog than serine, and serine and threonine show no greater exc hange at phosphorylated sites 
than non-phosphorylated ones.  Threonine positions are more likely to be strongly conserved, 
though this may be due to a few specific protein families.   
 
The conservation of phosphosites in homologs from specific species was also examined.  Protein 
phosphorylation is much less extensive in bacteria such as E.coli [3,4], but many important 
metabolic enzymes are regulated via phosphorylation[4,5].  Phosphosites conserved with E.coli 
homologs are rare but do occur.  Few phosphosites found in a Saccharomyces proteomics study[6] 
are conserved with human, though analysis of protein cellular abundance estimates for yeast[7] 
underscores the difficulty of experimental phosphoproteomics.    
 
The Anaphase Promoting Complex (APC) is a multiprotein assemblage which plays a critical role 
in eukaryotic mitosis.  Extensive phosphorylation of APC proteins has recently been mapped [8].  
Analysis of these sites reveals that none are conserved across all of the eukaryotes examined, and 
few are conserved even in all metazoans or deuterostomes.  Closer examination of the draft 
genomes for fragmented proteins and analysis of additional, unannotated draft genomes (chicken, 
frog, sea urchin) enables a more detailed estimate as to which positions are present broadly and 
which appear to represent sites unique to the chordate lineage. 
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1 Introduction.   
Understanding the observed variability in the number of homologs of a gene is a very important, unsolved 

problem that has broad implications for research into co-evolution of structure and function, gene duplication, 
pseudogene formation and possibly for emerging diseases.  Here we attempt to define and elucidate the reasons 
behind this observed unevenness in sequence space. We present evidence that sequence variability and functional 
diversity of a gene or fold family is influenced by certain quantitative characteristics of the protein structure that 
reflect potential for sequence plasticity i.e. the ability to accept mutation without losing thermodynamic stability. We 
identify a structural feature of a protein domain – contact density - that serves as a structural determinant of entropy in 
sequence space, i.e. ability of a protein to accept mutations without destroying the fold (also known as fold 
designability). We show that the (log) of the average gene family size exhibits statistical correlation  (R2>0.9.) with 
the contact density of its three-dimensional structure. We present evidence that the sizes of individual gene families 
are influenced also by their evolutionary history e.g. the amount of time the gene family was in existence. We further 
show that our observed statistical correlation between gene family size and designability of the structure is valid on 
many levels of evolutionary divergence i.e. not only for closely related gene but also for less related fold families. 

 
2 Number of Sequences correlate With Structure  

From a biological perspective, gene family size is at least in part influenced by functional constraints related to 
the number of different but perhaps related functions needed by the cell. For example, some functions such as kinase 
activity have varied specificities within a relatively small number of sequence mutations1 while others such as globins 
have much less functional flexibility despite, in some cases, substantial sequence divergence2. From a physical 
perspective, the potential of a gene to obtain new function upon duplication may depend on its ability to accept 
mutations without destroying the three-dimensional structure of a protein domain that it encodes. 

Our first task is to determine what, if any, physical factors are responsible for the variability in gene family size. 
To this end we define an inherent structural characteristic related to the number of sequences that a structure can 
accommodate without loss of thermodynamic stability i.e. we employ 
a structural determinant of designability. This feature has been 
previously hypothesized to be one of the key influences responsible 
for over-representation of some folds over others. Recent analysis 
suggested that structures with greater values of traces of powers of 
their contact matrices (CM) (i.e. Tr[CM], Tr[CM] etc) are predicted to 
be more designable3. Sequence space Monte Carlo calculations for 
simple lattice models show that this characteristic of a structure does 
indeed correlate strongly with its designability that we define as 
logarithm of the number of sequences that are stable in the structure.  
Remarkably, we observe that there is a marked positive correlation 
between a domain’s designability calculated via CD and the average 
gene family size of that domain 

We perform a similar analysis on distantly related gene families 
as defined through the structural comparisons within the PDUG.  To 
this end we take the structural neighbourhood of a given domain to be 
all those domains that are connected to it by an edge on the PDUG4. 
Physically this means that all domains that are structurally but not 
sequentially similar to a given domain (beyond some threshold Z-score 
value) are included in this structural neighbourhood. We then look at 
the correlation between the sizes of families of gene sequences that 
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fold into structures belonging to the same structural neighbourhood on the PDUG and the average CD for that 
neighbourhood. This shows that average the CD, which serves as a proxy for average designability of a structural 
neighbourhood, itself correlates with the (log) of the gene sequence family size of that neighborhood 

 
3 Structural and funct ional  f lexibi l i ty .  
Next, we determine how gene family size is related to the diversity of 
functions that family performs. We define the functional determinant of a 
gene family as entropy in function space. When we calculate this measure in 
the context  of PDUG, we utilize Gene Ontology (GO)5 to define the 
functional variability (functional flexibility score or FFS) of a set of genes. 
Perhaps not surprisingly, FFS statistically correlates with CD (Fig 4). This is 
not surprising because FFS statistically correlates with the total number of 
sequences in a gene family (data not shown). However, this analysis serves 
two purposes. First the correlation of FFS and CD shows that designability 
directly affects the underlying biology of the domain. Domains with low CD 
have a much lower chance of performing many different functions. Secondly, 
this serves as a corroboration of the previous result using a different database, 
annotation method, and a completely different measure of entropy.  
 
4 Evolution matters  

We present a scatter plot of gene family size versus CD that shows 
all domains in the PDUG. The scatter is very significant and it is 
clear that CD is hardly a predictor of gene family size for an each 
domain. This is perhaps not surprising given that other factors may 
have influenced gene family sizes. Any domain that exists in every 
proteome within a given set can be placed in the last universal 
common ancestor (LUCA)6 of that set representing domains that 
were the predecessors of all others. We may thus highlight the 
LUCA domains on the scatter plot.  Two observations are 
immediately apparent. First, LUCA domains clearly feature greater 
CD’s, suggesting that ‘’first’’ domains were more designable. 
(difference of means .48, t-test P-value is <1e-14 ) Secondly, even 
at equal CD (designability) with their younger counterparts, LUCA 
domains feature greater family sizes, on average 116 more 

members (red points are markedly shifted towards higher family size in Fig.5, P-value < 1e-14). This observation 
provides evidence that, as simulations on simple lattice models suggest, designability is only the potential for larger 
family size that has to be coupled with other mitigating factors for a full understanding of the evolutionary history of 
that domain. For two domains with the same CD but differing times of divergence, the domain with the longer 
divergence time will most likely have more sequence members. 
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1 Introduction.

Given a set of taxa (a group of related biological species), the goal of phylogenetic recon-
struction is to build a tree which best represents the course of evolution for this set over time.
The leaves of the tree are labeled with the given, extant taxa. Internal vertices correspond
to hypothesized, extinct taxa. Phylogeny reconstruction methods are broadly divided into
character-based and distance-based methods.
Distance based methods construct trees with weighted edges whose pairwise tree distances
approximate numerical ”evolutionary distances”. In contrast, character based methods work
directly on character data, which describe biological attributes of the species under consider-
ation that are used to reconstruct phylogenetic trees. A natural biological constraint is that
the reconstructed phylogeny has the property that each of the characters could have evolved
without reverse or convergent transitions: In a reverse transition some species regains a char-
acter state of some old ancestor whilst its direct ancestor has lost this state. A convergent
transition occurs if two species possess the same character state, while their least common
ancestor possesses a different state. The concept behind this constraint is of “innovation”.
That is, each time the character state changes, it acquires a new state. A character exhibits
neither reverse nor convergent transitions, is denoted homoplasy free character. In nature,
homoplasy does occur, however these events are considered relatively rare. The acquisition
of teeth by the birds ancestor, the Archaeopterix, and their subsequent loss is an example of
reverse transition, and the convergence of evolution in placental and Australian mammals is
an example of convergent transition.

In graph theoretic terms, a character in a phylogenetic tree is homoplasy free if it is
convex, that is: for each state of this character, all species (extant and/or extinct) possessing
that state induce a subtree. Thus, the above discussion implies that in a phylogenetic tree,
each character is likely to be convex or ”almost convex”. This makes convexity a fundamental
property in the context of phylogenetic trees.

In the Perfect Phylogeny (PP) problem, the tree is unknown and the task is to find a tree
on which each of the input characters is homoplasy free. PP was shown to be NP-Complete
by [1] and independently by [4].

In this work we deal with the following aspect of PP. For some set of species, the evolu-
tionary tree, T , is believed to be known (e.g. the primates tree shown in Figure 1). Given a
character relating to a subset of all the species (extant and extinct) in T , we want to know
how much this character “agrees” with T . That is, how far this character is from PP on T .
In [2] this distance, denoted the penalty of the character on T , was defined as the number
of violation to convexity. In this paper we study another natural measure for this distance:
the minimal number of species whose states should be changed to make the given character
convex. Indeed, the evolution of a character which can be made convex by removing a small
number of exceptions, can be explained by searching biological reasoning for few exceptional

1Computer Science dept., Technion, Haifa 32000, Israel. moran@cs.technion.ac.il
2Computer Science dept., Technion, Haifa 32000, Israel. ssagi@cs.technion.ac.il
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Figure 1: The primates tree, taken from “The Tree of Life” project.

phenomena, as was done for the two above mentioned cases (see e.g. [3]). If however a very
large number of state changes is needed to make the character convex, a biological explana-
tion becomes less probable. Therefore, the reliability of the given phylogeny for describing
the evolution of this character diminishes accordingly.

First we show that the above problem is NP-hard even for a simple tree - the string,
and for the case where character states are given only at the leaves (so that changes on
extant species are not counted); we also consider a variant of the problem, in which an
atomic operation is a block-recoloring, which changes the color of all the vertices in a given
block of the input to a different color. We show that finding the minimum number of block-
recolorings needed to obtain convexity is NP-Hard as well. This last result is a bit surprising,
since it can be shown that this implies that computing the number of violations that must be
removed for making the coloring convex is NP-hard, while trivially, computing the number
of violations to convexity can be done efficiently (eg, by finding the parsimony score of the
given coloring).

On the positive side, we present an efficient algorithm when the number of states (colors)
at the character is fixed. Then we show that for strings and trees of bounded degree, the
(unweighted version of the) problem can be solved by a fixed parameter tractable algorithm.
Finally, we present polynomial time 2-approximation algorithm for the string version and a
3-approximation algorithm for tree version.
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1 Introduction.  
 
It was previously reported that the evolutionary rate of Buchnera spp., endocellular symbionts of 
aphids is about two times faster than that of Escherichia coli, their free-living cousin, and it was 
suggested that a major factor of this evolutionary rate acceleration is the enhanced mutation rate 
rather than fixation of slightly deleterious mutations [1].  On the other hand, other studies about the 
amino acid replacement indicates that the higher evolutionary rate in Buchnera is due to the slightly 
deleterious or beneficial mutation [2, 3].  If the neutral evolution of the enhanced mutation rate is a 
major factor, the amino acid substitution patterns in Buchnera may not change very much 
compared with those in E. coli, while accumulation of slightly deleterious or beneficial mutations 
would result in a drastic change of the substitution patterns (e.g. increase of radical substitutions).  
Here we examined the substitution patterns by using the Grantham matrix, which can be used to 
estimate differences of the amino acid substitution properties [4]. 
 
2 Materials and Methods.  
 
Date set 
We selected Buchnera aphidicola as an endocellular symbiont and Escherichia coli as a free-living 
bacterium.  We used seven complete sequences of the following prokaryotes: Buchnera aphidicola 
str. APS (Acyrhosiphon pisum), Buchnera aphidicola (Schizaphis graminum), Buchnera aphidicola 
(Baizongia pistaciae), Escherichia coli K12 MG1655, Escherichia coli O157:H7 RIMD 0509952, 
Haemophilus influenzae Rd KW20, and Salmonella enterica subsp. enterica serovar Typhi CT18. 
 
Comparison of amino acid substitutions 
We used 85 genes, of which orthology was confirmed manually [1].  We made amino acid 
alignments of orthologs among Buchnera aphidicola str. APS, Escherichia coli K12 and 
Haemophilus influenzae by using ClustalW.  Amino acid substitutions in each lineage were 
calculated by using the maximum parsimony method.  Then, we examined the difference of amino 
acid property during the substitution by using the Grantham matrix, classifying them into four 
categories: very radical, radical, moderate, and conservative [6].  Likewise, we carried out the same 
analysis for Buchnera aphidicola str. APS, Buchnera aphidicola (Schizaphis graminum) and 
Buchnera aphidicola (Baizongia pistaciae) (outgroup), and for Escherichia coli K12, Escherichia 
coli O157 and Salmonella enterica (outgroup).   
 
Motif search 
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We searched for functional motifs in Escherichia coli K12 by using InterProScan, and examined 
the positions of the amino acid substitutions in terms of the locations of the motifs.  The motif 
locations in Buchnera aphidicola str. APS were determined by using the motifs found in 
Escherichia coli K12. 
 
Estimation of dN/dS 
We estimated the nonsynonymous-synonymous ratios (dN/dS) of 85 genes between Buchnera spp. 
and between Escherichia coli and Salmonella enterica by using the Nei-Gojobori method. 
 
3 Results.  
 
If two-fold accelerated evolution in Buchnera is because of fixation of slightly deleterious or 
beneficial mutations, it was expected that the radical and very radical amino acid substitutions 
increase. However, the amino acid substitution patterns in Buchnera were not largely different from 
those in Escherichia coli.  In addition, the amino acid substitute patterns were not very different 
between the inside and outside of functional motifs in the two species.  Although dN/dS of Buchnera 
was larger than that of Escherichia coli, dN/dS of Buchnera is not different from other species 
except Escherichia coli [5].  These observations implies that the acceleration of the evolutionary 
rate is due to the enhanced mutation rate rather than the slightly deleterious or beneficial mutations. 
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Modern studies of comparative genetics in evolution and of tumor cytogenetics analyze large-scale 
genome rearrangements between species or between normal and cancer cells respectively ([2], [3]). 
When studying evolution of genomes the rearrangements (apart from fusions and fissions) are usually 
reduced to a sequence of reactions involving just two DNA breaks  (i.e. reversals within one 
chromosome and simple translocations between two chromosomes); sometimes some events involving 
three breaks (e.g. transpositions as in figure 1) are considered ([4]). 
 
Radiation cytogenetics is concerned with rearrangements of the genome caused by ionizing-radiation, 
especially with chromosome aberrations observed at the first mitosis after irradiation. Radiation 
cytogenetics has strong similarities to comparative genomics at the coarse-grained, large-scale level of 
Zoo-FISH or synteny-bloc studies.  
 
We have developed a mathematical framework, related to the well-explored theory of cubic (i.e. 3-
regular) multigraphs, for characterizing genome rearrangements, including complex ones involving 3, 
4 or more breaks in reactions not reducible to a sequence of simpler reactions each one of which 
involves fewer breaks [6]. A genome “rearrangement multigraph" specifies not only breakpoints and 
misrejoinings but also the way in which one or more chromosomes are involved (figure 1). It defines a 
unique cycle decomposition. For example, reversals (i.e. inversions) and simple translocations are 2-
break cycles, c2. Complex rearrangements such as musical chair rearrangements are higher order 
cycles (i.e. cN for N>2) or are sequences of such cycles (e.g. c4+c3+c2+c2+c1 as in figure1C). In 
radiation data, higher order cycles are biomarkers of densely ionizing radiation (such as neutrons or 
alpha particles) [5].  In contrast to evolutionary comparative genomics these higher order cycles are 
usually not regarded as successions of simpler events; the evidence speaks against the idea that there 
are enough cryptic breaks or reused breakpoints to account for the data in terms of multiple 2-break 
cycles c2. Rather, higher order cycles are considered to characterize the complexity of the DNA 
interactions (radiation-induced breaks followed by enzymatic misrejoinings).  
 
We are conducting searches for higher order cycles (cN for N>2) in the comparative genomics 
literature and databases. When comparing mouse and human genomes small (<1Mb) inversions, 
duplications, transpositions and deletions are common [1]. By lowering the resolution of the 
magnifying glass one can consider each genome as a short sequence of blocks (synteny blocks) and 
analyze the rearrangements taking one sequence of blocks into the other. In [2], Pevzner and Tesler 
compare human and mouse genomes by sorting by reversals. We here explore the possibility that 
large-scale insertions and transpositions (c3) and higher order cycles cN occur. 
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Figure 1: A. A transposition involving three breaks in one chromosome, and the corresponding 
rearrangement multigraph. Telomeres are represented by a vertex each and each breakpoint gives rise to two 
vertices in the graph. The edges represent chromatin segments (dashed lines), initial partnership between two 
free ends of one break (dotted lines), and misrejoinings (solid lines), The cycle structure is obtained by 
considering just the initial and misrejoining edges. In this case this procedure gives the cyclic graph with 6 
vertices, i.e. a 3-break cycle c3. B. 4-chromosome musical-chairs rearrangement and its rearrangement 
multigraph, c4. The multigraph uniquely specifies the rearrangement, even with four chromosomes involved. C. 
Human chromosome X and its rearrangement into mouse chromosome X as presented in [3]; c4+c3+c2+c2+c1. 
Assuming no cryptic breaks or breakpoint reusage, the multigraph shown in C results. Likewise, the multigraph 
can be used to characterize c2 interaction by adding cryptic breaks. 
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1 Introduction.

Starting in the mid '80s, Carl Woese revolutionized the field of microbiology with his ribosomal
RNA-based phylogenetic comparisons delineating the three main branches of life [5]. Today, rRNA
based analysis remains a central method in microbiology, used not only to explore microbial
diversity, but as a day-to-day method for bacterial identification. rRNA identification
(classification) methods, as opposed to phylogenetic (clustering) methods have been hindered due
to the lack of a consistent higher-level bacterial classification structure (taxonomy). This situation
changed recently, when in 2002, Bergey's Trust published a revised higher-order taxonomy
attempting to reconcile bacterial taxonomy with rRNA based phylogeny [2].

We have developed a naïve Bayesian classifier for classifying bacterial rRNA sequences into the
new Bergey's bacterial taxonomy. This classifier is fast, does not require sequence alignment and
works well with partial sequences. (The vast majority of rRNA sequences in the public databases
are partial.) This classifier is currently being used internally by the Ribosomal Database Project [1]
(RDP; http://rdp.cme.msu.edu) to organize its publicly available sequence library.

2 Data and Methods.

Small subunit ribosomal RNA sequences from approximately 4400 bacterial species type strains in
900 genera were obtained from Bergey's Trust, along with associated taxonomic assignment
information [2]. The sequences averaged 1459 bases in length with a range of 1200 - 1775 bases.
These training sequences were each labeled with a set of taxa, from domain to genus. The classifier
uses a feature space consisting of all possible eight-base subsequences (words) in the query molecule.
Word-specific priors were calculated from their frequency in the entire training set. As with text-based
Bayesian classifiers, only those words occurring in the query contribute to the score [3]. A similar
word-based classification scheme has been used to search for horizontal gene transfer events in whole-
genome sequences [4].

To classify a query, the joint probability of observing the words in the query was calculated
separately for each genus from the training set probability values. For bootstrap analysis, the
collection of all overlapping unique words in the query was first calculated. Then a subset of these
words was randomly chosen (with replacement) and the words in this subset were then used to
calculate the joint probability. (Since overlapping words are highly dependent, we conservatively
chose only one-eighth of the words for each trial.) The number of times a genus was selected out of
100 bootstrap trials was used as an estimate of confidence in the assignment to that genus. For
higher-rank assignments, we sum the results for all genera under each taxon.
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3 Results.

We tested the classifier by exhaustive leave-one-out testing. For each test, we reserved a single
training set sequence as query and re-trained the classifier on the remaining sequences. The process
was repeated for all sequences in the training set. In addition to the near-full-length sequences, we
also tested the classifier on small contiguous regions of 400 and 200 bases chosen at random from
the test sequences (Table 1). For the near-full-length and 400 base partial rRNA sequences, the
classifier was highly accurate down to the genus level, while with 200 base partial sequences the
classifier was accurate at the phylum and class levels. The bootstrap provided a good estimate of
classification reliability (Table 2). Overall, 90.4% of taxon assignments matched in 95 or more of
the 100 bootstrap trials and these assignments were correct 98.7% of the time.

This classifier is fast enough to handle large sample volumes. On a 1Ghz Apple G4 processor, it
can classify approximately 5 sequences per second (with 100 bootstrap samples of each). The new
taxonomy is still evolving as species are reevaluated and discrepancies are resolved. As these
changes occur, it has proved relatively simple to re-train the classifier and update the assignments
of the greater than 86,000 sequences in the RDP library.

length phylum (%) class (%) order (%) family (%) genus (%)
1459 99.4 98.7 97.2 94.2 91.0
400 99.2 98.4 96.6 93.0 87.7
200 91.6 87.4 77.3 60.4 46.5

Table 1: Classifier accuracy at different taxonomic ranks for varying query lengths.

Number of bootstrap assignments out of 100 trials
rank 100-95 94-90 89-80 79-70 69-60 59-50

phylum 4332/4340= 51/51 19/19 10/10 6/6 6/13
class 4186/4214 40/50 41/42 18/20 15/18 4/6
order 4005/4058 79/81 55/61 31/37 27/30 18/26
family 3705/3786 110/117 98/126 54/72 47/68 37/59
genus 3025/3113 192/207 157/191 97/126 60/95 69/108
overall 98.7% 93.2% 84.3% 79.2% 71.4% 63.2%

= Number of correct assignments over total number of assignments.
Table 2: Classifier accuracy versus bootstrap confidence estimate.
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1 Introduction  
 
Coevolution in proteins results from structural and functional constraints, and the study of 
coevolution can therefore provide valuable information about protein structure and function. Noise 
resulting from phylogeny is a major problem of coevolutionary analysis [1] [2], and to overcome 
this problem a large amount of data and efficient algorithms are required. 
 
The present study analyzed cytochrome c oxidase subunit I (COI) from 253 vertebrata species using 
maximum likelihood analysis [2]. Our results show that coevolution is related to pairwise residue 
distance, domain structure, secondary structure, and protein function. The detected differential 
coevolutionary patterns in transmembrane helices and other structures suggests that coevolutionary 
analysis might be a good method to predict helical structures based on sequences. 

 
2 Methods and Materials  
 
Vertebrata COI sequences were downloaded from GenBank and aligned using Clustalx. A 
phylogenetic tree was constructed using all 13 mitochondrial encoded proteins by NEIGHBOR of 
PHYLIP [3]. Branch lengths were added using PROML of PHYLIP [3].  

 
Following the method of Pollock et al. [1], aligned COI sequences were first segregated according 
to residual physico-chemical characters (burial preference, polarity, or side chain volume) and 
models of independent and dependent were analyzed. To decrease noise, only sites with non-zero 
and less than average substitution rates were considered. For each pair of sites considered, the 
primary statistic was the ratio of maximum likelihoods (MLs). Pairs exhibiting significant 
likelihood ratios (greater than the upper 0.2% of likelihood ratio values from parametric 
bootstrapping) were extracted as hypothetical coevolved pairs. These pairs were further examined 
based on C-alpha distances, domain locations, and secondary structures. 

 
 

3 Results  
 
Stronger coevolution was detected in transmembrane helices, indicating that the degree of 
coevolution is domain dependent (Table 1). Pairs with short distances exhibited stronger 
coevolution, suggesting that residual distance is an important factor for coevolution (Figure 1). 
Functional properties are also related to coevolution because a large cluster of sites (20 sites) that 
showed correlated coevolution was found to co-localize with supposed H+ and water release 
channels. In the central region of transmembrane helices (the first loop on the two ends of each 
helix were excluded), pairs separated by less than 11 residues along the chain had very weak 
coevolution (0 coevolved pairs detected) with side chain volume segregation (Table 2). This weak 
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coevolution could be one character of the evolution of the transmembrane helices and may be used 
for secondary structure prediction. 
 
Clustering Locations Pairs observed Percentage of coevolved pairs 

All locations 6293 2.78 
Transmembrane domain 2926 3.73 
Surface domains 345 2.32 

Polarity 
segregation 

Across domains 3022 1.92 
Table 1: Differential coevolution in different domain structures. Results segregated according to residual polarity 
are shown. Results of other two segregations are similar. 
 
 
     Burial preference segregation 

TotalPairs            CoevolvedPairs 
  Side chain volume segregation 
TotalPairs         CoevolvedPairs 

CRH    66                                5     67                          0 
Non-CRH   133                              11    148                        13 
Table 2: Comparing coevolutions in central regions of helices (CRH) to other regions (Non-CRH). Pairs are those 
with two sites 10 or fewer residues apart. Results of polarity segregation are similar to those of burial preference 
segregation 
 
 
 

 
Figure 1: C-alpha pairwise distance distribution showing that pairs having short distances are more likely to 
coevolve.  Coevolved pairs, solid line; all observed pairs, broken line. Vertical axis, frequency; horizontal axis, 
pairwise C-alpha distance in A°. Results shown are from burial preference segregation (results from other two 
segregations are similar). 
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distribution of paralogs
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1 Introduction.

Several sequences of genomes have been recently established. This creates an unprecedented
chance of understanding a genomes’ evolution and organization. The data allows us to study
a genome not only as simply a set of genes, but also as a dynamic collection of genes which
changes in time. Various biochemical and evolutionary processes constantly act on genomes
and drive them to evolve dynamically.

Two genes are called homologous if they are of the same evolutionary origin. When
two homologous genes belong to the same genome they are called paralogs. The homology
means common evolutionary origin and as such, when applied to two particular genes, can
be stated only as a hypothesis. Homologous genes should show some level of similarity as
sequences. It is clearly conceivable that in case of distant homology (i.e. when divergance
has occurred very long time ago) the similarity level may be too low to distinguish it from the
random event. In our model the event of mutation represents an accumulated evolutionary
divergence beyond which it is impossible to tell two genes being homologous (even though,
as it follows from our definition of homology, they never cease being homologous).

In recent 5 years, many publications concentrate on quantitative comparative analysis of
the frequency distributions of genes. Initially, these papers concentrate mainly on empirical
analysis of the available genomes [4, 5, 1, 2]. Their authors claim different distributions of
gene families sizes. Recently, Koonin’s group has developed a simple model that based on
a well known a birth-and-death model with an innovation process [3]. Unfortunately, one of
the drawbacks of this model is that it sets apriori a bound on the family size.

In this note we propose a new model of genome evolution without the above mentioned
limitation.

2 Model of genome evolution.

In order to express the concept of gene homology we will assume that all genes we are working
with are colored. The convention will be that genes with the same color are homologous and
genes of different colors are not homologous. We will assume that we have an unlimited
supply of colors. A genome is a finite set of colored genes. A gene family in a genome is a
set of all genes of that genome which have the same color. We group families according to
their size. For any i > 0, let Ci denote the class of all i element families of the genome.

Evolution of genomes will be modeled by a Markov chain. States of the Markov chain are
genomes. The transition from a genome G to G′ is based on the following process of evolution

which is performed independently for each gene of G. Let pR, pM , pD, pU be non negative
reals such that pR + pM + pD + pU = 1. A gene, which is subject to the process of evolution

1Institute of Informatics, Warsaw University, ul. Banacha 2, 02–097 Warsaw, Poland.
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is: removed from the genome, mutated 2, duplicated 3 or unchanged with probabilities pR,
pM , pD and pU , respectively. Since the processes of removal, mutation and duplication
are independent of each other as the evolutionary events, it follows that we can assume that
pR, pM , pD are pairwise different. Moreover, it is natural to assume that pU >> pR+pM +pD.

3 Main results.

Let C
(n)
i

be the expected value at time n of the cardinality of the class Ci in the described
Markov chain with the initial state being a one element genome. It follows that the long
term behavior of this chain falls into one of the following two categories: eventually all genes
disappear (when pR ≥ pD) with probability 1, or the total population of genes expotentially
increases to infinity (when pR < pD). Nevertheless, we are interested in studying the relative

proportions between C
(n)
i

and C
(n)
i+1 with n turning to infinity. This coreresponds to the

possibility of observing the distribution of paralogs in a genome which has evolved for a
sufficiently long time.

Model with mutation. Using computer simulations, we were able to discover elemen-
tary properties of our model. These calculations show that our results are in accord with
real biological data published in the mentioned papers.

Model without mutation. In this case, we have proved the following

Theorem Let pM = 0 and pR 6= pD. Then the sequence (C
(n)
1 , C

(n)
2 , . . .) leads neither to

geometric nor to logarithmic distribution.

However, when probabilities pR and pD are relatively small, computer simulations show
that the observed distribution prefectly matches the geometric one. On the contrary, when
these probabilities increase, then the geometric distribution does not fit the data at all.
An additional assumption pD < pR also allows us to prove that this distribution does not
lead to power law.
Remark. Our computer simulations are based on computing a generating function of the sequence

(C
(n)
1 , C

(n)
2 , . . .), rather than on randomized simulations of the Markov chain. There is an analytic

formula for this function.
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1 Introduction.  
 
Recombination of divergent proteins is an important means of generating diversity and developing 
functional innovation in both natural evolution and protein engineering. As proteins diverge, there 
is an inherent tradeoff between the probability of creating a useful innovation and the probability 
that the recombinant protein no longer functions properly, but the dynamics of this tradeoff are 
largely unknown.  Here, we use model proteins to explore how divergence alters function in 
recombinants protein in detail. 

 
2 Model and Methods. 
 
We modeled proteins as compact structures on a two-dimensional lattice, with folding energies 
obtained from Miyazawa-Jernigan amino acid potentials. Sequences were of length 25 and they could 
fold into 1081 compact 5x5 structures. For a given sequence the potential energy of folding to a 
specific structure (or fold), can be given by the summation of potentials from all interaction pairs; 
thus, the equilibrium probability that a protein sequence will fold to confirmation can be given by 
Boltzmann statistic. We model evolution in constant-size haploid populations of 1000 individuals with 
mutation rates of 0.05 mutations per proteins per generation. Individual fitness is based primarily on 
the probability of folding into the “native” or functional structures, fN, which are usually pre-specified 
in our simulation. The populations were initialized with ten random sequences at equal frequency and 
were allowed to evolve to equilibrium. At equilibrium, the populations were duplicated and each 
population was then allowed to evolve independently under identical conditions. Samples were taken 
every 500 steps (sampling intervals). At each sampling point, the most frequent sequences in each 
population were recombined at all 24 possible sites (thus 48 recombinants produced) and probabilities 
of folding into the native structures and all alternative structures were evaluated at each recombination 
site. We classify structures based on the designability (Ds) which is defined as the fraction of 
random sequences that will fold to the structure with a probability of at 98%. We sorted structures 
into high(CH), medium(CM) and low(CL) designable groups. There are 10 structures in CH group 
with Ds≥1%. The CM group consists of 24 randomly sampled structures with 0.1%≤Ds<1% , and 
CL  group consists of 32 randomly sampled structures with Ds<0.1%. The structural occupancy in 
evolution is defined as the average probability of protein fold to that structure over recombinants at 
each sampling point and over evolution time.  

 
3 Results and Figures.  
 
Although highly designable structures have, by definition, many more sequences that will fold into 
their structure, it is not designability but the sharing of contact pairs that determines the degree to 
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which mutants will partially fold into an alternative structure in recombinants (figure1). The 
occupancy of alternative structures in the recombinants is consistently about seven times higher in 
the low-designable structures than in the medium- and highly designable structures. The retention 
of the structure in the recombinants is much worse for the low designable structure than for the 
high or medium designable structure in the evolution (figure2). The location of the least foldable 
recombinants is very well predicted by the number of interactions that are disrupted in the 
recombination, As the crossover position gets closer to the most disruptive point, the recombinants 
have lower and lower fitness, For the high and medium designable structures this trend is slight, but 
for the low designable structures the trend is steeper, and the recombinants become dramatically 
less fit when they are very close to the most disruptive point (figure3). Our results, based on a 
simple but effective model, show that the designability of the native structure and crossover site 
have a dramatic effect on the fitness of recombinants in the evolution; The contact pairs overlap 
determines which alternative structure will arise in the mutants.  
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Figure1.The occupancy of alternative structure 
is correlated with its contact pairs overlap with 
native structure 
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Figure2. Fitness in the recombinants keeps high in 
high designable structure and get much lower in the 
low designable structures along the evolution. 
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Fitting nonreversible substitution processes to

multiple alignments

Von Bing Yap 1

Keywords: DNA base substitution, maximum likelihood, EM algorithm
Consider a DNA base substitution model on a rooted phylogenetic tree with initial distri-

bution x and rate matrix Q. This process is stationary if x is the equilibrium distribution of
Q, i.e., xQ = 0, and it is reversible if in addition, the detailed balance condition is satisfied:

XQ = Q
′

X,

where Q′ denotes the transpose of Q and X is the diagonal matrix with x as its diagonal.
Thus, this model allows base composition to evolve and is more general than the reversible
models used in routine phylogenetic analysis. Given a multiple alignment related by a rooted
tree, the EM algorithm introduced by Holmes and Rubin for fitting reversible models [2]
turns out to be an efficient tool for fitting the present nonreversible model. This algorithm
is applied to two datasets described by Yang [3]: six primate ψη globin pseudogenes, and
mitochondrial DNA from nine primates. The estimate of Q from the pseudogenes is similar
to previous estimates by Yang and by Arvestad and Bruno [1]. However, on the mtDNA,
the new estimate is very different from Yang’s. Generally, the new estimates fit the data
better in the sense that the predicted base compositions are closer to the observed base
compositions.

If it is known that the root lies on a particular branch, then its distance from a reference
node can also be estimated jointly with x and Q, by maximum likelihood. On the pseudogene
dataset, the most likely root position is at orangutan, followed very closely by spider monkey,
the latter being intuitively more sensible. On the mtDNA dataset, the most likely root
position is at the node connecting orangutan to the others. Another local maximum is
somewhere on the branch conneting the ancestors of gibbon and crab-eating macaque.
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A Web of Prokaryotic Life

Stefan R. Henz,1 Daniel H. Huson,2 Alexander F. Auch,2 Vincent Moulton, 3 and
Stephan C. Schuster1

Keywords: molecular evolution, tree of life, web of life, prokaryotes, consensus methods

1 Introduction.

The evolution of species is generally believed to be a branching process [3] and, thus, the
ultimate goal of phylogenetic analysis is to compute the “Tree of Life”. However, there are
a number of evolutionary mechanisms such as hybridization, recombination or swapping of
genes, that may imply that evolutionary history is perhaps more accurately described by a
“Web of Life” [2], that is, by a network that generalizes the concept of a phylogenetic tree
[1, 7, 6].

Traditionally, in molecular phylogeny, trees are built from singular phylogenetic markers
such as 16S rRNA [8]. In Figure 1(a) we show such a tree for 91 prokaryotes. More recently,
given the rapidly rising abundance of whole genome sequences, it has become possible to
base such phylogenies on many different molecular markers, such as different shared genes,
gene-order or gene-content, for example. In Figure 1(b) we show a phylogenetic “consensus
network” [5] for the same 91 prokaryotes based on their 30 most conserved genes [4]. This
graph shows every split that occurs in two or more of the 30 trees. By increasing this
threshold, one obtains increasingly less cluttered graphs (not shown here). This phylogenetic
network gives a good indication of which parts of the phylogeny shown in Figure 1(a) are
supported by the 30 genes, and which parts potentially have multiple evolutionary histories.
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2

Figure 1: (a) A tree of prokaryotic life based on 16S rRNA. (b) A “web” of prokaryotic
life based on the 30 most conserved genes.
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C o m p u t a t i o n a l  T a r g e t  D i s c o v e r y :  U s i n g  H M M s  t o 
I d e n t i f y  t h e  D r u g g a b l e  P r o t e o m e 

J o a n n e  I .  A d a m k e w i c z 1,  R .  G l e n n  H a m m o n d s 2

K e y w o r d s:  T ar g e t d is co v er y ,  H M M ,  P f am , p ro te in  cl as sif ic ati o n , en z y m es,  d ru g s

1  A b s t r a c t . 

W e  p r e s e n t  a  m e t h o d  f o r  t h e  c l a s s i f i c a t i o n  o f  p r o t e i n s  f o r  t h e  p u r p o s e  o f  t a r g e t 
d i s c o v e r y .   U s i n g  t h e  f u n c t i o n a l  h i e r a r c h y  o f  t h e  E n z y m e  C o m m i s s i o n  ( E C ) 
c l a s s i f i c a t i o n ,  w i t h  e x t e n s i o n s  w h e r e  r e q u i r e d ,  w e  c l a s s i f i e d  o v e r  9 0 0 0  p u b l i c l y 
a v a i l a b l e  H i d d e n  M a r k o v  M o d e l s  ( H M M s )  r e p r e s e n t i n g  e v o l u t i o n a r i l y  c o n s e r v e d 
p r o t e i n  d o m a i n s ,  n o t i n g  c a t a l y t i c  a c t i v i t y  a n d  o t h e r  p r o p e r t i e s .   W e  u s e  4  f u n g a l 
g e n o m e s  w i t h  d i f f e r i n g  l e v e l s  o f  a n n o t a t i o n  t o  i l l u s t r a t e  h o w  t h e  m e t h o d  c a n 
r a p i d l y  i d e n t i f y  a l l  p o t e n t i a l l y  “ d r u g g a b l e ”  g e n e s  i n  a  g e n o m e  o f  i n t e r e s t ,  u s i n g 
o n l y  p u b l i c l y  a v a i l a b l e  s o f t w a r e  a n d  d a t a .   T h e  m o d e l  c o l l e c t i o n  c u r r e n t l y 
c o v e r s  8 8 %  o f  t h e  5 2 4 7 5  S w i s s - P r o t  p r o t e i n  e n t r i e s  w i t h  E C  a s s i g n m e n t s . 
T h o s e  e n z y m a t i c  p r o t e i n s  n o t  h i t  b y  t h e  c o l l e c t i o n  w i l l  d i r e c t  b u i l d i n g  o f 
c u s t o m  H M M s . 

2  I n t r o d u c t i o n . 

M o d e r n  t a r g e t  d i s c o v e r y  h a s  b e c o m e  a  p r o c e s s  o f  s i f t i n g  w h e a t  f r o m  c h a f f . 
W i t h  f u l l  g e n o m e  s e q u e n c e  a v a i l a b l e  f o r  m a n y  o r g a n i s m s ,  t h e  n u m b e r  o f 
p o s s i b l e  t a r g e t  g e n e s  i s  i n  t h e  t h o u s a n d s  o r  t e n s  o f  t h o u s a n d s  f o r  e a c h  s p e c i e s  o f 
i n t e r e s t .   V a l i d a t i n g  p o t e n t i a l  t a r g e t s  v i a  b i o l o g i c a l  e x p e r i m e n t s  i s  l a b o r - 
i n t e n s i v e  a n d  t i m e - c o n s u m i n g ,  y e t  i f  t h e  p r o d u c t  o f  a  g e n e  i s  n o t  a m e n a b l e  t o 
m o d u l a t i o n  b y  d r u g  t h e r a p y ,  p r i o r  b i o l o g i c a l  v a l i d a t i o n  w o r k  i s  w a s t e d .   A s  a 
f i r s t  s t e p  i n  t h e  d r u g  d i s c o v e r y  p r o c e s s ,  t h e n ,  i t  i s  h i g h l y  c o s t - e f f e c t i v e  t o 
r e s t r i c t  y o u r  f o c u s  t o  t h e  f r a c t i o n  o f  a n  o r g a n i s m ’ s  g e n e s  t h a t  a r e  c o n s i d e r e d 
d r u g g a b l e  a c c o r d i n g  t o  c r i t e r i a  d e f i n e d  f o r  e a c h  s p e c i f i c  p r o j e c t .   I d e a l l y ,  t h e 
f i l t e r i n g  p r o c e s s  w o u l d  b e  r a p i d  a n d  a u t o m a t e d ;  a p p l i c a b l e  t o  a n n o t a t e d , 
u n a n n o t a t e d ,  a n d  e v e n  p a r t i a l  g e n o m e s ;  f l e x i b l e  ( s o  e a c h  u s e r  c a n  d e f i n e  t h e i r 
o w n  c r i t e r i a  f o r  s e l e c t i n g  d e s i r e d  t a r g e t s ) ;  u s e  o n l y  p u b l i c l y  a v a i l a b l e  s o f t w a r e 
a n d  d a t a ;  a n d  b e  a p p l i c a b l e  t o  a n y  s p e c i e s  o f  i n t e r e s t . 

W e  p r e s e n t  h e r e  a  c u r a t i o n  o f  p u b l i c l y  a v a i l a b l e  m o d e l s  ( o r  a l i g n m e n t s  t h a t  c a n 
b e  m a d e  i n t o  m o d e l s ) ,  w h i c h  h a s  p r o v e n  u s e f u l  i n  t a r g e t  s e l e c t i o n  a n d  p r a c t i c a l 
t o  i m p l e m e n t  u s i n g  l a r g e l y  o f f  t h e  s h e l f  s o f t w a r e .   T h e  e s s e n c e  o f  o u r  c u r a t i o n 
i s  a  c l a s s i f i c a t i o n  o f  t h e  m o d e l s  i n t o  c a t e g o r i e s  o f  i n t e r e s t  t o  o u r  c u s t o m e r s : 
b i o l o g i s t s  a t  b i o t e c h  o r  p h a r m a c e u t i c a l  c o m p a n i e s .   T h i s  c l a s s i f i c a t i o n  a l l o w s 
b i o l o g i s t s  t o  q u i c k l y  s e l e c t  c a n d i d a t e  t a r g e t s  f o r  a  w i d e  v a r i e t y  o f  p r o j e c t s 
b a s e d  o n  u s e r - d e f i n e d  c r i t e r i a . 
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3  M e t h o d s  a n d  R e s u l t s . 

M o d e l s  o r  a l i g n m e n t s  w e r e  o b t a i n e d  b y  d o w n l o a d  f r o m  P f a m [ 1 ] ,  I n t e r p r o [ 2 ]  f o r 
S M A R T  [ 3 ]  m o d e l s ,  T I G R  [ 4 ] ,  N C B I  f o r  C O G  [ 5 ]  a l i g n m e n t s ,  a n d  A f f y m e t r i x 
f o r  G P C R  m o d e l s  [ 6 ] .  I n  a d d i t i o n ,  c u s t o m  a l i g n m e n t s  w e r e  b u i l t  a s  d e s i r e d  t o 
c o v e r  a d d i t i o n a l  p r o t e i n  f a m i l i e s .   A l i g n m e n t s  w e r e  c o n v e r t e d  t o  m o d e l s  w h e r e 
n e c e s s a r y  u s i n g  e i t h e r  h m m e r  o r  S A M ,  w i t h  l a t e r  c o n v e r s i o n  o f  a l l  m o d e l s  t o 
h m m e r  f o r m a t .   T h e  r e s u l t i n g  m o d e l  c o l l e c t i o n  w a s  c u r a t e d  i n  c o l l a b o r a t i o n  w i t h 
b i o l o g i s t s  v i a  a u t o m a t e d  t e x t  c l a s s i f i c a t i o n  f o l l o w e d  b y  m a n u a l  i n s p e c t i o n . 

W e  e s t i m a t e  t h e  f r a c t i o n  o f  k n o w n  e n z y m e s  c o v e r e d  b y  t h e  c u r r e n t  m o d e l 
c o l l e c t i o n  f r o m  t h e  f r a c t i o n  o f  S w i s s P r o t  s e q u e n c e s  a n n o t a t e d  w i t h  a n  E C 
n u m b e r  r e t r i e v e d  b y  a n y  e n z y m a t i c  m o d e l  i n  t h e  c o l l e c t i o n :  8 8 %  ( E  v a l u e  < =  1 ) . 

G i v e n  t h e  c u r a t e d  c o l l e c t i o n ,  t h e  m o d e l s  a r e  t h e n  r u n  a g a i n s t  a  p r o t e o m e  o f 
i n t e r e s t  u s i n g  t h e  h m m p f a m  o r  h m m s e a r c h  a l g o r i t h m s .   T h e  r a w  o u t p u t  f i l e s  a r e 
p r o c e s s e d  a n d  s t o r e d  i n  a  d a t a b a s e  f o r  e a s i e r  s e a r c h i n g  a n d  d o w n s t r e a m 
a n a l y s i s .   E a c h  s e q u e n c e  h i t  b y  o n e  o r  m o r e  d o m a i n s  t h e n  i n h e r i t s  t h e 
c l a s s i f i c a t i o n  o f  t h o s e  d o m a i n  h i t s ,  a c c o r d i n g  t o  p r i o r i t i e s  a s  s e t  b y  t h e  u s e r . 
F o r  n e w l y - s e q u e n c e d  g e n o m e s  w h e r e  n o  p r o t e i n  p r e d i c t i o n s  a r e  a v a i l a b l e ,  g e n e 
p r e d i c t i o n  t o o l s  s u c h  a s  O r f i n d e r  c a n  b e  u s e d  i n  c o m b i n a t i o n  w i t h  H M M s 
c a l i b r a t e d  t o  f i n d  p a r t i a l  m a t c h e s  t o  a  d o m a i n . 

T o  i l l u s t r a t e  t h e  u t i l i t y  o f  t h e  c u r a t e d  m o d e l  c o l l e c t i o n ,  w e  a n a l y z e d  4  f u n g a l 
g e n o m e s  i n  v a r i o u s  s t a t e s  o f  s e q u e n c i n g  a n d  g e n e  a n n o t a t i o n :   S a c c h a r o m y c e s 
c e r e v i s a e ,  S c h i z o s a c c h a r o m y c e s  p o m b e ,  U s t i l a g o  m a y d i s ,  a n d  P h a n e r o c h a e t e 
c h r y s o s p o r i u m .   W e  p r e s e n t  c o m p a r a t i v e  r e s u l t s  f o r  c l a s s e s  o f  p a r t i c u l a r 
i n t e r e s t ,  i n c l u d i n g  k i n a s e s ,  p r o t e a s e s ,  a n d  g l y c o s y l t r a n s f e r a s e s ,  a n d  s h o w  t h a t 
t h e  m e t h o d  c a n  b e  u s e d  s u c c e s s f u l l y  w i t h  a n  u n a n n o t a t e d  g e n o m e  b y  a d d i n g  a n 
O R F - f i n d i n g  s t e p . 

R e f e r e n c e s 

[1] Bateman, A. et al. 2004  The Pfam protein families database.  Nucleic Acids Research 32: D138-D141

[4]  Haft DH, Selengut JD, White O. 2003 The TIGRFAMs database of protein families. Nucleic Acids Research
31:371-3.

[3] Letunic, I., Copley, R.R., Schmidt, S., et al. 2004 SMART 4.0: towards genomic data integration.  Nucleic
Acids Research 32: D142-D144

[2] Mulder N.J., Apweiler R., Attwood T.K., et al. 2003 The InterPro Database, 2003 brings increased coverage
and new features. Nucleic Acids Research 31:315-318.

[6] Shigeta R., Cline M., Liu G., and Siani-Rose MA. 2003 GPCR-GRAPA-LIB-a refined library of hidden
Markov Models for annotating GPCRs Bioinformatics 19:667-668.

[5] Tatusov RL, Natale DA, Garkavtsev IV, et al. 2001 The COG database: new developments in phylogenetic
classification of proteins from complete genomes. Nucleic Acids Research 29: 22-8.

Dana Jermanis


Dana Jermanis
Molecular Sequence Analysis 

Dana Jermanis
304



 
 

Phylogenetic Relationship of Sessile Barnacles Based 
on Mitochondrial DNA 

 
Rowshan Ara Begum1,  Toshiyuki Yamaguch2.  Shugo Watabe1 

 
Keywords: 12S rRNA, 16S rRNA, sessile barnacle, Chthamalus, Megabalanus, Tetraclita, molecular 
phylogeny 
 

1 Introduction.  
 
Barnacle, a sessile organism abundantly distributed in the intertidal area, occupies an important 
phylogenetical position in Crustacea due to diverged speciation.   Previous attempts by several groups 
could not unequivocally establish a phylogenic relationship within closely related barnacles because 
of inconsistency in phylogenetic data derived from nuclear DNA [1]  in comparison with those from 
morphology [2] .   To resolve such dispute over the phylogeny of barnacle, especially for sessile 
barnacle, the relationship was reinvestigated based on mitochondrial DNA (mtDNA). 
 
2 Materials and Methods. 
 
Three species of sessile barnacle, Chthamalus challengeri, Tetraclita japonica and Megabalanus 
volcano, and one goose barnacle, Capitulum mitella, were collected from the coastal region of the 
Pacific ocean near Miura Peninsula, Kanagawa Prefecture, Japan and the muscle tissues were 
subjected to DNA extraction.   PCR was employed to amplify the partial nucleotide sequence of the 
12S and 16S rRNA genes of mtDNA. 
 
3 Results and Discussion. 
 
Amplified DNA fragments encoding partial lengths of the 12S rRNA and 16S rRNA genes contained 
350 and 450 bp, respectively (Figure 1).   Both neighbor joining and maximum parsimony analyses 
based on 12S rRNA and 16S rRNA separately and on combined data produced a monophyly of the 
three sessile barnacle species from different genera while the goose barnacle formed a paraphylic 
group with the three sessile barnacles.   However, based on the12S rRNA gene alone, the two sessile 
barnacle species, M. volcano and C. challengeri, formed a different group than T. japonica.   On the 
other hand, based on the 16S rRNA gene and combined data of the 12S and 16S rRNA genes, 
however, M. volcano and T. japonica appeared to be the closest relatives among the three sessile 
barnacle species (Figure 2).   These results were congruent with those based on larval characters [3] 
and the nuclear 18S rRNA gene [1] reported previously, but differed from morphological 
classification [2].   Thus, the 16S rRNA gene may be considered to be more reliable than the 12S 
rRNA gene to investigate the phylogenetic relationship at the generic level within sessile barnacle 
species as far as the present three genera are concerned. 
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Figure 1: A schematic diagram of a part of the mitochondrial DNA showing the amplified regions.  
Shaded areas represent the amplified region and ‘V’ indicates tRNAVal. 
 

 
Figure 2: Molecular phylogenic trees for Capitulum mitella, Chthamalus challengeri, Megabalanus 
volcano and Tetraclita japonica according to the neighbor joining (NJ) and maximum parsimony 
(MP) methods based on the partial nucleotide sequences of the 16S rRNA gene and based on the 
combined data of the 12S rRNA and 16S rRNA genes.   Identical phylogeny was obtained for the 16S 
rRNA alone and combined data.   Numbers above the branches indicate bootstrap values from 1000 
replicates using the NJ method based on the 16S rRNA gene only, whereas the numbers of the 
parentheses indicate the bootstrap values according to the MP method.   The bootstrap values of the 
NJ and MP methods of combined data are shown below the branches.   The nucleotide sequences of 
Daphnia pulex and Penaeus monodon were cited from the GenBank database with accession numbers 
NC000844 and NC002184, respectively, in order to root the molecular phylogenic tree. 
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Resequencing the Human Genome using 
Short Sequence Fragments

Anthony J. Cox1,  Lisa J. Davies2,  Clive G. Brown3

Keywords: Whole genome resequencing, single molecule array, sequence alignment.

1 Introduction

Now that the sequence of the human genome is essentially complete, attention has turned towards
the challenge of characterizing the variation in the genome across the human population, as
exemplified by initiatives such as the HapMap project [3].

Solexa’s Single Molecule Array platform will allow the massively parallel sequencing of millions
of short DNA fragments and other groups are seeking to provide similar data by different means. It
is therefore a pertinent time to consider what information can be gleaned about an individual
human genome from short (20−30 bp) fragments of its sequence. We describe a method of
predicting whether sequence fragments of a given length can be used to detect single base
variation at any given point in the human genome. 

2 Discussion

Sequence fragments of say 20−30 bases in length are not likely to permit a de novo assembly of the
human genome (although some assembly of contigs may be possible), but it is anyway more
sensible to take an approach that makes use of the high quality reference sequence that is already
available. Instead, then, one can take each fragment and try to find its most likely origin in the
genome, a task that is possible only if the fragment has a unique "best match" in the genome.
Uniqueness is also a prerequisite for the successful design of oligonucleotide probes for
microarrays, a consideration that motivated a recent paper by Healy et al [2], which described a
method of annotating the human genome using counts of exact occurrences of fragments, together
with an efficient algorithm for the substantial amount of computation involved.

A similar annotation method would suffice for us to decide whether a fragment drawn from a given
position in the reference genome could be uniquely mapped back to that spot. However, in practice
both mutations in the genome being sequenced and errors caused by the sequencing process will
manifest themselves as differences between the fragment and its originating position in the
genome. We would like to know how these differences will affect our ability to assign the fragment
to its correct position. For this, we need an annotation method that incorporates information about
inexact copies of fragments within the genome.

1
 Solexa Limited, Chesterford Research Park, Little Chesterford, Essex CB10 1XL, United Kingdom. 
anthony.cox@solexa.com
2
 lisa.davies@solexa.com

3
 clive.brown@solexa.com 
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We can think of two fragments as being "neighbours" if they differ only by a few bases and so any
fragment will have a "neighbourhood" of similar fragments scattered throughout the genome. If its
neighbourhood is sparsely populated, then errors or mutations are less likely to cause a sequenced
version of the fragment to be erroneously mapped to one of its neighbours instead. 

We show [1] that the neighbourhoods of the set of fragments that overlap a given base position in
the genome can provide an accurate forecast of our ability to detect a single base variation at that
base position using short sequence fragments of a given length. A new algorithm has enabled us to
surmount the computational challenge of computing the neighbourhood of every fragment in the
human genome in a reasonable time on modest hardware. This data has been used to annotate every
base in the human genome with our prediction of our ability to detect a single base variation at that
point using fragments of 20, 25 and 30 bases in length. We discuss our ability to detect variation in
loci and other regions of particular interest within the human genome.
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Detecting correlated amino acid substitutions using
Bayesian phylogenetic techniques

Matthew W. Dimmic, 1 Melissa J. Todd, 2 Carlos D. Bustamante, 3

Rasmus Nielsen 4

Keywords: protein coevolution, mutational mapping, MCMC, likelihood models

1 Introduction

The evolution of protein sequences is constrained by complex interactions between amino
acid residues. Because harmful substitutions may be compensated by other substitutions
elsewhere in the protein, residues can co-evolve. Identification of these coevolving sites can
aid in the prediction of binding sites between protein domains, as well as providing insight
regarding the process of protein evolution and adaptation.

We describe a Bayesian approach and MCMC computational techniques to detect cor-
related substitutions in protein families. This method minimizes errors due to phylogenetic
correlations by exploiting the information in the evolutionary tree, yet it does not require
prior knowledge of the true tree topology. Variance in the estimates of branch lengths and
mutation rate are also accounted for, and posterior predictive distributions are used to de-
termine the significance of each putative correlation. The sensitivity of several different test
statistics are assessed under varying evolutionary conditions using simulated datasets.

2 Methods

The method is based upon the notion that coevolving sites will be more likely to substitute
along the same branch of the evolutionary tree, and that these co-substitutions can be
inferred using ancestral reconstruction (e.g. [1]). In some cases, however, the true tree may
be difficult to determine, and variation in evolutionary rate and branch length can bias the
results [5] and mislead the parsimony reconstruction.

To account for these issues, we use the MCMC approach in MrBayes [2] to draw from the
posterior distribution of tree topologies, evolutionary distances, and GTR model parameters.
Customized software has been written to assign rates to each site for each posterior draw,
and a Bayesian mutational mapping technique [3] (BMM) is then used to assign mutations
to branches of the tree for each site pair of interest. Once these mutational maps have been
calculated, a set of test statistics are used to detect whether coevolution is occurring at each
site pair. To assess the significance of each test, posterior predictive P-values are calculated
using MCMC simulation [4].

To assess the power and sensitivity of the BMM method under various conditions, it
was evaluated on codon sequences simulated under a model of correlated evolution. The
substitution rate for an i, j amino acid substitution at site A given amino acid k at site B is

qij = µωAgije
ρAB(ψjk−ψik)

1Biological Statistics and Computational Biology Department, Cornell University, Ithaca, New
York. E-mail: mdimmic@umich.edu

2E-mail: melissa@mail.bscb.cornell.edu
3E-mail: cdb28@cornell.edu
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The first portion is similar to previous codon models: µ is the nucleotide substitution
rate, ωA is the selection parameter for making any nonsynonymous change at site A, and gij
is the rate of nucleotide substitution for the nucleotide change required to go from amino acid
i to j. The exponential term introduces the correlation: ρAB is the strength of correlation
between amino acid sites A and B, and ψik and ψjk is the favorability or unfavorability
of interaction between the amino acid pairs i, k and j, k respectively. In the case where
ρAB = 0, the sites become independent.

3 Results

With the correct choice of test statistic, the Bayesian mutational mapping (BMM) approach
can provide significant improvement over methods which do not account for uncertainty in
topology or parameter estimates. For example, on a 32-sequence tree with moderate levels
of simulated correlation and evolutionary rate, the best test statistic (Z) detected 70% of the
truly correlated sites, with no false positives (see Table 1). As the strength of the correlation
is decreased the sensitivity also decreases, but the number of false positives remains low.
The BMM method can reliably detect coevolving sites in difficult phylogenetic situations,
such as when branch lengths are long (i.e., the sequences are distantly related with few close
homologs) or when there is extreme rate variation. Preliminary results on real datasets
indicate that the BMM method can detect weak levels of correlated evolution at protein
domain interfaces.

Z LR c+ S− Tcorr
µ .05 .01 .05 .01 .05 .01 .05 .01 .05 .01

0.10 39% 5% 16% 5% 32% 2% 38% 2% 10% 2%
0.25 70% 25% 45% 19% 46% 24% 40% 18% 17% 4%
0.50 88% 71% 83% 59% 61% 36% 32% 14% 33% 20%
0.75 100% 90% 94% 80% 91% 61% 36% 21% 42% 21%

Table 1: Sensitivity (TP/(TP+FN)) of some test statistics used in the BMM method at the
α = 0.05 and α = 0.01 cutoffs for the test statistic’s P-value. Datasets were simulated at ρ = 1 with
different evolutionary rates µ, which is the number of expected nucleotide changes per codon site per
branch under no correlation. The first three test statistics use a likelihood model, while the last two
are model-independent. False positive rates for uncorrelated sites are not shown, but in all cases are
2% or less.
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Modification of proteins in the course of evolution leads to the emergence of new specificities, altered 
recognition properties, or changes in their biological functions. Extreme proliferation of some families 
within an organism, perhaps at the expense of other families, may correspond to functional 
innovations during evolution [1]. Phylogenetic analysis for inferring relationships among genes and 
reconstructing evolutionary events provide a powerful way to interpret an increasing body of sequence 
data and enables investigation into the mechanisms that have led to the establishment of particular 
biological functions (e.g., convergent evolution, evolution by enzyme recruitment) [2]. However, the 
level of resolution of existing genetic sequence analysis tools sometimes is not sufficient for high-
resolution genetic sequence analysis.  
 
To assist such analyses we have developed the following tools for analysis of protein families: 1. 
PhyloBlocks (http://compbio.mcs.anl.gov/ulrich/phyloblock) is an interactive tool that allows an 
expert to analyze protein functions in a framework of phylogenetic information and to develop high-
resolution HMM profiles for particular implementation of protein function interactively and 2. 
SVMmer (http://compbio.mcs.anl.gov/svmmer) (in collaboration with N. Samatova, ORNL), is a tool 
for classification of protein families using a support vector machines (SVM) algorithm. 

Analysis of protein families using PhyloBlocks involves several steps. First, sets of protein sequences 
corresponding to a particular family (e.g. COGS [3], HobaGen [4], WIT3 [5], or a set of homologs 
from Blast) are aligned by using CLUSTALW [6]. Then the resulting CLUSTALW tree is presented 
to the user. The user can choose particular subsets of sequences (for example, sequences 
corresponding to particular protein function or particular version of enzyme) and submit them to 
Blockmaker [7] for the development of specific hidden Markov models-based (HMM-based) Blocks 
profiles. Resulting profiles can be saved in PhyloBlocks database and later used for characterization 
and annotation of proteins. PhyloBlocks also allow users to compare HMM profiles for different 
families and to identify features that are common or variable between the families. PhyloBlocks 
allows for increased efficiency and precision of high-throughput automated genetic sequence analysis.  
Such increased resolution and accuracy of predictions is essential for the development of metabolic 
reconstructions and flux analysis of metabolic networks. It also allows for the identification and 
characterization of different implementations of functions characteristic of a species or taxonomic 
group or of a specific environmental niche (i.e. hypothermophilic, psychrophylic, high salinity 
environments, etc). Resultant specific HMM profiles may be used for the development of the SVM 
models in SVMer for automated classification of proteins in newly sequenced genomes as well as for 
the development of relevant PCR primers for experimental identification and characterization of genes 
of interest. The poster will present the results of analysis of evolution of the aminotransferases II 
family using PhyloBlocks [8] and SVMMER [9]. 
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Anchors:  Pre-Classification and its Effects on
Hidden Markov Models

Jeremy Fisher1 and Alan Sprague2

Keywords: Hidden Markov Models, Data Mining

1 Introduction.

Hidden Markov Models have been prominent in the categorization of biological data in the past
decade. Hidden Markov Models (HMM) make predictions about an observable sequence from a
finite alphabet.

Genemark and Genscan, two popular tools used to identify regions in DNA sequence, incorporate
Hidden Markov Models into their design.  A large interest in these programs is to classify
sequences of DNA that are composed of the small alphabet of four nucleotides.  Part of the
classification of these sequences is to locate introns and exons.  While performing admirably, there
seems to be a cap of the performance of these programs [1].

Verbumculus is a program that analyzes substrings within a sequence.  It can be used on DNA
sequences to try to find under-represented and over-represented substrings within that sequence.  It
calculates the expected value and variances of all substrings of length n in O (n2) worst case and
O(n log n) expected time.  From this you can give a score to the substrings [2].

A previous experiment constructed a HMM to classify the languages of English and Spanish based
on consonant and vowel rhythms, the rationale being that insights might be applied to the
classification of introns and exons, and eventually other parts of the gene such as promoter regions.
The experiment yielded promising results at low language transition probabilities [3].

We apply the concept of under-represented and over-represented substrings to find unusual
substrings to pre-classify a small portion of an observable sequence at a high accuracy.  Once pre-
classified, the sequence is run through the HMM and the pre-classified parts are used as ‘anchors’
that alter the probabilities of the HMM to suggest a specific (pre-determined) classification.  We
revisited the previous experiment classifying English and Spanish with this pre-classification to
investigate the results.

The addition of the pre-classified ‘anchors’ in a sequence increased the accuracy of the HMM.
Figure 1 shows the comparison of the unaided classification with that of the pre-classified
sequence.  Languages were run through the HMM at both frequent (10%) and infrequent (as low as
0.1%) language transition probabilities.  The sequence was pre-classified at 0.3%, 0.6%, 1.2% and
3.0 % of total sequence.

These promising results indicate that pre-classification might increase accuracy of existing
classification models which incorporate HMM.
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Figure 1: Alignment error of HMM given at 0%, 0.3%, 0.6%, 1.2% and 3.0% pre-classfication.  Horizontal
axis depicts the language transition probabilities. Vertical axis denotes the alignment error.
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Genome Organization Analysis Tool

Aaron Kaluszka, Cynthia Gibas1

Keywords: genome comparison, visualization, web applications

1 Introduction.

Traditionally, point mutations of genes have been the basis of comparative sequence analyses, most
often used as a tool for phylogenetic and evolutionary studies.  However, point mutations are of
limited utility when comparing either slowly evolving genes and genomes or rapidly evolving
genes and genomes such as some pathogenic viral genomes. Even when the nucleotide sequences of
genes are highly conserved, their position within the genome may change.  In these cases, a feature-
based genome comparison is a useful complement to genome sequence comparison.

Genome Organization Analysis Tool (GOAT) uses the visualization concept introduced in
GeneOrder[1] and incorporates a variety of additional features.  These include a variety of input
types, a flexible scheme of match filtering criteria, the caching of results to improve speed, and the
ability to store data under a username so that one can return at a later date to refilter and redisplay
results.  Interactive gene order plots allow users to navigate the genome by selecting specific
features, to customize plots by zooming and filtering, to navigate to the relevant sequence
information and BLAST pairwise alignments represented by each point in the plot, and to view
multiple alignments for equivalent genes.

2 Experiment and Methods.

GOAT compares one or more query genome annotations against a reference genome annotation and
outputs a two-dimensional graphical plot of gene matches relative to the reference genome, where
each gene match is a probable protein homologue. GOAT allows the use of four different cutoff
criteria in any combination: bit score, expect value, percentage identity, and percentage of the
query length represented in the match segment.  The density and linearity of this plot represents the
genomes’ similarity to each other.  Tabular output is also available, if desired.   GOAT compares
each gene in each query annotation to each gene in the subject genome using BLAST[2].  In the
current implementation, we assume that the input will be a pre-annotated genome sequence, and
low-complexity filtering is turned off so matches will not be missed.  The BLAST output files are
saved locally in a pre-parsed format, and are used as an index for quick information reference and
to provide information necessary to generate dot plots of the query genome(s) against the subject
genome.   GOAT is written in Perl and may be run as a standalone application, but is intended to be
used with an accompanying web-based front-end.  An administration interface allows the user to
install GOAT locally with a specific set of genome data, to restrict or enable user-initiated
comparisons, and to restrict or enable multi-processor access, in effect allowing GOAT to be used
to maintain a focused online genome comparison resource for specific species.  GOAT is designed
to be a user-friendly application for performing comparative analyses of gene order in small
genomes or chromosomes, while being extensible for integration with other data mining
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applications.  GOAT is accessible from any of the more common GUI-based web browser
applications, such as Internet Explorer, Netscape, Mozilla, and Safari.

Figure 1:  Screen shot from Genome Organization Analysis Tool.  The plot shows chloroplast gene order in
grasses relative to p. thunbergii.  Each dot in the plot links to an informational screen showing pairwise and

multiple alignments of genes that match the query and fall within the user-selected cutoff ranges.

3 Conclusions.

The two-dimensional gene order dot plot is a convenient format for visualization of structural
changes in small genomes, and for visual identification of regions of colinearity and large-scale
inversions.  We have developed a web application which adds several features to the basic gene
order dot plot, including comparison of multiple queries to the reference genome, interactive
rescaling, GenBank link-outs, and point-and-click access to pairwise and multiple alignments of
related genes in the query and reference.  A GOAT demonstration website featuring publicly
available chloroplast genome sequences is available at http://gaia.biotech.vt.edu/goat/.  The
software is freely available for noncommercial use under the Gnu Public License (GPL).
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Computing the Global Similarity of two Strings,

with a Vector Algorithm

Sylvie Hamel, 1
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1 Introduction.

Global similarity between proteins was first discussed by Needlemann and Wunsch in 1970
[6]. The classic solution computes an n ×m table, where n and m are the length of the two
proteins being compare, in O(nm) time.

This poster presents new efficient vector algorithms for the global string similarity prob-

lem. The key idea is to first reduce the computation to a Moore automaton, as done in [1]
for approximate string matching problem using edit distance, and then to obtain the output
of this automaton in a bounded number of steps, regardless of the length of the input.

This yields a very efficient algorithm since the operations are bit-wise operations widely
available in processors, and the number of operations is independant of the length of the
column in the classic table.

2 Global String Similarity Problem.

The global string similarity problem is to find a maximum score alignment between two
strings, given a similarity matrix S on the input alphabet (Habitually PAM [2] or BLOSUM
[4] matrix, when dealing with proteins). Let x = x1x2 . . . xm and y = y1y2 . . . yn be two
strings on an input alphabet Σ. An alignment A of x and y produces two strings x′, y′ of
length l ≥ max(m,n), on the alphabet Σ′ = Σ∪{−}, where ”−” correspond to the insertion
or deletion of a letter in one of the strings. The score of the alignment A is then defined as
∑l

i=1
S(x′[i], y′[j]).

The classic solution, referred as the Needleman-Wunsch algorithm [6] and requiring
O(nm) time, is obtained by computing the matrix V [0..m, 0..n] with the recurrence rela-
tion:

V [i, j] = max

{

V [i − 1, j − 1] + S(x[i], y[j])
V [i, j − 1] − c

V [i − 1, j] − c

(1)

where c is the cost associated to an insertion or a deletion. The value S(a, b) is the score
obtained by aligning letters a and b and, the initial conditions are V [i, 0] = −ci and V [0, j] =
−cj. The entry V [m, n] of the matrix then give the maximal score of an alignement between
x and y.

Classically the computation of each column of V takes O(m) steps. In order to recast
the computation as an automata computation, one needs to restrict the possible outputs
to a range that is independant of m. This is done by noting that the differences between
two adjacent horizontal or vertical cells in the table V are bounded. More precisely, define
∆vi,j = V [i, j] − V [i − 1, j] + c and ∆hi,j = V [i, j − 1] − V [i, j] + (c + M), where M is the
maximal element of the given similarity matrix. We claim the following:

1DIRO, Université de Montréal, CP 6168 succ. Centre-Ville, Montréal, Québec, Canada, H3C
3J7. E-mail: sylvie.hamel@umontreal.ca, with the support of NSERC
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(1) Both ∆vi,j and ∆hi,j are in the interval [0, 2c + M ].

(2) V [m, j], can easily be computed as V [m, j − 1] − ∆hm,j + c + M .

(3) Given ∆hi−1 = (∆hi−1,1, . . . , ∆hi−1,n) and S(xi, y) = S(xi, y1), . . . ,S(xi, yn)), we
can computed the value of ∆vi = (∆vi,1, . . . , ∆vi,n) with a Moore automaton hav-
ing states {0, . . . , 2c + M}, with initial state 0 and transition fonction F given by
F (s, (∆h,S)) = max{∆h − M + S ,∆h − (2c + M) + s, 0}.

(4) ∆hi can then be computed with the vector equation ∆hi =↑0∆vi − ∆vi + ∆hi−1,
where ↑0∆vi stands for a right shift of the vector ∆vi with the value 0 filled in in the
first position.

Claims (1) to (4) thus reduce the computation of V [m, j] to a few vector operations and one
automata computation, which still takes O(m) steps.

3 From Automata to Vector Algorithms.

Given an input e = e1 . . . em, a Moore automaton yields the output r = r1 . . . rm of the
visited states on input e. For a particular class of automata, called solvable automata in [1],
there is a general way to produce a vector algorithm that computes the output -regardless
of its length- in O(q) steps, where q is the number of states of the automaton. Fortunately,
the automaton of claim (3) is shellable.
The key step of the algorithm is the following. Each value ri in the output r = r1 . . . rm

belongs to the interval [0, 2c + M ]. Suppose that, for a given k, all the values ri such that
ri ≥ k + 1 are known. Then one can decide whether ri = k, or not, in a bounded number of
steps with the following procedure:

a) If ri−1 < k and the input is (∆h,S), where ∆h + S = k + M then ri = k.

b) If ri−1 = k and the input is (∆h,S), where ∆h = 2c + M or ∆h + S = k + M then
ri = k.

c) If ri−1 > k and the input is (∆h,S), where max{∆h−M+S ,∆h−(2c+M)+ri−1} = k

then ri = k

Cases a) and c) are rather straigtforward to implement. Only case b) requires knowledge of
a bounded ”past” history. This case is solved by a clever use of binary addition with carry
propagation, first developed in [5] and generalized in [1].

Using the above procedure, we were able to implement the algorithm using O(c + M)
steps, where c is the cost associated to an insertion or a deletion [3].

References

[1] Bergeron, A. and Hamel, S. 2002. Vector Algorithms for Approximate String Matching, Inter-

national Journal of Foundations of Computer Science, 13-1: 53-66.

[2] Dayhoff, M.O., Schwartz, R.M. and Orcutt, B.C. 1978. A model of evolutionary change in
proteins, Atlas of Protein Sequence ans Structure, 5:345-352.

[3] Hamel, S. Finding global similarities in proteins using vector algorithms, in preparation.

[4] Henikoff, S. and Henikoff, J.G. 1992. Amino acid substitution matrices from protein blocks,
Proc. Natl. Academy of Science, 89: 10, 915-19.

[5] Myers, G. 1999. A Fast Bit-Vector Algorithm for Approximate String Matching Based on Dy-
namic Programming. J. ACM 46-3:395–415. pp. 75-83.

[6] Needleman, S.B. and Wunsch, C.B. 1970. A general method applicable to the search for simi-
larities in the amino acid sequence of two proteins. Journal of Molecular Biology 48: 443–453.

Dana Jermanis


Dana Jermanis
Molecular Sequence Analysis 

Dana Jermanis
318



1

Exact Algorithms for Matrix Based Motif

Extraction

Paul Horton and Wataru Fujibuchi 1

Keywords: motif extraction, branch and bound algorithm, transcription binding sites

1 Introduction.

Motif discovery is the problem of finding local patterns (motifs) from a set of unlabeled
sequences. One common representation of a motif is a position specific score matrix. The
problem of discovering motifs from unlabeled sequences has been extensively studied and a
large number of heuristic algorithms have been proposed to solve it (reviewed by Stormo
[1]). Heuristic algorithms have been used because obvious exact algorithms suffer from
exponential time complexity, and indeed a general formulation of this problem has been
shown to be APX-hard [2]. Thus exact matrix based motif discovery is generally considered
to be an intractable problem.

However the APX-hard result only applies to problem instances with unrealistically long
motif widths (Ω(n25) for n sequences), and indeed some serious attempts have been made
to create exact branch and bound algorithms for this problem [3], [4]. In particular the
TsukubaBB program [4] can solve large problems for very short motif widths such as five.
In this poster we present results using an improved version of TsukubaBB which can solve
more realistic problems. In particular we demonstrate its usefulness for finding transcription
binding sites.

We also present a web server (seq.cbrc.jp) which provides quick heuristic algorithms for
motif extraction, as well as other tools begin developed such as protein localization prediction
from amino acid sequence and cell type classification from microarray data.

2 Results

Recently we have theoretically validated the TsukubaBB approach to motif extraction with a
non-trivial upper bound on the running time [5]. In this poster we show empirical validation
of the method when applied to characterizing transcription binding sites. For example we
ran TsukubaBB on a problem instance of 14 sequences (and their reverse complements)
taken from the yeast promoter database SCPD [6] for REB1 transcription factor binding
sites. The sequences were of length 250 to 900 with a harmonic mean of approximately 467.
The consensus given in SCPD was of length 7 with 20 sites known. Using pseudocounts
of one for each base as a prior and the base composition of the input sequences (with their
reverse complements added, so really just g+c content) as the background model TsukubaBB
found the matrix (including pseudocounts) shown in figure 1 in a sequence logo [7] type
representation. We have confirmed that most of the known sites given in SCPD match this
matrix very well. The running time on the same 2.8GHz PC was 574 minutes. (Note that
the TsukubaBB program does not currently take advantage of the input symmetry caused
by adding the reverse complement, which could be used to speed things up).

1Computational Biology Research Center AIST, Japan. E-mail: horton-p@aist.go.jp,
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Figure 1: An optimal scoring motif found in the REB1 dataset is shown

3 References and bibliography.
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s e q u e n c e  m o t i f s  i n  s e t s  o f  D N A  s e q u e n c e s .
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Jun-ichi Takeda4, Taichiro Sugisaki5 and Shin Nurimoto6
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1 Introduction.

Aside from gene coding sequences, eukaryotic genomes contain important functional sequences
such as regulatory elements of gene expression and chromosomal replication.  However, many
of them remain uncharacterized.  Finding functional sequence motifs in genomic sequences is
thus a very important and urgent issue in bioinformatics.  We thus developed a method for
finding sequence motifs with the aim of discovering unknown functional sequence motifs in
genomes, and we implemented the method in a computer program called OSMO-finder (Over-
represented Sequence MOtif finder)[1].  This is a heuristic method of finding sequence motifs
that appear frequently in sets of DNA sequences.  We have extensively improved the algorithm
of OSMO-finder and examined its efficiency of finding sequence motifs by using computer
simulations.  In this paper, we describe the outline of the improved algorithm and the results
of computer simulations.

2 An improved algorithm of OSMO-finder.

The purpose of the method is to find a consensus DNA sequence (motif) without gaps that are
over-represented in a set of unaligned sequences.  Motifs can be evaluated based on the
properties including the length, the number of occurrences (L) in the data set, and the level of
sequence conservation (the number of nucleotide mismatches allowed).  In OSMO-finder, we
evaluate the identified motifs by the exact probability (P-value) that the motifs appear L times
or more in random sequences of the same size as the data set.  OSMO-finder first finds "seeds"
of motifs of a given length W that appear frequently, allowing some mismatches, in a set of
DNA sequences.  It then searches for the optimum motif by calculating P-values for variously
modified motifs by extending the seeds and changing the levels of sequence conservation.

1 Biological Information Research Center, National Institute of Advanced Industrial Science and Technology.
Time24 Bldg. 10F, Aomi 2-45, Koto-ku, Tokyo 135-0064, Japan. E-mail: imanishi@jbirc.aist.go.jp
2 Mitsui Knowledge Industry Co., Ltd. Harmony Tower 21F, Honcho 1-32-2, Nakano-ku, Tokyo 164-8721, Japan.
E-mail: hhokari@jbirc.aist.go.jp
3 Japan Biological Information Research Center, Japan Biological Informatics Consortium. Time24 Bldg. 10F, Aomi
2-45, Koto-ku, Tokyo 135-0064, Japan. E-mail: mtanino@jbirc.aist.go.jp
4 Biological Information Research Center, National Institute of Advanced Industrial Science and Technology.
Time24 Bldg. 10F, Aomi 2-45, Koto-ku, Tokyo 135-0064, Japan. E-mail: jtakeda@jbirc.aist.go.jp
5 Mitsui Knowledge Industry Co., Ltd. Harmony Tower 21F, Honcho 1-32-2, Nakano-ku, Tokyo 164-8721, Japan.
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Finally, the motif with the smallest P-value is chosen as the optimum one.  The program is
written in JAVA and can be run under various operating systems.

3 Computer simulation.

To examine how efficiently OSMO-finder can discover sequence motifs in sets of DNA
sequences, we conducted computer simulation using artificial sequences with hidden sequence
motifs.  We generated 10 artificial DNA sequences of 600 base pairs (bps) and inserted 10 or 20
sequence motifs of 15 bps.  We then run the OSMO-finder (version December 2003) and
measured the efficiency of finding hidden motifs.  The test was repeated 5 times.  The
efficiency was measured by the level of overlap of correct and predicted motifs.  As a result, it
appeared that OSMO-finder can discover hidden motifs efficiently (Table 1).  For example, 81%
of the hidden motifs were successfully identified when there are 20 motifs with 10% sequence
diversity from a consensus sequence.  We also compared the efficiency of OSMO-finder with
that of MEME (version 3.0.4) with "Two-Component Mixture" (TCM) option[2].  These two
programs showed comparable efficiency.  In particular, OSMO-finder showed better
performance when the level of sequence conservation of motifs is low.  These results clearly
demonstrate the usefulness of OSMO-finder in identifying functional sequence motifs from
genomic sequences.

number of hidden
motifs in the data

diversity of
sequence motifs

OSMO-finder MEME (TCM)

10 0% 0.718 0.940
10 10% 0.731 0.819
10 20% 0.242 0.017
20 0% 1.000 1.000
20 10% 0.811 0.920
20 20% 0.346 0.030

Table 1.  Efficiency of finding hidden sequence motifs by OSMO-finder and MEME (TCM).
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Exact algorithm for discovery of consensus
sequences among multiple sequences to design

degenerate primers
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1 Introduction.

The identification of consensus sequences among multiple DNA fragments has assumed im-
portance following the development of the polymerase chain reaction technique. A primer is
called degenerate if some of its positions have several possible bases [3]. Degenerate primers
have proven useful for studying gene families [4]. Many algorithms and programs have been
developed to solve the problem by heuristic approaches. We describe an exact algorithm for
finding all consensus sequences that can complementarily hybridize with degenerate primers
of given length, number of degenerate positions, and coverage.

2 Algorithm.

We divide the problem into multiple exact matching problems. First, all possible degenerate
patterns are generated for a given length and number of degenerate positions. Then all
suffixes of a given set of sequences are transformed into same sized substrings with omission
of the degenerate positions. Finally, strings common to the transformed substrings above the
coverage are archived by using a trie [2] that was modified from the generalized suffix tree [1].
Example of a generalized pm trie with a given proper mask pm(101101) and sequences set
{s1, s2} is shown in Figure 1.

The worst case time complexity of the algorithm to find (l, d, k) degenerate probe among
a set {s1, . . . , si} is O(

(
l−1
d

)
Σ|si|), where l is the length of primer, d is the degeneracy, and

k is the coverage. We made two major improvements by premature termination of each trie
construction step using the k value.

3 Experimental Results.

The algorithm was tested using synthetic data sets with various parameters typical of exper-
imental settings, and showed acceptable computation times. We used this algorithm to find
four degenerate primer binding sites to design nested primer sets, among 63 full genomic
sequences of enteroviruses, where the length of each sequence was approximately 7400 bases.
We searched for primer of length 18-20 with minimum degeneracy among the set. The four
consensus sequences covering the 63 serotypes were successfully selected from the region of
the 5’ untranslated terminal repeat lesion of the viral gene. The (l, d, k) parameters for
the algorithm were (17,2,63), (23,1,63), (21,1,63), and (20,0,63). We can found each primer
binding site within a few seconds when run on a Pentium 4 2.4GHz, 1G RAM machine.

1Department of Microbiology, University of Ulsan College of Medicine, 388-1 Pungnap-dong
Songpa-gu, Seoul 138-736, Korea. E-mail: ykkim@amc.seoul.kr
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Figure 1: The consensus sequence is the path from the root node to leaf nodes that has a leaf
cardinality of 2.

4 Discussion.

We implemented the algorithm in the program called Prober that can be downloaded at no
cost from ”http://prober.biocodes.org”. The Prober is a Windows based consensus sequence
archive program that can be run on a PC. The number of patterns, number of probes
found, elapsed time and remaining time are displayed at each step to assist the user in
deciding whether to quit the thread without waiting for termination. The output file contains
information such as positions, sequences, degenerate description of probes using ambiguity
codes. One merit of the Prober is that the time required to find a good probe is much less
than that required to a bad probe (i.e. a probe that covers less genes or has more degenerate
positions).
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GAME: Genome Alignment by Match Extension

Jeong-Hyeon Choi1 Hwan-Gue Cho2 Sun Kim3

Keywords: genome sequence alignment, anchor filtering, maximal exact match

1 Introduction

As the number of completely sequenced genomes is increasing rapidly, there is an urgent
need for efficient and effective computational methods for comparing multiple genomes [4].
One important computational method is to align whole genomic sequences. Aligning two
genomic sequences requires detecting numerous local alignments – homologous regions such
as genes common to two genomes. Due to the large size of genomes, almost all genome
sequence alignment algorithms first find anchors and extend or combine them to generate
sequence alignments. There are two common approaches used in detecting anchors, one
based on exact matches and the other based on approximate patterns.
In this paper, we present a new adaptive genome sequence alignment based on maximal

exact match (MEM) anchor. The major problem with the use of MEM anchor is that the
number of hits in non-homologous regions increases exponentially when shorter MEM anchors
are used to detect more homologous regions. To deal with this problem, we have developed
a fast and accurate anchor filtering scheme based on simple match extension. Due to its
simplicity and accuracy, all MEM anchors in a pair of genomes can be exhaustively tested
and filtered. As a result, our genome alignment algorithm outperforms existing algorithms
and can align large genomes, e.g., A. thaliana, without the typical large memory requirement
problem.

2 Extended MEM (EMEM): Anchors by Gap-free Extension

The key idea is simply to extend MEMs without computing alignment scores until the percent
identity becomes lower than the ones used in existing genome alignment algorithms. The
EMEM anchors are generated in two steps:

1. All MEMs are detected using suffix array [3]. Use of suffix tree suffers the intrinsic
large memory space problem. However, the space problem can be significantly reduced
by using suffix array.

2. Each MEM anchor is tested with a filter, called the MEM filter. More specifically,
given a maximal exact match (MEM) m of length lm and a threshold Tpi for the
minimum percent identity, the gap-free match extension of m is defined as the extent
up to which m can be extended without gaps before its percent identity drops below
Tpi. Let gfe(m) denote the grap-free extension of m and |gfe(m)| denote its length.
Given a threshold Te for the minimum extension length, the MEM filter is defined to
filter (discard) any m that fails to extend beyond Te , i.e., |gfe(m)| < Te.

Due to its simplicity, the filtering scheme can further utilize a well developed string
pattern matching technique using bit parallelism; multiple characters can be compared si-
multaneously using the technique, e.g., [2]. Our filtering scheme is accurate [1] and runs

1Department of Computer Science, Pusan National University, Korea. jeochoi@indiana.edu
2Department of Computer Science, Pusan National University, Korea. hgcho@pusan.ac.kr
3School of Informatics, Center for Genomics and Bioinformatics, Indiana University, Bloomington,

IN, USA, sunkim@bio.informatics.indiana.edu.

Dana Jermanis


Dana Jermanis
Molecular Sequence Analysis 

Dana Jermanis
325

Dana Jermanis
I15.



exceptionally fast, performing over one million filtering tests per second on a 2.0 Ghz Pen-
tium machine, which makes it possible to test all initial anchors exhaustively in a pair of
genomes. As a result, our alignment algorithm can align genomes fast and accurately.

3 Experiments

Two tests were performed on a Pentium 2.0 GHz machine with 4GB memory running RedHat
Linux 9.0, all pairwise comparisons of 10 bacterial genomes from close to distant in terms of
phylogeny (Mycoplasma genitalium, Mycoplasma pneumoniae, Bacillus halodurance, Bacillus
subtilis, Staphylococcus aureus, Mycobacterium tuberculosis, Helicobacter pyroli, Escherichia
coli, Haemophilus influenza, and Methanococcus jannaschii ) and all pairwise comparisons
of 5 chromosomes of A. thaliana. The performance in terms of the number of COG families
detected for 45 genome pair comparison are shown in Figure 1. The memory usage of GAME
for all pairs ranged only from 25MB to 125MB for the actual numbers). GAME was able to
perform all pairwise comparisons of the five chromosomes of A. thaliana, the shortest being
17.5 Mb and the longest being 29.6 Mb, without the typical memory problem. Experimental
data will be available shortly at [1].
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Figure 1: MUMmer ran with the MUM option. GAME-7, GAME-8, and GAME-9 are with
MEMs of length 7, 8, and 9 respectively. Blastz and GAME-9 were competitive. GAME-7
and GAME-8 outpeformed others in all cases except 1 and 4 genome pairs respectively.
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1 Introduction.  
Nucleotide sequences (DNA), a store of biological inheritance information, contain multiple codes 
(messages) responsible for an organism’s functioning and structure [8]. A nucleic sequence can be 
seen as a signal and investigated by formal methods of signal processing theory: Fourier [6] and 
wavelet [1] transforms, cross-correlation analysis [2, 7], etc. Cross-correlation is especially suited 
for the indication of common (frequently encountered) sequence parts (i.e., repeats). A dispersed 
repeat (frequent combination of oligonucleotides following each other at some specific distance 
with an arbitrary sequence in between) will be captured as well. 
Examining cross-correlation between AA and TT dinucleotides in the human genome reveals a 
peak in lag ‘12’ that suggests an existence of sequence repeat(s) containing AA dinucleotide 
followed by TT dinucleotide at a distance of 12 bases. One can find all positions of such a motif 
(AA-12-TT) in a given sequence, and then, calculate a nucleotide local distribution in the vicinity 
of the motif. If there is only one unique repeat containing this motif, the distribution is actually a 
pattern representing the repeat. If there are several different repeats containing the motif, the 
distribution is an overlapping of all of the patterns. To reconstruct one of the patterns or all of them, 
one has to decompose the distribution picture. This is exactly the objective of the algorithm 
developed in this work. 

 
2 The algorithm.  
In order to calculate cross-correlation functions and also use the Cumulative Local Cross-
Correlation (i.e., CLCC) algorithm, one needs to represent an investigated nucleic sequence by 4 
discrete signals: the first one for ‘A’ nucleotide positions (‘1’ – where it is present, ‘0’ – where it is 
absent); the second one for ‘C’ nucleotide positions, etc. 
The algorithm is as follows: 
For a given nucleic sequence, calculate nucleotide local distribution in the vicinity of the initial 
motif (AA-12-TT for example). 
For each occurrence of the motif in the sequence, calculate the cross-correlation (including auto-
correlation) between the signals in each pair of positions inside a window enclosing the motif. The 
result of this operation is a symmetric matrix (local cross-correlation instance). 
Calculate cumulative local cross-correlation matrix as a sum of local cross-correlation instances. 
The number of CLCC matrices is equal to the number of cross-correlation functions (16 in our 
nucleotide example). Each element of CLCC matrix characterizes correlation between a pair of 
positions in the local distribution.  
Now, in order to know, whether two specific peaks in the local distribution are related to the same 
pattern or not, one just needs to check a value of CLCC matrix element associated with them 
(larger value for correlated peaks than for uncorrelated ones). Theoretically, by checking CLCC 
matrix elements associated with all pairs of peaks in a local distribution and collecting mutually 
correlated peak groups, all patterns can be separated from each other. 

                                                 
1 Genome Diversity Center, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, 
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3 Application to human genomic sequences.  
The following example illustrates the CLCC application to one contig (7MB) of human 
chromosome 1. The development of this algorithm took place during the investigation of a 
nucleosome pattern based on dinucleotides [5]. There are 16 local distributions and 256 cross-
correlation functions (and CLCC matrices as well) in dinucleotide case (against 4 of the former and 
16 of the latter in nucleotide case). 
AA-12-TT was chosen as an initial motif and CLCC matrices (and local dinucleotide distributions) 
in its vicinity were obtained as described in the previous section. Analysis of CLCC matrix 
elements associated with several pairs of peaks in the local distribution permitted an isolation of 
mutually correlated group of peaks. The new, more detailed motif was constructed from these peaks 
and dinucleotide local distributions in the vicinity of the new motif were calculated.  
Knowing, that the new distribution is a non overlapped one, we converted it to a nucleic sequence 
(the non-overlapping is a necessary condition for the conversion). The resulting sequence was 
found to be very similar to the well-known Alu tandem repeat widely present in the human genome 
[3]. Therefore, we were able to align the sequence with Alu consensus [4] to validate the CLCC 
technique (see Fig. 1 for the alignment result). 

 
Fig. 1: Sequence alignment: upper (underlined) rows – the extracted nucleic sequence; lower rows – Alu 

consensus. 
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AAAAAAAAAAAATTCAGGCgcGGgGCGGgGGggCcCcCgccTAAaCCCccacCcTTGGGgGGggGgGGgG 
                GGCcgGGcGCGGtGGctCaCgCctgTAAtCCCagcaCtTTGGGaGGccGaGGcG 
 

GGgGGgaacCCcGAGGTCAGGAGTTCGAGACCAGCCTGGCCAACcTGGTGAAACCCCGgCTCTACTAAAA 
GGcGGatcaCCtGAGGTCAGGAGTTCGAGACCAGCCTGGCCAACaTGGTGAAACCCCGtCTCTACTAAAA 
 

ATACAAAAATTAGCCGGGCGTGGTGGCGCGCGCCTGTAATCCCAGCTACTCGGGAGGCTGAGGCAGGAGA 
ATACAAAAATTAGCCGGGCGTGGTGGCGCGCGCCTGTAATCCCAGCTACTCGGGAGGCTGAGGCAGGAGA 
 

ATCGCTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGCCTGGGCGAC 
ATCGCTTGAACCCGGGAGGCGGAGGTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGCCTGGGCGAC 
 

AGAGCGgGACcCCGTCcCAAAAAAAAAAAAAAAAAAAAAAA 
AGAGCGaGACtCCGTCtCAAAAAAAA                
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Predicting the modular domain architecture of a
protein

Gülriz Aytekin-Kurban 1

Keywords: protein modular domain architecture, domain-specific function prediction

Structural biology defines a domain as an independently folding, compact and stable
fragment of a protein. Such useful structural properties are likely to have transformed the
domains into evolutionary units, observed as recurring modules of distinct structure and pos-
sibly a related function throughout the protein universe [4]. In computational or experimen-
tal analysis of a protein, advance knowledge of its modular domain architecture(MDA),
i.e., the number and relative positions of the domains in the amino acid sequence, is usu-
ally a prerequisite. For instance, in automated function annotation by sequence similarity,
consensus function should be assigned only to the domain that shares similarity [1]. The
automation of domain-specific function prediction can aid large scale genome annotation
projects [2]. In experimental structure determination, if the domain positions are known, a
large multi-domain protein can be partitioned into small domains that are more suitable to
analysis via nuclear magnetic resonance or crystallization.

This poster presents a method that brings together domain boundary prediction to aid
structural analysis and domain-specific function annotation into a single framework. The
method builds a probabilistic model for the MDA of a multi-domain protein using the se-
quence alignments returned from a similarity search of a large dataset of non-redundant pro-
teins. Domain boundary prediction and domain-specific function annotation using sequence
alignments have been investigated before [1, 3]. Accomplishing both together increases the
likelihood of identifying novel domains in little explored areas of protein space.

In local sequence alignments, we assume that each of the domain segments is aligned to
a subset of instances of the same domain family in matching proteins. Consecutive domains
are covered by a single alignment. A protein composed of domains, belonging to distinct
families and recurring in different combinations, should have a pattern of alignments such
that the sets of aligned proteins for any two distinct domain positions are distinguishable.

The MDA model is a probabilistic latent class model, i.e., mixture model. Each latent
class has a conditional probability mass distribution over all matching proteins, the distri-
bution models the homolog occurrences of a domain on matching proteins. Class assignment
probabilities for positions partitions amino acid positions into segments, multiple segments
can belong to a single domain.

The dot plot in Figure 1(a) displays a pattern of matching protein alignments for a
multi-domain protein, a fructose specific enzyme. Each line represents one or more aligned
segments of the protein to a database protein obtained by using psi-blast to search nr2.
There are two pfam functional domains on the protein. The PTS EIIA domain, positions
from 2 to 142, contains the primary phosphorylation site. The PTS HPr domain, from
position 285 to 371, has an acceptor for the phosphoryl group of EI(eiia). Figure 1(b)
shows a probabilistic partitioning of protein positions into 3 domains by the class assignment
probabilities of a computed MDA model. If we commit each sequence position to a class
with the highest assignment probability, we get domains: C1:[149-242], C2:[246-376], and
C3:[1-148]. Domain C3 corresponds to PTS EIIA domain and C2 corresponds to PTS HPr

1Dept. of Computer Science, The University of Chicago, USA E-mail: gulriz@cs.uchicago.edu
2Detected fragmented sequences are removed.
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Figure 1: (a) PTFA ECOLI sequence segments in local alignments, (b) predicted domain positions.

domain while C1 could be a structural domain. Class conditional probability distributions
are used to process annotations of matching proteins to obtain phrases that best describe
each domain as shown in Table 1.

Domain Annotation phrases ranked by class conditional probabilities

1 emb probable phosphocarrier protein *hpr*‖ emb similar to transcriptional
antiterminator ‖ nitrogen regulatory *iia* like protein

2 hpr gb aaa86048 *hpr*‖ 1 putative phosphotransferase system enzyme ‖ np 312377 1
putative phosphotransferase system ‖ putative frv operon regulatory protein ‖
fructose specific pts transport system ‖ putative bglb family transcriptional
antiterminator ‖ phosphocarrier protein *hpr* streptococcus suis

3 eiia emb similar to transcriptional antiterminator ‖ probable phosphotransferase system
enzyme i‖ phosphoenolpyruvate dependent sugar phosphotransferase system ‖
gb aal00742 conserved hypothetical protein ‖ putative nitrogen regulatory
*iia* transcription ‖ a42374 phosphotransferase system phosphohistidine containing
‖ regulatory *iia* transcription regulator protein

Table 1: The domain-specific annotation of PTFA ECOLI.

A further improvement planned is to integrate other types of information, such as the
conservation covariance of pairs of positions, to the model. Moreover, initial heuristic pro-
cessing of matching protein annotations will be improved to obtain better descriptions for
domains.
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A web-based tool for the identification of 
conformationally flexible segments in protein 

sequences. 
 

Igor B. Kuznetsov1,  Byron Gerlach2, S. Rackovsky3 
 
Keywords: intrinsic propensity, amino acid, profile, structural flexibility, probability, prediction 
 

1 Introduction.  
 
It has long been axiomatic that an amino acid sequence defines a unique three-dimensional native 
structure of a protein. An increasing amount of data from NMR spectroscopy and other sources shows 
that not all residues in the native structure have the same microscopic stability. This means that at 
least certain segments of the native structure are very flexible and adopt a set of different dynamically 
inter-converting conformations. It is nearly impossible to characterize the structure of proteins that 
contain long flexible segments by means of X-ray crystallography or NMR spectroscopy. The success 
of large-scale structural genomics projects therefore crucially depends on our ability to identify such 
proteins and exclude them from the list of potential targets selected for experimental structure 
determination. Identification of conformationally flexible segments is also important for the 
understanding of the mechanism of conformational changes observed in misfolding diseases. One of 
the best-known examples of misfolding diseases is the group of neurodegenerative disorders (CJD, 
mad cow disease, etc.) caused by the prion protein, which contains a long highly flexible N-terminal 
domain. This protein represents an interesting subject for theoretical research designed to study 
conformational flexibility, since theoretical conclusions can be directly compared to the wealth of 
existing experimental data. 

 

2 Methods and software.  
 
We developed a novel entropic index, Generalized Local Propensity (GLP) [1], which provides a 
quantitative measure of conformational flexibility of a sequence fragment, and a propensity-based 
method that utilizes the GLP to identify segments with high and low conformational flexibility. A 
software program, Conformational Flexibility Profile (CFP) Tool, that implements this method has 
been developed. A unique feature of this program is that it not only identifies flexible segments, but 
also provides, for each given segment, a probability of observing segments of the same or greater 
length by chance. The program has a user-friendly web interface and is available at 
http://jay.bioinformatics.ku.edu/~gerlach/propensity.html. The application of the software to 
study conformational flexibility of the prion protein (PrP) has shown that it is able to detect a long 
conformationally flexible segment PrP(52-97) of size 46 located in the flexible N-terminal domain of 
the prion protein (Fig.1). The estimated probability of observing flexible fragment of this or greater 
length in random sequences with the same amino acid composition as that of human PrP and in the 
non-redundant protein sequence database is only about 10-4. The N-terminal domain of PrP has been 
identified as highly flexible by NMR spectroscopy. This agreement with experimental results indicates 
that the software is capable of correctly identifying unusually long conformationally flexible 
segments. 
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3 Figures and tables.  
 

 
 

Figure 1: Flexibility profile for human prion protein (smoothed using a window of size 7) computed using the CFP 
tool. A long flexible fragment (GLP above 1.0) comprising residues 52 through 97 is shown by two arrows. 

 

 
 

Table 1: A table of all flexible fragments identified in human prion protein by the CFP tool. The fragment 
comprising residues 52 through 97 has a low probability of being observed by chance (p-value≈10-4). 
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In silico Analysis of LASS1 (LAG1 Longevity 
Assurance homology 1) and Related Orthologs Using 

Target Identification Software Tools 
 

Darryl LeÛn1 and Scott Markel2 
 
Keywords: bioinformatics, alignment, UOG, validation, prediction, patent 
 
The LAG1 gene was first cloned from yeast, and it was found to extend the life span of the yeast up to 
48% [1]. In 1998, the human LAG1 longevity assurance homolog 1 (LASS1) gene was cloned, 
sequenced, and characterized [2]. It has been reported that LASS1is associated with regulating C18-
ceramide (N-stearoyl-sphinganine) synthase activity where ceramides have been associated with cell 
differentiation, growth, regulation, and death. [3]. With the aim of illustrating the value of LIONís 
target identification software and open-source bioinformatics tools, we selected the LASS1 gene as a 
potential drug target for analysis. LION technology confirmed that the LASS1 gene is located at 
19p12 in humans, while the mouse and rat orthologs were also confirmed to be located on 
chromosomes 8 and 10 and chromosome 16p14, respectively. A BLAST search against genomic 
databases revealed other putative LASS1 sequences identified from plasmodium falciparum, 
chimpanzee, puffer fish, zebra fish, mosquito, and fly. A multiple sequence alignment of the LASS1 
protein ortholog sequences was performed, and we identified several conserved regions in the encoded 
protein sequence. An expansion to a previous phylogenetic tree [1] was constructed to show the 
sequence relatedness among the various organisms. A secondary structure prediction showed there are 
five conserved putative transmembrane regions and three significant predicted helical regions. Three 
of the predicted transmembrane regions overlap helical regions and two of the predicted 
transmembrane regions do not. The number of predicted hydrophobic regions ranged from three to six 
depending on the complexity of the organism. There is a linear relationship between the number of 
hydrophobic regions per 100 amino acids and the organism type. It is proposed that simple organisms 
require a higher number of hydrophobic regions per 100 amino acids in LASS1 than more complex 
organisms. Further analyses included sequence motif searching, profile building, and patent searching, 
and results are presented.  The prediction analysis of LASS1 demonstrates the value of an integrated 
in silico analysis for uncharacterized novel drug targets. These results collectively demonstrate that 
target identification tools provide insight for providing scientific direction when designing drug 
discovery experiments.  
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1 Introduction.  
 
Despite a human genome draft being available for over two years, the number of protein coding 
genes is still a matter of debate and novel genes are continuously being found. Homology based 
methods, which predict new genes by comparing an entire genome with known genes, have played 
an important role [1]. These methods can find real genes that may be systematically missed by 
other methods such as those that employ ab initio gene prediction. However, homology based 
methods also give rise to huge amount of false positive and pseudo-genes. 
 
In the past years, we have been developing sensitive algorithms to efficiently detect more remote 
homologies and that implement comprehensive approaches to validate predictions [2-5]. Our key 
techniques are sequence and profile alignment tools and sequence clustering methods. Here, we 
present a novel gene discovery system that incorporates with these protein sequence and genome 
analysis tools. This system has been applied in identifying several novel proteins families, some of 
which represent potential new drug targets. 
 
 
2 Methods.  
 
In general, homology based approaches use known genes as queries to search against a genome to 
identify fragments that may encode genes. Typically, a very large number of fragments with 
statistically significant similarities to known genes could be found, which in itself is an interesting 
and not completely understood phenomenon. These fragments need to be ranked in order to 
produce a reasonable number of fragments that can advance to more detailed analysis such as gene 
assembly. 
 
Our gene discovery system incorporates several processes: a) protein sampling, b) protein 
clustering and analysis, c) profile building, d) profile-sequence and profile-profile search against 
genome, e) fragment characterization, f) backward profile-sequence and profile-profile search, g) 
fragment filtering, prioritizing and validating, h) full gene assembly, and i) experimental validation. 
A list of algorithms, programs, and resources employed in this system are listed in table 1. 
 
Given one or more known proteins the system a) first searches the NR+ database with an 
intermediate sequence or profile search to retrieve all the close and remote homologues of this 
protein family; b) selects representative sequences of the family (depending upon diversity within 
the family) by applying an appropriate clustering tool such as PSI-Clstr.  These representative 
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sequences are then used to retrieve a conserved sequence pattern from the multiple sequence 
alignment; c) then builds sequence profile for each representative protein from rep-NR+; d) 
performs profile-sequence and profile-profile search against PCF or PCF-Profile to collect 
genomic fragments; e) calculates a broad array of properties of fragments, such as sequence 
complexity, exon probability, relative positions to known genes and ESTs, match score of specific 
sequence pattern. This calculation incorporates publicly available genome annotation databases; f) 
annotates the fragments by comparing them against known protein profile databases such as PDB-
Profile and Pfam-Profile; g) filters out random hits and hits corresponding to known genes, and it 
also ranks fragments according to all available calculated results. The more detailed analyses are 
performed to the top ranking fragments; h) full length genes are assembled; i) fragments and 
assembled gene are tested experimentally. 

 
 

CD-HIT Protein sequence clustering algorithm with very high speed to handle medium to high 
homology on very huge database 

BLAST-Clstr BLAST-based clustering algorithm which can handle medium to low homology  
PSI-Clstr PSI-BLAST-based clustering algorithm which can handle very remote homology  
Saturated-
BLAST 

Intermediate sequence and profile search algorithm, which can effectively explore diverse 
protein family. It also offers multiple sequence alignment and clustering. 

FFAS Sensitive profile-profile alignment algorithm 
NR Public protein database from NCBI 
NR+ NR plus other proteins predicted or annotated from some specific genomes 
REP-NR+ Representative protein families from NR+ prepared with CD-HIT 
Genome Complete human genome sequence 
Annotation Publicly available genome annotations such as NCBI genome, Ensembl and Goldenpath 
PCF Putative coding fragments, translated peptides from human genome 
PCF-Profile Sequence profiles for PCF 
EST Public EST database 
PDB-Profile Sequence profiles for PDB sequences 
Pfam-Profile Sequence profiles for Pfam database 
Other Sequence profiles calculated from other public databases  

 
Table 1:  A list of algorithms and resources. 

3 Applications.  
 
We have used this system to identify several novel protein families such as putative apoptotic 
proteins and kinases. 
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Evolutionary Analysis of Enzymatic Functions  
 

Elizabeth Marland Glass1, Tanuja Bompada1, Jason C. Ting2, Barnett 
Glickfeld2, Natalia Maltsev1

 
Keywords: enzymes, knowledge base, phylogeny, database, evolutionary mechanisms 
 
 
Evolutionary analysis of diverse sets of organisms is essential for understanding mechanisms of their 
adaptation to environments. Common ancestry of eukaryotes, prokaryotes and archaeobacteria leads to 
similarity of many molecular functions. However, differences in organisms’ structural complexity, 
physiology, and lifestyle result in divergent evolution and emergence of variants of molecular 
function, metabolic organization, and phenotypic features. Recent progress in genomics, 
bioinformatics and physiological studies now allows for systematic exploration of adaptive 
mechanisms that led to diversification of biological systems. Such adaptive changes usually are not 
limited to one component of the system, on the contrary, in the process of adaptation, organisms 
undergo co-adaptive changes, such as the complementary changes of protein sequences to 
accommodate changes in an enzyme’s active site or co-evolution of properties of different steps in 
metabolic pathways. Therefore, the development of a scientific framework that will allow studying 
evolution of the functional processes (e.g. metabolism, signal transduction) and variations in 
phenotypic properties is essential for interpretation of observations accumulated by molecular 
evolution studies.  
 
We have developed an enzymatic knowledge base (EKB) that contains information regarding genetic 
variations for each enzymatic function, including variations characteristic for particular phylogenetic 
neighborhoods, phenotypic versions, etc. When possible we suggest evolutionary mechanisms 
involved in emergence of such variations (e.g. divergent evolution, convergent, horizontal transfer). 
EKB also provides an environment for interactive evolutionary analysis of the enzymes and relevant 
protein families by the high resolution bioinformatics tools (e.g. PhyloBlocks [1], SVMMER [2]) 
developed by us. A poster will present EKB and demonstrate its usefulness for evolutionary study of 
metabolism and high-throughput genetic sequence analysis on an example of analysis of Alcohol 
dehydrogenases and evolution of Alcohol fermentation pathway.  
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Molecular characterisation of a versatile peroxidase 

from a novel Bjerkandera strain. 
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1 Introduction.  
 

A novel class of ligninolytic peroxidases, with high affinity for manganese and dyes, has 
recently been described; these enzymes can also oxidise 2,6-dimethoxyphenol (DMP) and veratryl 
alcohol (VA) in a manganese-independent reaction. Until now, they have only been isolated from 
Pleurotus ostreatus, Pleurotus eryngii, Bjerkandera adusta and Bjerkandera sp. strain BOS55 [1-
3]. Purified MnP1 and MnP2 from B. adusta, as well as MnPL1 and MnPL2 from P. eryngii are 
similar with respect to their ability to decolourise several dyes in manganese-independent reactions, 
as well as in manganese-independent oxidations of DMP and veratryl alcohol.  

The recently sequenced enzymes MnPL1 and MnPL2 from cultures of P. eryngii exhibit high 
sequence and structural homologies with LiP and with MnP from Phanerochaete chrysosporium, 
but their molecular models show a putative manganese interaction site near the internal propionate 
of heme that accounts for their ability to oxidise low concentrations of this cation [2-3]. 

A novel fungal strain was identified in our laboratory as belonging to the Bjerkandera genus, 
and tentatively named Bjerkandera sp. strain B33/3. The objectives of the present study were to 
characterise the versatile peroxidase from this novel strain, both at sequence and structural levels. 

 

2 Materials and Methods. 
 

With the propose of cloning the gene corresponding to the cDNA obtained that codifies for the 
RBP versatile peroxidase, the oligonucleotides F-Peroxi (forward) and a primer designed from 3’ 
terminus of the cDNA sequence obtained previously Cterm6 (reverse) 5’-
CACAATTCCTACGACGACGCCTTATTCCCTCC-3’ (Eurogentec) where used. Since the primer 
F-Peroxi encodes seven amino acids beginning at the third amino acid at the N-terminus of the 
mature protein, the amplified fragment was devoid of the 5’end of the gene and in particular of the 
leader sequence.  
 
* E:mail: pmoreira@mail.esb.ucp.pt 
1 Departamento de Biotecnologia, Instituto Nacional de Engenharia e Tecnologia Industrial (INETI), Est. Paço do 
Lumiar, 22, P-1649-038 Lisboa, Portugal.  
2 Escola Superior de Biotecnologia, Universidade Católica Portuguesa, R. Dr. António Bernardino de Almeida, P-
4200-072 Porto, Portugal. 
3 Centre d’Ingénierie des Protéines, Université de Liège, Institut de Chimie, B6, Sart Tilman, B-4000 Liège, 
Belgique. 
4 Département de Chimie Générale et Physique. Laboratoire de Spectrométrie de Masse, Université De Liège, B6c, 
Sart-Tilman, B-4000 Liège, Belgique. 
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In order to obtain it an oligonucleotide Nterm2 5’-

GCACTTCTTCGCCGCACTCGCCGCCGTC-3’ (Eurogentec), directed towards the 5’end of the 
gene, located near the N terminal of the RBP protein coding region, was combined with an hexamer 
(random priming) in a PCR reaction with the total genomic DNA. An oligonucleotide PS1 5’-
ATGGCCTTCAAGCAACTCCTCACTG-3’ (Eurogenetec), coding for the first eight residues of a 
sequence giving good homology with signal peptides of ligninolytic peroxidases, was therefore 
synthesized and used in PCR reactions. The primers 6c 5’-
CGGCGCCTGCGAATTGAATACTGTTTGTGTG-3’ (Eurogenetec) or 6g 5’-
GATCATGATAGACCCGTCGGCACC-3’ located within the non-coding region of gene sequence 
previously obtained where used as downstream primers. Using the genomic DNA extracted as a 
template and Ps1, 6c or 6g oligonucleotides as primers, several DNA fragments were amplified by 
PCR.  

To get a better specificity of PCR reactions, a final oligonucleotide 6h 5’-
CGTTGTTGGCGTGGAAGTTGGGCTCGATGTCGTC-3’ was designed from the nucleic acid 
coding sequence for DDIEPNFHANN, a relatively conserved region among ligninolytic 
peroxidases where the proline residue was unique and characteristic of the cDNA of the RBP 
previously obtained. The pair of oligonucleotides 6h (complementary to the sequence encoding the 
above peptide) and PS1 allowed amplifying the expected signal peptide.  

 

3 Results and Discussion.  
 
A 1625 bp fragment was amplified and cloned. Six different templates were completely sequenced 
on both strands, using the internal specific oligonucleotides 6a to 6f as primers. The Bestfit 
program (GCG software) clearly identified the correspondance between the amplified fragment and 
the cDNA and allowed the accurate localization of the introns interrupting the ORF encoding the 
mature protein. 
Sequence and structure function studies of the cloned gene where made, revelling high sequence 
and structural homologies with both LiP and MnP from different white rot fungal strains. 
 

4 References. 
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Primer Designer for Site-Directed
Mutagenesis

Alexey Novoradovsky1, Vivian Zhang2, Madhushree Ghosh2,
Holly Hogrefe2, William Detrich2, Joseph A. Sorge2, Terry Gaasterland1.

Engineering mutations within cloned DNA fragments involves the design of primer-template duplexes
containing the target mutation. These primers have single or multiple base mismatches, or in the case
of a deletion or an insertion, single-stranded DNA loops. Such DNA duplexes have a higher free
energy than a mismatch-free perfect duplex. Our program suggests the most energy-saving, and thus
the most effective, base substitutions to generate single or multiple amino acid changes, frame-shifts,
deletions, or insertions within the target DNA molecules. Preference in codon replacement is given to
the codon changes that involve fewer nucleotide substitutions and are more energetically favorable.
The energy “c ost” is calculated as a difference between the summary stacking and nearest neighbor
energies of the perfect primer-template duplex compared to the duplex with mismatches. In addition to
free energy conservation principles, the software incorporates several empirical rules for nucleotide
changes, which were established through mutagenesis experiments using degenerate primers. The
program is written in PHP and is accessible as a free web service in the Stratagene web site:
http://labtools.stratagene.com.

                                                  
1Scripps Institution of Oceanography Center for Marine Genomics, 9500 Gilman Dr., La Jolla, CA 92093
2Stratagene, 11011 North Torrey Pines Rd., La Jolla, CA 92037
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PLOC: Analysis of features for protein’s subcellular 
localization prediction 

 
Keun-Joon Park and Paul Horton1 

 
Keywords: subcellular localization, amino acid composition, SVMs, sequence analysis 
 

1 Introduction.  
 
To understand the functions of proteins especially in genome sequencing projects, it is desirable to 
obtain a protein’s subcellular locations automatically from its protein sequence. Park and Kanehisa 
have developed a prediction method PLOC (Protein LOCalization prediction) using the 
compositions of amino acid and (gapped) amino acid pairs by support vector machines [1]. PLOC 
is available at http://www.genome.ad.jp/SIT/ploc.html. In this research, we analyzed the 
relationship between prediction rate and feature subgroup selection in PLOC. We also have 
investigated some new features, such as the biological features from PSORT2 [2] 
(http://psort.ims.u-tokyo.ac.jp/). 

 
2 Method.  
 
We considered 12 subcellular locations in eukaryotic cells (maximum case): chloroplast, cytoplasm, 
cytoskeleton, endoplasmic reticulum, extracellular medium, Golgi apparatus, lysosome, 
mitochondrion, nucleus, peroxisome, plasma membrane, and vacuole. For the construction of our 
dataset, protein sequences were collected from the SWISS-PROT database. In the SWISS-PROT 
database, we checked keyword information about subcellular locations in the CC field, and also 
checked the OC field to remove prokaryotic proteins from the dataset. From the protein sequence data 
set, a set of Support Vector Machines (SVMs) for each subcellular location was trained based on its 
amino acid, amino acid pair, and from one to three gapped amino acid pair compositions. The case of 
12 subcellular locations, 12 SVMs were prepared using five different kinds of composition data. The 
feature vector contains 20 elements for the amino acid composition, and 400 coordinates for the four 
kinds of amino acid pair compositions. The prediction methods based on these five different 
compositions information were then combined using a voting scheme. 
 
The prediction performance was examined by the five-fold cross-validation test, in which the data set 
was divided into five subsets of approximately equal size (Table 1). In order to assess the accuracy of 
prediction methods we use two measures, the total accuracy (TA) and the location accuracy (LA) 
defined by: 
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Here N is the total number of proteins in the data set, k is the number of subcellular locations, ni is the 
number of proteins in each location i, and Ti is the number of correctly predicted proteins in each 
location i. In this method, the kernel of SVMs is RBF (Radial Basis Function). We also tested for 
more realistic repertoires of subcellular locations in different cell types, 11 subcellular locations 
excluding lysosome for a plant cell, 10 locations excluding chloroplast and lysosome for a fungal cell, 
and 10 locations excluding chloroplast and vacuole for an animal cell. Note that vacuoles in fungi or 
plants are thought to correspond to lysosomes in animals. 
 
To investigate the importance of each amino acid pair compositions, forward feature selection 
analysis was done with the PLOC dataset. The forward selection procedure starts from the 
evaluation of each individual amino acid pair feature along with the base set of 20 amino acid 
composition features.  The pair feature used in the best combination is then added to the base set 
and the procedure is repeated until no further improvement is obtained. 
 
3 Results and Discussions.  
 
Table 1 shows the first 10 amino acid pair features selected and each prediction rate from the 
forward feature selection analysis. 

 
TA LA Amino acid pair features 

0.727 0.569  GxxxP 
0.728 0.572  PxxY 
0.728 0.575  NF 
0.729 0.577  PxxH 
0.729 0.579  YF 
0.730 0.580  GxQ 
0.730 0.581  RxxY 
0.732 0.581  SxxxF 
0.733 0.581  LxxxP 
0.734 0.582  HxP 

 
Table 1: The first 10 informative amino acid pair compositions selected by forward subset feature selection in 

PLOC method.  
 
We also acquired some informative feature set from PSORT2. PSORT2 contains 31 biological 
meaningful features. These features would be added as the new features to the new version of 
PLOC2 for yeast proteins. Further practical prediction method may be constructed by adding new 
subcellular locations or defining finer classifications, for example mitochondrial inner, outer 
membrane or matrix protein groups. And some researchers could also want prediction system for 
some specific locations only. We have to gather and consider these various needs from the users. 
Perhaps improvements of prediction rate can be obtained using additional new feature vectors for 
training of SVMs. 
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An Evolutionary Computation Approach for
Detecting Repetitions in Biosequences

Adam Adamopoulos, 1 Katerina Perdikuri, 2

Keywords: biological sequences, repetitions, evolutionary programming, genetic algorithms

1 Introduction.

One of the most important goals in computational molecular biology is allocating repeated
patterns in nucleic or protein sequences, and identifying structural or functional motifs that
are common to a set of such sequences. In this paper we introduce a new approach to detect
the repetitions of fixed length in Biosequences using an Evolutionaty Computation approach.
Our approach involves evolving a population of patterns in an evolutionary manner and
gradually improving the fitness of the population as measured by an objective function,
which measures the approximate repetitions of the patterns in the given sequence. The
general attraction of the approach is the ability to detect repeated schemas, thus inferring
motifs of fixed length from biosequences. Genetic Algorithms and Evolutionary Computation
have been succesfully applied so far in the Multiple Molecular Sequence Alignment problem
in order to identify similarities among sequences [1].

2 Methodology.

Biosequences, such as DNA and Protein sequences, can be seen as long texts over specific
alphabets, encoding the genetic code of living beings. Searching for repeated sub-sequences
of any length over those texts could be modeled as searching for a set of given patterns in a
“text”.

In our approach we consider the population of a Genetic Algorithm as the population
of p words of length l. For each particular run, the population size p (i.e. the number of
individuals) of each generation, as well as the length l of each one word of the population are
kept constant. After establishing a population of words the population is randomly initial-
ized. When the initialization procedure is completed all words of the population are random
strings drawn from the ΣDNA alphabet. The fitness f of each particular word is evalu-
ated considering as fitness (or evaluation) function the number of approximate occurrences
(repetitions) of the word in the input sequence.

The overall structure of the method is shown in Figure 1. To go from one generation to
the next, children are derived from parents that are chosen by some kind of natural selection.
To create a child, an operator is selected that can be a crossover (mixing the contents of the
two parents) or a mutation (modifying a single parent). Each operator has a probability of
being chosen. Thus the algorithm is divided in two stages. The first one is the evolutionary
phase where the new population of individuals/words is generated and the searching phase
where each individual is evaluated by counting its number and exact positions of occurrences.

Compared to other techniques ([2], [3]) our algorithm is linear to the length of the
input sequence and has the advantage of allowing the user to specify the exact length of

1Laboratory of Medical Physics, Department of Medicine, Democritus University of Thrace,
Alexandroupolis, Greece. E-mail: adam@med.duth.gr

2Research Academic Computer Technology Institute, 61 Riga Feraiou Street, 26221 Patras,
Greece. E-mail: perdikur@ceid.upatras.gr
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the repetitions the biologist looks for. Taking into consideration the easy parallelisation of
Genetic Algorithms we believe that our method can be used in many practical applications.
Moreover Genetic Algorithms could be successfully used as a practical way to solve many
computationally difficult problems in the areas of Sequence Search and Alignment. They
are intellectually satisfying in their simplicity and the way they attempt to mimic biological
evolution.

FIND REPETITIONS(X,l, p, n, pm, pc, elitism)
Initialize population of words
WHILE n ≥ 1, DO

Evaluate-Fitness: compute the repetitions of each word of the population;
Produce Next Generation: compute the next generation;

If elitism 6= 0, perform elitism;
If pm ≤ const, perform mutation;
If pc ≤ const, perform uniform crossover;

Report individuals in descending order
END FIND REPETITIONS

Figure 1: Schematic View of the Genetic Algorithm Methodology

3 Conclusions and Future Work.

Our method efficiently computes the repetitions inside a biosequence by evolving a popu-
lation of repeated patterns in an evolutionary manner (mutation and crossover) and finally
reporting those with high fitness function. Our future work is three fold. The first one con-
cerns the modification of the algorithm by assigning a credit to the operators of mutation
and crossover. Thus, each time a new individual is generated, if it yields some improvement
over its parents, the operator that was directly responsible for its creation gets the largest
part of the credit and so in the new generation we can dynamically change the probability of
the mutation or crossover operator. This can reduce the time complexity needed to compute
the mutation and crossover operation for the population in each generation. The second
research direction concerns the addition of one operator responsible for inserting gaps inside
repeated patterns thus giving the possibility of inferring structured patterns from the input
biosequence. Finally an interesting problem arises from having “don’t care symbols” in the
input sequence [4]. A “don’t care” symbol has the property of matching any symbol of a
given alphabet. We believe that our approach can efficiently compute the repetitions even
in biosequences with “don’t cares”.
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Euclidean Distance Measure of Markov Models for
Genome Comparison Without Alignment

Tuan Pham, 1 James O’Connell, 2 Johannes Zuegg, 3

Keywords: Sequence comparison, alignment-free, Markov models

1 Introduction.

Comparison between sequences is a key step in bioinformatics [2] when analysing similarities
of functions and properties of different sequences. We discuss herewith a stochastic method
for modeling biological sequences and its Euclidean distance measure for comparison without
the need of alignment.

2 Euclideance distance of Markov models.

Let A = [aij ] denote the state transition probability matrix of a discrete, first-order Markov
process. Each state transition probability aij is defined as

aij = P [qt = Sj |qt−1 = Si], 1 ≤ i, j ≤ N (1)

where qt stands for the actual state at time t, Sj a state j of a set of N distinct states.

We make use of the 20 amino acids and the stop-codon group to specifiy N=441 states
that come from the different combinations of pair-wise sets of the amino acids and the stop
codons (212 = 441). To construct the transition matrix A, we apply circular shifting of every
single nucleotide in the sequence and count the occurances of the transitions.

Let π = {πi} be the initial state distribution where

πi = P (q1 = Si), 1 ≤ i ≤ N (2)

Let λ1 = (A1, π1), and λ2 = (A2, π2) be two Markov models of the two sequences, and
assuming equal initial probability distribution, we can measure the similarity between two
sequences by the Euclidean distance, denoted by dE(λ1, λ2), and defined as follows:

dE(λ1, λ2) =

(
1

N

N∑
i=1

N∑
j=1

(a1
ij − a2

ij)
2

) 1
2

(3)

where a1
ij and a2

ij are the elements of A1 and A2, respectively.

1School of Computing and Information Technology, Griffith University, Nathan Campus, QLD
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3 Results.

We test our proposed method with 33 complete mamalian mtDNA sequences available
in a public database (http://megasun.bch.umontreal.ca/ogmp/projects/other/mt list.html).
The distance matrix derived from these 33 mtDNA genomes is used to study the relationship
between the species and their groups. Figure 1 shows the phylogenetic tree of these genomes
using the PHYLIP package [1]. Overall, the method has shown reasonable relationships
between these species and their groups.

4 Concluding Remarks.

We have applied a simple distance measure for comparison between Markov models of 33
complete mtDNA genomes and obtained reasonable result. Investigation into more robust
distance measures for stochastic models will be useful in this study.
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Figure 1. Phylogenetic tree constructed from complete mtDNA for 33 species
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HMMERHEAD - Accelerating HMM Searches On
Large Databases

Elon Portugaly1Matan Ninio1

Keywords: HMM, acceleration, sequence, search, Pfam, SWISS-PROT, BLAST

1 Introduction

HMMs have been proven useful in protein sequence analysis [1]. However, a full search
of a sequence database using an HMM is a computationally expensive process - running
all the Pfam [3] HMMs on the SWISS-PROT database [4] takes almost three months of
computer time. The two-hit method used by Altschul et al [2] allows BLAST to accelerate
both sequence vs. sequence searches and profile vs. sequence searches. In this work we build
a framework that uses a similar method for HMM searches.

We provide HMMER Hashing Enabled Acceleration Device (HMMERHEAD) - a software
package that filters out sequences for hmmsearch. Our experiments show that we typically
achieve a 15-fold acceleration of running time, while retaining 99% of the results.

2 The Two-Hit Method

The two-hit method was introduced in [2]. Following is a short description of the method.

Preprocessing: In a preprocessing step, a database of k-mers (i.e. words of size k over
the alphabet used) is compiled from the sequence database. For each possible k-mer this
database provides quick access to the list of all occurrences of the k-mer in the sequence
database. This database is fixed for all queries, and need only be computed once for each
sequence database.

Queries: When presented with a query, the algorithm finds all k-mers that locally match
any part of the query with a local score above some given threshold. Next, the k-mer
database is queried for the occurrences of each of the above k-mers in the target sequences.
Each such occurrence resides within a diagonal path in the alignment graph of the sequence
and the query. If two such occurrences share a diagonal, and are within a fixed distance
from each other, the target sequence is reported as a candidate for dynamic programming
search.

3 HMMER and HMMERHEAD

We have implemented the two-hit-method as a filter stage for HMMER [1]. HMMER is a
software package that implements HMMs for families of protein and DNA sequences. Given
a query HMM and a sequence database, HMMERHEAD filters the sequence database using
the two-hit-method, and pipes the sequences that passed the filter to HMMER’s hmmsearch
program for the final search. HMMERHEAD accepts HMMER HMMs files as input. The
HMMERHEAD package has been tested on Linux and is provided under the GNU license
at http://www.cs.huji.ac.il/labs/compbio/hmmerhead.

1School of Computer Science & Engineering, Hebrew University, Jerusalem 91904, Israel.
E-Mail: {elonp,ninio}@cs.huji.ac.il

Dana Jermanis


Dana Jermanis
Molecular Sequence Analysis

Dana Jermanis
350

Dana Jermanis
I32.



Table 1. Recall and speedup by filtering Figure 1. Running times

Filtering1 (%) 90 95 97.5 99 99.5

Average recall2 99.4 99.3 99.0 90.6 88.3

Speedup factor3 5.5 8.4 15.2 34.4 52.5

Recall4

Above 99% 93.6 92.0 89.0 82.8 77.2

99%-95% 4.3 5.4 5.6 4.0 4.0

95%-90% 1.6 2.1 3.2 4.0 5.4

Below 90% 0.5 0.5 2.1 9.1 13.4
1percent of sequences that are filtered out
2percent of total required matches that survive filtration
3decrease factor in total cpu time (user+system)
4Percent of HMMs for which recall is within range
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4 Results

HMMERHEAD performance is evaluated by two measures: recall - the percentage of true
positives that survive the filtering, and filtering - the percent of sequences that pass the filter.
We also measure machine running time directly. All runs where performed with k-mers of
size 4 and a two-hit window of size 25.

We tested HMMERHEAD performance by searching for Pfam family members in the
SWISS-PROT (rel. 41.21) database [4].

Each Pfam family is defined by two HMMs and two corresponding cutoff scores. We
randomly chose about 5% of the Pfam families, and collected all 476 related HMMs. We
searched the SWISS-PROT database with each of the HMMs, first with HMMER, and then
with HMMERHEAD using several different levels of filtering. The results are shown in Table
1. Note that when filtering 97.5% of the sequences, we achieve a speedup factor of more
then 15, and loose only 1% of the required matches. The bottom part of the table shows the
performance over the different HMM profiles - here recall is computed separately for each
family. Figure 1 shows the running times, in cpu seconds, of the different HMMs. X-axis
– search without HMMERHEAD; Y-axis – HMMERHEAD filtration with 97.5%. A least
squares linear fit sets f = 5.028 + 0.0553× u for f filtered time and u unfiltered time.
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Understanding RNA Pseudoknotted Structures

Anne Condon, Beth Davy, Baharak Rastegari, Shelly Zhao, 1 Finbarr
Tarrant 2

Keywords: RNA secondary structure prediction, RNA pseudoknots

1 Introduction

RNA molecules play diverse roles in the cell. The structure of RNA molecules is often
the key to their function and predicting the secondary structure of RNA molecules is thus
an important problem. Since the general problem of predicting pseudoknotted secondary
structures is NP-hard, several algorithms have been proposed that find the minimum free
energy (mfe) secondary structure from a restricted class of secondary structures: Rivas and
Eddy (R&E) [7], Dirks and Pierce (D&P) [5], Lyngso and Pederson (L&P) [6] and Akutsu
and Uemura (A&U) [1, 8] (two algorithms with the same class). In this work, we order the
classes by the generality of the structures that they handle and the result is as follows (PKF
stands for pseudoknotted free structures): PKF ⊆ L&P ⊂ D&P ⊂ A&U ⊂ R&E.
The classes of structures that some of these algorithms can handle is defined implicitly by
the lengthy recurrences in the algorithm. We provide simple, concise characterizations of
the classes of structures handled by R&E, D&P and A&U algorithms as well as linear time
methods to test whether a given secondary structure is in each class. Using our methods,
we provide data on the percentage of real structures that can be handled by each algorithm.

2 Characterization of R&E class

RNA secondary structure is usually defined as a set R of base pairs i.j such that each base is
paired at most once. Here, we will also use an alternative pattern representation of secondary
structures. To define patterns precisely, we introduce some notation. We use ε to denote the
empty string. Let Nn denote the natural numbers between 1 and n (inclusive). A string p
(of even length) over some alphabet Σ is a secondary structure pattern, or simply a pattern,
if every symbol of Σ occurs either exactly twice, or not at all, in p. We say that p is a pattern
for secondary structure R of a strand of length n if there exists a mapping m : Nn → Σ∪{ε}
with the following properties: (i) if i · j ∈ R then m(i) ∈ Σ and m(i) = m(j), (ii) if i · j �∈ R
for all j ∈ Nn, then m(i) = ε, and (iii) p = m(1)m(2) . . . m(n).

We have developed formal characterizations of the R&E, D&P and A&U classes. Here,
we describe the characterizations of the R&E class. (The others are defined in a similar way)

The patterns in the R&E structure class can be defined as follows: Let p be a string
over alphabet Σ. Symbol σ is directly adjacent to symbol τ in p if and only if either στσ
is a substring of p or there are two disjoint substrings x, y of p, both of length 2, such
that τ and σ are both in x and τ and σ are both in y. If σ is directly adjacent to some
symbol in pattern p, we say σ is directly adjacent in p. (The direct adjacency relation is
not necessarily symmetric.) Let p be a pattern. We say that p −−−→

R&E
p′ if p′ = p ↓ σ for

some σ that is either self-adjacent or directly adjacent in p. (p ↓ σ denotes the string p with

1Department of Computer Science, University of British Columbia, Vancouver, BC, V6T 1Z4,
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all occurrences of σ removed.) Also, p
∗−−−→

R&E
p′ if p = p′ or ∃ patterns p1, . . . , pk such that

p −−−→
R&E

p1 −−−→
R&E

. . . pk −−−→
R&E

p′. Pattern p is an R&E pattern if p
∗−−−→

R&E
ε.

3 Tests and Results

We have developed linear time tests for membership in each of the R&E, D&P, and the
L&P classes from PseudoBase (PBase) [2], the Nucleic Acids Database (NDB) [3], 16S and
23S ribosomal RNA and Group I and Group II Introns from the Gutell Database [4]. Our
results,presented in Table 1, shows that the R&E structure class is indeed very general,
containing all of the secondary structures except for three (long) Group II Intron sequences.
Although the D&P class does not contain most of the 23S rRNA structures, it compares
well with the R&E class. The L&P class additionally misses almost all of the 16S rRNA
structures, yet still contains almost all of the structures in PseudoBase.

PBase 16S 23S Gp I Gp II NDB
Intron Intron

# Strs 240 152 69 10 3 12
Avg.
#Bps

14.1 455.6 733 126.1 207 268

PKF 0 0 21 0 0 6
L&P 231 12 21 10 0 6
D&P 232 152 21 10 0 11
R&E 240 152 69 10 0 12

Table 1: Structure classification. Columns 2-7 present data for each RNA data set. For each data

set (column), the entry in the first row lists the number of structures in the data set. The second

row lists the average number of base pairs in the structures. The remaining rows list the number of

structures of the data set that are in the PKF, L&P, D&P, and R&E classes, respectively.
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ELXR: A Resource For Rapid Exon-Directed Sequence Analysis
Jeoffrey J. Schageman1 and Alexander Pertsemlidis 2

Keywords:  Polymorphism, exon, sequence analysis

Abstract

DNA resequencing of exons followed by comparative sequence analysis is the most common method  used  for  detecting  sequence
variation.  Typically,  this  process  requires  determination  of  intron/exon  boundaries,  design  of  PCR  and  DNA  sequencing  primers,
PCR  amplification  from  genomic  DNA,  and  subsequent  sequencing  of  the  resulting  PCR  product.   Here  we  describe  a
bioinformatics  resource  called  ELXR (Exon  Locator  and  Extractor  for  Resequencing)  that  automates  this  tedious  process.   We
have  pre-computed  ELXR  primer  sets  for  all  exons  identified  from  the  entire  NCBI-curated  human,  mouse,  and  rat  mRNA
reference sequence (RefSeq) public database. The resulting 360,000 exon-flanking PCR  primer  pairs  with  accompanying  genomic
and exon-specific annotations  have  been  compiled  into  a  queryable  system  called  ELXRdb,  which  may  be  searched  by keyword,
gene name or RefSeq accession number. An example of an ELXRdb  entry  is  depicted  in figure  1.   ELXR and  ELXRdb  available
on the World Wide Web at http://elxr.swmed.edu/.

________________________________

1 Howard Hughes Medical Institute  and  Eugene McDermott Center for Human Growth and Development, Department of Internal
Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390.  E-mail:
Jeff.Schageman@UTSouthwestern.edu

2 Eugene McDermott Center for Human Growth and Development, Department of Internal Medicine, University of Texas Southwestern
Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390.  E-mail: Alexander.Pertsemlidis @UTSouthwestern.edu
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Effect of alternative splicing on structure and function of
mouse transcription factors.

Bahar Taneri1,  Ben Snyder2,  Terry Gaasterland3.

Keywords: alternative splicing, transcription factor, proteome

Abstract

Ana lyzing  p ro te in s in  the con tex t  o f  al l  avai lab le genome  and  t ranscr ip t
seq uence data h as the  po ten t ial  t o  reveal  fun ct iona l  p rop ert ies  no t  a ccessi b le
th r ough  p ro tein  sequence an alysis  alone .  We a re s tu dy ing  the ef fect  o f
al t ernat i ve sp l icing  on  mou se p ro tein s and  sp ecif ic al ly  o n  t ran scrip t ion  facto rs .
We hypo th esize that  b y  crea t ing  a  p ro te in  s t r uctu re  al ter at ion ,  al ter nat ive
sp l icing  cou ld  be a  c r i t ica l  dete rmin in g  fact o r  fo r  the specif i c  DNA b ind in g
si t es  and  co fac to rs  t hat  in teract  with  a  g iven  t ran scrip t ion  facto r .  We fu r ther
hyp o thesi ze tha t  exp r ession  data wil l  i nd icat e t issue specif ic  con tro l  o f  changes
in  p ro tei n  s t ru ctu re and  fu nct ion  due t o  al te rnat iv e sp l i cing .  We use  Mou SDB3,
a d atabase o f  sp l ice varian ts  in  the mo use t ranscrip tome
(h t t p : / /genomes. rockef el ler . edu /Mo uSDB3) to  s tudy  these  pheno mena. 1  P r o tein
dom ain  o r gan iza t ions fo r  d i fferen t  sp l i ce fo r ms are  deter mined  by  usi ng  SMA RT
(Si mple M odu lar  Arch i tectu r e Research  T oo l-  h t t p : / /sm art .em bl-hei delber g .de) . 2

In i t ial  analyse s revealed  t hat  62 % o f  t he t ranscrip t ion  f acto r  loci  i n  MouS DB3
hav e vari an t  exo ns,  co mpared  to  29 % o f  a l l  loc i .  These var ian t  t ranscr ip t ion
fac to r  lo ci  con tain  a  to tal  o f  32 5  facu l tat iv e exo ns,  wh ich  ar e excl uded  i n  some
transcrip ts  and  inclu ded  in  o ther s .  24%  o f  th ese facu l tat ive exo ns are  in -fr ame,
i .e  their  nucleo t ide number  is  in  mu lt i p les  o f  th ree,  they  do  n o t  in t roduce  a s to p
cod on  when  sk ip ped  an d  the exo n  star ts  at  the f i rs t  ba se o f  a  cod on .  Wh en
exc luded ,  in -fr ame facu l tat ive exo ns al t er  the  domai n  arch i tectu re o f  the p r o tein
81%  of  th e t ime ,  as  compu ted  by  S MART. 67% o f  these  in -fr ame facu l tat ive
exo ns are  ei the r  fu l l y  o r  p art ial ly  wit h in  th e cod i ng  reg ions f o r  mo t ifs  th at  are
imp ortan t  in  t r anscri p t ion  facto r  funct ion .  T hese i nclude  hel ix - loop- hel ix ,
leu cine z ipper  and  hom eobox  domain s.  Our  in teg rated  genom ic and  p ro teomic
app roach  add res ses th e gene ral  qu est ion  o f  ho w al te rnat iv e sp l i cing  a ffects  the
p ro teome,  and  g ives i n sigh t  in to  con tro l  o f  t ranscr ip t ion .
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3 Laboratory of Computational Genomics, The Rockefeller University, 1230 York Avenue. New Yok,
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A Novel Approach for Efficient Query of Single

Nucleotide Variations in DNA Databases

Hsiao Ping Lee 1, Yin Te Tsai 2, Ching Hua Shih 3, Tzu Fang Sheu 4,

Chuan Yi Tang 5

Keywords: Single Nucleotide Variations, RNA Editing, Filtration

1 Introduction.
RNA editing [2] plays a crucial role in altering the functions of the resulting protein products.
Single nucleotide variations (SNV) among DNA sequences can serve as the potential RNA
editing targets. Given a genomic database D, a query sequence Q and a segment width w,
the problem of identifying SNVs is to discover all segments b ∈ D and q ∈ Q such that
b and q have the same width w, the difference between b and q is in only one position,
and the difference is a mutation of A↔G or C↔T. We refer to such b as a w-SNV of q. In
the literature, there are several efficient database search algorithms have been proposed, for
example [1, 3, 4]. The sorting-based method [3] is an efficient approach for all-against-all
SNV detection. Nevertheless, the issue of ad hoc query is not well considered in the sorting
approach. This insufficiency limits the feasibility to serve as an online web tool. In this
poster, we propose a novel approach for efficient SNV identification based on some simple
properties. The ad hoc query is also fully supported in the approach. By the evaluation
experiments, we demonstrate the efficiency of our new approach.

2 SNVF Algorithm.
Let X be a DNA sequences of length w over Σ={A,C,G,T}. X[i, j] denote the substring
of X from positions i to j. An m-seed is a segment, a short substring, of length m. We
call X[1, bw/2c] and X[dw/2e + 1, w] the head and tail seeds of X, respectively. For each
seed e of X, the substring X − e is called its flanking counterpart. Let F c

X denote the

number of occurrences of a c ∈ Σ in X. Let V Σ
X = { FA

X , FC
X , FG

X , FT
X }. Let DP(V Σ

X )=

FA
X + 2vFC

X + 22vFG
X + 23vFT

X , where v = dlog2 we. Let d = 22v − 1. We call Cw
Σ = (2v + 1)d

and Rw
Σ = (2v − 1)d as the center and radius of w-SNV over Σ respectively.

For a given query sequence Q and the user-defined segment width w, the SNV finder
(SNVF) is designed to efficiently extract all w-SNVs from the genomic databases. Our
strategy is first to filter out all the substrings that can not be SNV counterparts. Let S and
T be two DNA sequences of length w. The filtration is based on the following observations.
Observation 1. If T is a w-SNV of S then one of the following two conditions holds: (1)
the head seeds of S and T are identical and the flanking counterpart of head seed of T is
a (w − bw/2c)-SNV of S, or (2) the tail seeds of S and T are identical and the flanking
counterpart of tail seed of T is a (w − bw/2c)-SNV of S.
Observation 2. Let d1 = |DP(V Σ

S[1,bw/2c]) − DP(V Σ
T [1,bw/2c])| and d2 = |DP(V Σ

S[bw/2c+1,w])
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stewardshih@yahoo.com.tw

4Institute of Communication Engineering, National Tsing-Hua University, Taiwan, ROC. E-mail:
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− DP(V Σ
T [bw/2c+1,w])|. If T is a w-SNV of S, d1 × d2 = 0 and |Cw

Σ − 2(d1 + d2)| = Rw
Σ hold.

Based on the observations, we design an efficient three-phase algorithm to find w-SNVs.
In the first phase, we file all seeds of length l = bw/2c from the genomic database into
a dictionary with 4l entries. Using the dictionary, we can immediately locate identical l-
segments in the database. This work can be done in the preprocess beforehand. The second
phase is to extract the possible candidates of SNVs. For each w-segment Qw in the query
sequence, we generate the set Gh of all the w-segments having the head seeds same as Qw’s
from the database. In addition, the set Gt of all the w-segments having the tail seeds
identical to Qw’s is also established. We examine the flanking counterpart of head seed of
each item within Gh by the criterion in Observation 2. The test is also performed on the
flanking counterpart of tail seed of each segment in Gt. The satisfied segments are selected
as SNV candidates, and passed to the next phase. We perform the SNV verification in the
last phase by the comparisons between the target and candidate segments.

Our evaluation experiments are performed on a PC running Red Hat Linux release 9,
equipped with one Intel P4 2.8Ghz CPU, 1GB DDR memory, and 80GB hard disk. In
each test, we randomly select the specified size of query sequences from the chromosome 1
ESTs, and set the segment width to 20. The CPU time spent for each query is measured
and presented in Table 1, where D1, D2 and D3 are chromosome Y ESTs (≈ 1.4M mers),
chromosome 21 ESTs (≈ 21M mers) and chromosome 18 ESTs (≈ 31M mers), respectively.

Query(mers) D1 D2 D3

0.3K <0.01 0.04 0.15
0.6K <0.01 0.09 0.14
1.2K <0.01 0.11 0.17
10K 0.04 0.97 4.00

Figure 1: The CPU time (seconds) in the experiments.

3 Conclusion.
To massively study genes is a hallmark of the transition from ’structural’ to ’functional’
genomics. With huge DNA sequence data, one of the biologists’ desires is to understand the
secrets of DNA sequences, the language of life. For biological applications, our method can
apply to locate gene positions, SNP, alternative splicing events and cross species genomic
comparison to look for orthologous genes.
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Predicting Regulatory Motif based on Multiple 
Genome Sequences 

 
Ting Wang, Gary D. Stormo1 

 
Keywords: comparative genomics, motif discovery, ALLR statistic 
 

1 Introduction.  
 
Discovery of regulatory motifs is one of the fundamental problems in 
computational biology. Identification of all TF binding sites will provide the 
information necessary to eventually construct models for global networks of 
transcriptional regulation. In recent years, the rapid accumulation of complete 
genome sequences and the advance of high-throughput expression profiling 
technology are changing the ways that we look at genomic sequences and 
redefining the type of problems a motif discovery algorithm can tackle. For 
example, due to statistical limitations, current motif discovery tools are only 
applicable to a small group of sequences that are also limited in length. These 
sequences are often promoter sequences of some co-regulated genes identified 
through expression assay or chromatin immunoprecipitation assay, or promoters of 
orthologous genes from several genomes. However, few tools can take the 
advantage of both type of data and predict regulatory motifs from promoter 
sequences of multiple genes from several related genomes.  
 
2 Methods and Results.  
 
We recently developed a new algorithm called PhyloCon (Phylogenetic 
Consensus) that takes into account both conservation among orthologous genes 
and co-regulation of genes within a species. PhyloCon first aligns conserved 
regions of orthologous sequences into multiple sequence alignments, or profiles, 
then compares profiles representing non-orthologous sequences using a newly 
developed statistic we named “ALLR (average log likelihood ratio)”. In this 
study, we present ALLR statistic and show its properties for sequence alignment 
and model comparison. We also present the basic PhyloCon algorithm and its 
derivatives for motif discovery based on comparative genomic data and motif 
comparison. We show by example that PhyloCon can accurately and efficiently 
identify biological meaningful motifs from relatively large sequence dataset.  
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Predictive Classification

Jialu Zhang, 1 Françoise Seillier-Moiseiwitsch 2

Keywords: prequential tests, goodness-of-fit test, cell tropism, HIV

1 Introduction.

Much effort has been devoted to deriving statistical tests to assess model fitness. The usual
goodness-of-fit tests are often too optimistic in estimating model prediction error. Indeed,
the same set of data is used to estimate parameters and to evaluate the model.

Seillier-Moiseiwitsch and collaborators [1] [2] proposed prequential tests as a means to
evaluate models as data come in sequentially. In prequential testing, data are first divided
into a training sample {y1, y2, · · · , yk} and an evaluation sample {yk+1, yk+2, · · · , yn}. The
training sample is then extended by one observation at a time to update parameter estimates
and make a prediction for the next outcome until the last event is predicted. The test
statistics are based on the prediction errors.

The uniqueness of prequential tests is that by extending the training sample and updating
model parameters, the tests evaluate models on the basis of the accuracy of their probabilistic
predictions for future events. Also, prequential tests achieve maximum usage of data in
evaluating models. Specifically, in this research, we applied prequential tests to HIV envelope
sequences in order to determine the key loci in the sequences that are associated with cell
tropism.

2 Prequential tests in HIV sequences.

Cell tropism is categorized by whether HIV is CCR5-tropic or CXCR4-tropic. It is therefore
considered as a binary variable. There are a total of 795 HIV envelope sequences consid-
ered. Each sequence is composed of 35 amino acid residuals spanning the V3 loop. Aligned
sequences form a block with 795 rows and 35 columns. Columns are scanned one at a time.

For each column, a logistic regression model is applied with cell tropism as the dependent
variable and amino acid residuals in each column as covariates. Prequential test is performed
to determine whether any amino acid residual plays significant role in cell tropism. Seillier-
Moiseiwitsch proved that under correct model specification, prequential test statistics follow
a standard normal distribution. In this case, we include one covariate at a time into the
logistic model. If the amino acid residual is related to cell tropism, the distributions of
the prequential test statistics obtained by including the covariate and not including it into
the model should be significantly different. Empirical distributions of test statistics are
computed from the data as an approximation for the true reference distributions.

Using this method, we identified several important positions in the HIV envelope se-
quences including columns 11 and 25. Columns 11 and 25 of the V3 loop were already
recognized as positions related to HIV cell tropism. Besides these, columns 9, 13, 19, 20 and
24 also have some amino acid residuals showing a statistically siginificant impact on viral
tropism. This result indicates the potential biological relationship of these positions to the
viral-host membrane fusion process.

1Department of Mathematics and Statistics, University of Maryland Baltimore County, Baltimore,
Maryland, USA. E-mail: jzhang8@math.umbc.edu

2Director, Bioinformatics Research Center, University of Maryland Baltimore County, Baltimore,
Maryland, USA. E-mail: seillier@math.umbc.edu
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An Eulerian Path Approach to Local Multiple
Alignment of DNA Sequences

Yu Zhang1, Michael S. Waterman2

Keywords: local multiple alignment, de Bruijn graph, repeat finding

1 Introduction.

Many available local alignment programs are limited by running time and accuracy when
aligning large sequence sets. We present an Eulerian path approach to local multiple align-
ment for DNA sequences. The computational time and memory usage of this approach is
almost linear to the total size of sequence set. By constructing a de Bruijn graph, most of
the conserved segments are amplified as heavy paths in the graph, and the original patterns
distributed in sequences are recovered even if they do not exist in any single sequence. This
approach can detect both short (< 20bps) and long (> 300bps) conserved segments, as well
as degenerate patterns (70% pairwise similarity). In addition, a Poisson heuristic [1] is ap-
plied to estimate the significance of local multiple alignments.

We demonstrate the performance of our method by an application in Alu repeat finding
in the human genome. Five genomic sequences were tested, ranging from 22Kb to 1Mb in
length. We compared the result to Alus marked by RepeatMasker[5], which uses detailed
information about Alu repeats. Two programs are in good agreement.

2 Method.

The initial motivation for the method arises from the algorithm for DNA fragment assembly
using the Eulerian superpath approach [2][4]. We first construct a de Bruijn graph using
overlapping k-tuples from the given sequence set. Each k-tuple is represented by a directed
edge in the graph, and two edges are joint by a node if their k-tuples overlap at (k-1) letters
in any sequence. Identical k-tuples are represented by same edges. Under this construction,
each sequence is mapped to a path traversing the graph. If a k-tuple appears in multiple
sequences, the corresponding sequence paths will intersect at the edge representing the k-
tuple. Based on this property, we define the multiplicity of an edge to be the number of
sequence paths visiting the edge, i.e., the number of sequences containing the represented
k-tuple. Using a probabilistic analysis, the larger the multiplicity is, the more likely the
edge represents a conserved k-tuple. And vise versa, the conserved segments tend to be
amplified in the graph by edges of large multiplicities. Therefore, we can extract a consensus
of conserved regions by traversing the graph even if the original pattern do not exist in any
sequence. We then apply constrained local alignment methods to find all segments similar to
the consensus and output the result as a local multiple alignment. We use a Poisson heuristic
to control the false positive rate and to estimate the significance of a local alignment as well.

1Department of Mathematics, University of Southern California, Los Angeles, CA 90089-1113.
E-mail: yuzhang@usc.edu
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3 Results.

We generated 3 different patterns of various lengths (| S |= 63, | M |= 42, | W |= 21), and
inserted mutated copies of each pattern into N random sequences of length L. The number of
copies inserted in each sequence follows the Poisson distribution. Table 1 shows the result.

Sequences Patterns Inserted Patterns Found
N L identity Total S M W Total S M W FP FN
10 2K 90% 27 10 10 7 26 10 10 6 0 1
30 2K 90% 77 33 19 25 76 33 19 24 0 1
10 20K 90% 33 10 9 14 29 10 9 10 0 4
30 20K 90% 82 26 24 32 80 26 24 30 0 2
10 2K 80% 33 8 8 17 31 8 8 15 0 2
30 2K 80% 92 29 28 35 87 29 28 30 0 5
10 20K 80% 22 6 5 11 19 5 5 9 0 3
30 20K 80% 81 38 20 23 76 38 20 18 0 5

Table 1: Simulation results.

To test on real data, we used our program to find Alu repeats in the human genome. Five
sequences of various lengths were randomly selected from NCBI database. Our results agrees
well with Alus found both by the authors who submitted the sequence and by RepeatMasker,
a program which knows Alu consensuses in prior. Result is shown in Table 2. As another
comparison, a repeat finding program REPuter [3] fails to find many Alu repeats presented
and runs slower than our method does.

ID L RepM Family Len(avg:std) Div(avg:std) FP FN Time/sec
AF435921 22Kb 29 10 261 : 69 15.0% : 6.4% 0 0 11
Z15025 38Kb 53 13 245 : 85 15.7% : 5.7% 3 2 15

AC034110 167Kb 89 18 261 : 72 12.2% : 5.9% 0 4 65
AC010145 199Kb 120 13 277 : 55 15.0% : 5.6% 1 3 134

Chr22 1Mb 717 32 252 : 79 15.2% : 6.1% 5 107∗ 1095

Table 2: Alu finding in the human genome. ‘RepM’: number of Alus marked by
RepeatMasker; ‘Family’: number of Alu subfamilies; ‘Len’: Alu lengths; ‘Div’: per-
centage divergence to Alu consensuses. ∗ A second run of our program reduces the
number of false negatives to 30.
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FastR: Fast database search tool for structured
RNA sequences1

Vineet Bafna2, Shaojie Zhang2

Keywords: non-coding genes, RNA, database search, filtration, dynamic programming

1 Introduction.

The discovery of novel non-coding RNAs has been among the most exciting recent develop-
ments in Biology. Yet, many more remain undiscovered. It has been hypothesized that there
is in fact an abundance of functional non-coding RNA (ncRNA) with various catalytic and
regulatory functions [1]. Computational methods tailored specifically for ncRNA are being
actively developed. As the inherent signal for ncRNA is weaker than that for protein coding
genes, comparative methods offer the most promising approach, and are the subject of our
research.

We consider the following problem: Given an RNA sequence with a known secondary
structure, efficiently compute all structural homologs (computed as a function of sequence
and structural similarity) in a genomic database. Our approach, based on structural filters
that eliminate a large portion of the database, while retaining the true homologs allows us
to search a typical bacterial database in minutes on a standard PC, with high sensitivity
and specificity. This is two orders of magnitude better than current available software for
the problem.

2 Methods and Results

Recently, Klein and Eddy [3] developed a tool, RSEARCH, for searching a database with a
query RNA molecule. The method depends upon existing algorithms for computing align-
ments between an RNA sequence and substrings of a database, where the alignment score
is a function of sequence and structural similarity. Known algorithms for computing such
alignments are computationally intensive (approximately O(mw2n), where m is the length
of the query sequence, n is the length of the database sequence, and w is the maximum
length of a database substring that is aligned to the query). Not surprisingly, RSEARCH
is slow to use. For a test run on an Intel/linux PC with 2.8GHz, 1Gb memory, a microbial
database of size 1.67M, and a query 5S rRNA sequence, the program took over 6.5 hrs. to
run. This makes it impractical when either the query or the database is large.

We propose FastR , an efficient database search tool for ncRNA. An analogy can be
drawn from fast search tools (BLAST/FASTA) for DNA and Protein sequences that has
made database searching practical. The speed and effectiveness of BLAST in particular
has contributed in large measure to the exponential growth of sequence databases, and the
use of database search as an accepted method for finding novel DNA/protein homologs.
By proposing FastR, which includes a novel idea for RNA structure filtering, and a novel
& simple RNA alignment algorithm, we hope to do the same for ncRNA. As an example,
FastR reduces the compute time of the previously mentioned query to 103s.

1The full-paper version of this work has been submitted to ISMB/ECCB 2004.
2Department of Computer Science and Engineering, University of California at San Diego, 9500
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Query
Hits

(TP/Tot)
Time

RSEARCH Asn-tRNA(AE001087.1/4936-5008) 85/93 3411s
FastR ” 71/87, 72/97 52s

RSEARCH 5S rRNA (AE016770.1/210436-210555) 97/97 14939s
FastR ” 79/99 44s

RSEARCH Purine-Rs (AE010606.1/4680-4581) 33/39 9215s
FastR ” 27/35 30s

RSEARCH Hammerhead (M83545.1/56-3) 50/58 2741s
FastR ” 44/51, 45/61 34s

Table 1: Comparison of FastR and RSEARCH.

Query Genome
FastR

(hits/TP/FN)
RSEARCH
(E-val ≤ 10)

FastR
time

RSEARCH
time

Asn tRNA A. pernix 25/24/9 57/31/2 2m57s 146m22s
5S rRNA A. pernix 9/1/1 2/1/1 1m43s 390m7s

Table 2: Comparison of RSEARCH and FastR results on querying the 1.67Mb A. pernix genome
(NC 000854.1). The true positives are obtained from known annotations. For False Negatives, we
do not consider tRNAs with introns.

To test our algorithms, we worked with arbitrary ncRNA subfamilies of known/predicted
structure from the RFAM [2] and the 5S Ribosomal RNA database [4]. Four sub-families are
considered here, tRNA, 5S rRNA, a Purine Riboswitch, and the Hammerhead Ribozyme.
For every sub-family, we chose some members arbitrarily, and inserted them in a random
database of 1Mb, and tested our algorithms on the composite sequence. Table 1 summarizes
the results of our search. As can be seen, FastR is close to two orders of magnitude faster
than RSEARCH while maintaining comparable sensitivity.

We have also tested FastR on real genomes, where it is difficult to distinguish true
hits. As shown in Table 2, querying the 1.67 Mb A. pernix genome yielded comparable
results. FastR could not detect the 14 intron containing tRNAs, but detected 24 out of the
remaining 33. For 5S rRNA, the single known annotation was the top hit, but there were
other alignments of similar quality, indicative of novel 5S rRNAs. In the other two cases
(Hammerhead and Purine-Rioboswitch), RSEARCH did not return any significant hit, and
no annotations were available, hence no comparison could be made. FastR dominates again
in speed.
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Transcription unit organization in Prokaryotes 
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1 Abstract.  
 
Here we show that a lot can be learned of the transcription unit (TU) organization of prokaryotes by 
analyzing the number of genes of directons, stretches of genes in the same strand with no 
intervening gene in the opposite strand, and of the inter-genic distances. We give a detailed study of 
Escherichia coli K12, compared with data on experimentally determined TUs available thought 
RegulonDB [1]. We use E. coli K12 as a basis to compare the tendencies in TU organization of 
other prokaryotes. 
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FastGroup II: A web-based bioinformatics platform for 
analyses of large 16S rDNA libraries 

 
Yanan Yu1 , Pat McNairnie1 and Forest Rohwer1,2 
 
Key words: prokaryote, bacteria, 16S rDNA, biodiversity, richness, rarefaction  
 
1 Introduction 

Prokaryotes are the most abundant and diverse components of the biosphere. Most 
of these microbes cannot be cultured in the lab and are therefore studied by sequencing 
their ribosomal RNA genes (16S rDNA) [1]. We have been using high-throughput 16S 
rDNA sequencing to study the diversity of Bacteria and Archaea associated with reef-
building corals. This has created a data glut because there are few bioinformatic tools for 
the analyses of large numbers of 16S rDNA sequences. To address this problem, 
FastGroup II has been developed.   
 
2 Method 

FastGroup II is a web-based software tool to de-replicate large 16S rDNA libraries. 
After cloning and sequencing, the 16S rDNA sequences are imported into FastGroup II as 
individual text files or as one FASTA file. The sequences are then trimmed to commonly 
used conserved sites [2], or to sites specified by the user. Poor-quality sequence, as 
determined by user-defined criteria is also eliminated. Then, using one of several 
different algorithms, the 16S rDNA sequences are grouped together. This grouping de-
replicates the library, displays one representative sequence for all sequences that are 
>97% identical, and produces a table noting the number of sequences that fell into each 
group. The user has the ability to change both the algorithm and the grouping criteria 
used. 

When the grouping is completed, FastGroup II automatically calculates standard 
diversity and richness indices, including the Shannon index, Chao1, and rarefaction of 
each 16S rDNA library. The result is also visualized in the rank-abundance curve using 
web-based graphical views. The data from each library is then stored in a MySQL 
database for later retrieval and comparison against other 16S rDNA libraries. 

 
3 Results 

FastGroup II is user-friendly and is currently being used in our laboratory for 
several studies of coral-related Bacteria and Archaea. This software package is built 
using Objected-Oriented Perl and new methods and functions are continuously being 
added.  This client-server program will soon be available for public use. 
 
 
 
 
1San Diego State University, Department of Biology, LS316, 5500 Campanile Drive 
San Diego, California 92182-4614 USA 
2Center for Microbial Sciences, San Diego State University, 5500 Campanile Drive 
San Diego, California 92818-4614 USA 
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Figure 1. Part of FastGroupII user interface. 
 
4 References 
[1] Hugenholtz P, Goebel BM, Pace NR: Impact of culture-independent studies on the 
emerging phylogenetic view of bacterial diversity. Journal of Bacteriology 1998, 180: 
4765-4774 
[2] Seguritan, V, Rohwer, F: FastGroup: A program to dereplicate libraries of 16S rDNA. 
BMC Bioinformatics 2001, 2:9 
 

Dana Jermanis
Molecular Sequence Analysis

Dana Jermanis


Dana Jermanis
373



Paradigms for Computational Nucleic Acid Design

Robert M. Dirks1, Milo Lin2, Erik Winfree3 and Niles A. Pierce4

Keywords: DNA, RNA, secondary structure, positive design, negative design, affinity,
specificity, partition function

Abstract

The design of DNA and RNA sequences is critical for many endeavors, from DNA nanotech-
nology, to PCR-based applications, to DNA hybridization arrays. Results in the literature
rely on a wide variety of design criteria adapted to the particular requirements of each ap-
plication. Using an extensively-studied thermodynamic model, we perform a detailed study
of several criteria for designing sequences intended to adopt a target secondary structure
[1]. We conclude that superior design methods should explicitly implement both a positive
design paradigm (optimize affinity for the target structure) and a negative design paradigm
(optimize specificity for the target structure). The commonly used approaches of sequence
symmetry minimization and minimum free energy satisfaction primarily implement negative
design and can be strengthened by introducing a positive design component. Surprisingly,
our findings hold for a wide range of secondary structures and are robust to modest pertur-
bation of the thermodynamic parameters used for evaluating sequence quality, suggesting
the feasibility and ongoing utility of a unified approach to nucleic acid design as parameter
sets are further refined. Finally, we observe that designing for thermodynamic stability does
not determine folding kinetics, emphasizing the opportunity for extending design criteria to
target kinetic features of the energy landscape.

Introduction

A fundamental design problem consists of selecting the sequence of a nucleic acid strand
that will adopt a target secondary structure [7]. As depicted in Figure 1a, this is the inverse
of the more famous folding problem of determining the structure (and folding mechanism)
for a given sequence. To attempt the rational design of novel nucleic acid structures, we
require both an approximate empirical physical model [6, 4] and a search algorithm for
selecting promising sequences based on this model. Experimental feedback on the quality
of the design and the performance of the design algorithm can then be obtained by folding
the molecule in vitro. Alternatively, if this feedback loop can be closed computationally by
folding the molecule in silico, the quality of sequence designs could be rapidly assessed and
improved before attempting laboratory validation.

In designing nucleic acid sequences, we consider the two principal paradigms illustrated
in Figure 1b. Positive design methods attempt to select for a desired outcome by optimizing
sequence affinity for the target structure. Negative design methods attempt to select against
unwanted outcomes by optimizing sequence specificity for the target structure. A successful
design must exhibit both high affinity and high specificity [8], so useful design algorithms
must satisfy the objectives of both paradigms, even if they explicitly implement only one.

1Chemistry, Caltech. E-mail: dirks@caltech.edu
2Undergraduate, Caltech. E-mail: miloiq@its.caltech.edu
3Computer Science and Computation & Neural Systems, Caltech. E-mail: winfree@caltech.edu
4Applied & Computational Mathematics, Bioengineering, Caltech. E-mail: niles@caltech.edu
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Figure 1: a) Feedback loop for evaluating nucleic acid se-
quence designs and methodologies. b) Positive and neg-
ative design paradigms. Two sequences are evaluated
using an empirical potential on both the desired target
structure and an undesired structure. Using a positive
design paradigm, sequence A would be selected since it
exhibits a stronger affinity than sequence B for the tar-
get structure (i.e. lower ∆G). Using a negative design
paradigm, sequence B would be selected since it exhibits
specificity for the target structure while sequence A ex-
hibits specificity for the undesired structure.

For some applications, it may be desirable to supplement these thermodynamic design
considerations with additional kinetic requirements. For example, in designing molecular
machines [10], it may be crucial to select sequences that fold or assemble quickly. Alter-
natively, it may be important to design interactions with intentionally frustrated folding
kinetics in order to control fuel delivery during the work cycle [9].

The present study uses efficient partition function algorithms [5, 2] and stochastic kinetics
simulations [3] to examine the thermodynamic and kinetic properties of sequences designed
using seven methods that capture aspects of the positive and negative design paradigms.
Although several of these design criteria have been widely used, we are not aware of any
previous attempt to assess their relative performance. Evaluated based on thermodynamic
considerations, we consistently observe that sequence selection methods that implement both
positive and negative design paradigms outperform methods that implement either paradigm
alone. This trend appears to be robust to changes in both the target secondary structure
and the parameters in the physical model, and to the choice of either RNA or DNA as the
design material. The trend does not hold when the design criteria are judged based on
kinetic considerations, as favorable thermodynamic properties do not ensure fast folding.
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Modeling Phage Species Abundance 
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Joe Mahaffy6, Mya Breitbart7, Forest Rohwer8 
 
Keywords: Lander/Waterman, viruses, phage, biodiversity, metagenomes 
 

Bacteriophage (phage) are viruses that infect bacteria. Once inside their host bacteria, phage 
rapidly multiply and eventually kill the host by causing it to explode and release the new phage 
particles. These free phage particles are the most abundant biological entities in the biosphere, with 
and estimated 1031 phage particles on the planet. The total number of phage species, however, is 
essentially unknown. Recently we have started to shotgun sequence the DNA from uncultured 
phage communities. From this data, we obtained overlapping fragments, which means that the same 
phage genome has been resampled. This observation allows us to mathematically model the phage 
community. 
     Previous studies of phage diversity have been performed using culture-based methods [1]. This 
involves first culturing a bacterial host from the environment, and then isolating phage that can infect 
that bacterial host. Unfortunately, most bacterial hosts (>99%) cannot be cultured and not all phage 
produce identifiable plaques. To circumvent these limitations, we developed a method to shotgun 
sequence DNA from uncultured phage communities. To do this, total genomic DNA was isolated 
from natural phage communities containing approximately 1012 particles.  The genomic DNA was 
physically sheared into 1-2 kilobase long fragments. Then the fragmented DNA sequences were 
cloned and sequenced. Finally, the DNA sequences were analyzed using Sequencher [2] to identify 
sequences that overlapped with 98% identity over 20 bp. An overlap between sequences means that 
the same genome has been re-sampled. A contig spectrum was created from the Sequencher analysis, 
where a 1-contig means the sequence had no overlaps, a 2-contig means two sequences overlapped, a 
3-contig means three sequences overlapped, etc...  The contig spectra from 4 environmental samples 
were then used to predict the population structure of the phage communities using a modified 
Lander/Waterman algorithm [3, 4, 5, 6].  

In the current analysis a number of different distributions were compared. The first two models 
are the Broken Stick and the Niche Preemption [7], which are ecological models based upon the 
division of resources into niches. The other models were the common empirical functional forms - 
Power Law, Exponential Law, Logarithmic, and Lognormal. To make the comparisons, the contig 
spectrua obtained from the samples were used to model the populations assuming one of the 6 
functional forms. The error between the predicted and the actual contig spectra were determined.  
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Table 1 shows that the Power Law and the Lognormal best described the observed contig spectra. 

In contrast, the ecological models did a very poor job of explaining the observed data. 
 

     Mission Bay 
   Scripps Pier      Mission Bay    Fecal Data         Sediment 

Power Law 1.81 2.11 9.20 0.0104 
Exponential 
Law 

12.1 16.2 59.9 0.0126 

Logarithmic 2.51 2.81 10.3 0.0104 
Broken Stick 10.7 14.6 51.6 0.0156 
Niche 
Preemption 

29.5 38.1 145 ND 

Lognormal 1.89 2.31 9.66 0.0104 
 
 

Table 1:  Errors for the given species abundance model and the environmental sample above. ND = not 
determined 

     
  In the environmental samples the phage community structure is best described by a Power 

Law or Lognormal distribution. This does not mean that all phage community structures will be a 
Power Law or Lognormal distribution, but it does give some idea of what the actual mathematical 
distribution may look like. The distinction between the phage community falling under actual 
Power Law distribution or a Lognormal distribution needs to be determined in the future because 
the absolute number of species calculated by the Lognormal is approximately 3X as much as that 
predicted by the Power Law. The shape of the community distribution is also important for 
modeling how phage and their bacterial host interact. Currently, we are performing higher coverage 
sequencing to differentiate between these two functions.  
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Cyber Infrastructure for Phylogenetic Research

Fran Berman1, Bernard Moret2,  Satish Rao3, David Swofford4, Tandy
Warnow5

Keywords: phylogenetics, phyloinformatics, algorithms, biological dataset analysis

1 Introduction.

CIPRes (Cyber Infrastructure for Phylogenetic Research) is an NSF-funded community effort to
design and build an integrated environment for large-scale phylogenetic analysis.

The environment will integrate high-performance computing platforms, large databases, biological
datasets and their analyses, benchmark datasets, optimization software, and a flexible user
interface. It will serve both biologists carrying out analyses of biological data and algorithm
designers developing and testing new phylogenetic reconstruction methods.

The collaboration involves directly 13 universities and museums and 33 researchers in North
America and indirectly many more institutions and individuals worldwide. CIPRes researchers
coordinate closely with national and international initiatives for the reconstruction Tree of Life --
an ambitious project to reconstruct the evolutionary history of all living species (in the tens of
millions).

2 Project Overview

CIPRes will be composed of a large computational platform, a collection of interoperable high-
performance software for phylogenetic analysis, and a large database of datasets (both real and
simulated) and their analyses; it will be accessible through any web browser by developers,
researchers, and educators. The software, freely available in source form, will be usable on scales
varying from laptops to high-performance, Grid-enabled, compute engines such as our platform, and
will be packaged to be compatible with current popular tools. In order to build this resource, CIPRes
will support research programs in phyloinformatics (databases to store multilevel data with detailed
annotations and to support complex, tree-oriented queries), in optimization algorithms, Bayesian
inference, and symbolic manipulation for phylogeny reconstruction, and in simulation of branching
evolution at the genomic level, all within the context of a virtual collaborative center.

Biology, and phylogeny in particular, has been almost completely redefined by modern information
technology, both in terms of data acquisition (new genomic data accumulates at a rate exceeding
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Moore’s law) and in terms of analysis (the literature shows over 10,000 citations to the top three
phylogenetic software packages). Phylogeneticists have formulated specific models and questions that
can now be addressed using recent advances in database technology and optimization algorithms. The
time is thus exactly right for a close collaboration of biologists and computer scientists to address the
IT issues in phylogenetics, many of which call for novel approaches, due to a combination of
combinatorial difficulty and overall scale. CIPRes includes computer scientists working in databases,
algorithm design, algorithm engineering, and high-performance computing, evolutionary biologists
and systematists, bioinformaticians, and biostatisticians, with a history of successful collaboration and
a record of fundamental contributions, to provide the required breadth and depth.

CIPRes brings together researchers from many areas and foster new types of collaborations and new
styles of research in computational biology; moreover, the interaction of algorithms, databases,
modeling, and biology will give new impetus and new directions in each area. CIPRes will help create
the computational infrastructure that the research community will use over the next decades, as more
whole genomes are sequenced and enough data is collected to attempt the inference of the Tree of
Life. It will help evolutionary biologists understand the mechanisms of evolution, the relationship
between evolution, structure, and function of biomolecules, and a host of other research problems in
biology, eventually leading to major progress in ecology, pharmaceutics, forensics, and security
(including computer security). The project will publicize evolution, genomics, and bioinformatics
through informal education programs at our museum partners and will motivate high school students
and college undergraduates to pursue careers in bioinformatics. CIPRes provides an extraordinary
opportunity to train students, both undergraduate and graduate, as well as postdoctoral researchers, in
one of the most exciting interdisciplinary areas in science; our institutions serve a large number of
underrepresented groups and are committed to increase their participation in research.
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Figure 1: Overview of the proposed schematic model of CIPRes.
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Cross-Link Analysis and Experiment Planning
for Elucidation of Protein Structure

Xiaoduan Ye,1 Janusz M. Bujnicki,2

Alan M. Friedman,3 Chris Bailey-Kellogg4

Keywords: Protein structure prediction, protein-protein complexes, experiment design,
cross-linking mass spectrometry, disulfide trapping, structural genomics.

Emerging high-throughput experimental techniques for the characterization of protein
and complex structure yield noisy data with sparse information content, placing a significant
burden on computation to predict, optimize, and interpret the information provided. One
such experiment employs residue-specific chemical cross-linkers to confirm or select among
proposed structural models by testing consistency of cross-linking data with respect to model
geometry (Fig. 1). Recent applications include those by Young et al., using high-resolution
mass spectroscopy alone to correctly discriminate threading models of fibroblast growth
factor [7]; Scaloni et al., analyzing the binding mode of the calmodulin-mellitin complex [4];
and Sorgen et al., determining the arrangement of transmembrane helices in lac permease [6].

We have developed a mechanism for analyzing cross-linking information with respect to a
set of models, predicting the ability of experiments to discriminate among those models, and
optimizing a set of experiments accordingly. A probabilistic framework selects models based
on consistency with data (Fig. 1(c)), mediated by the geometric feasibilities of the cross-
links for the models [3], represented by “cross-link maps” (Fig. 1(b)), and the experimental
conditions, represented with noise and capture rates. We formalize model discriminability
in terms of differences in cross-link maps, and formulate experiment planning problems to
select sets of experiments that maximize such differences, accounting for the key factors
of discriminability, coverage, balance, ambiguity, and cost. We have developed a greedy
algorithm, generalizing those for related SetCover problems [1], that effectively navigates
the design space defined by these terms.

We are applying this mechanism in a study of the bacteriophage lambda Tfa chaper-
one protein, and have planned dicysteine mutations for model discrimination by disulfide
formation. Fig. 2 summarizes our planning results on 103 Tfa models, including three high-
quality threading models from our fold recognition meta-server [2] and 100 decoys from the
ab initio folding program Rosetta [5]. We are currently carrying out a minimized, balanced,
and least ambiguous set of six experiments to discriminate the three threading models with
discriminability two.

Our mechanism is very general, and we plan to study additional applications not tested
here, for example in the discrimination of protein-protein complexes, incorporating different
types of experimental data, and planning combinatorial possibilities of cross-linkers and
mutations. Our methods provide the experimenter with a valuable tool for understanding
and optimizing cross-linking experiments.

1Department of Computer Sciences, Purdue University. ye@cs.purdue.edu
2International Institute of Molecular and Cell Biology, Warsaw, Poland. iamb@genesilico.pl
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Figure 1: Model discrimination by cross-linking. (a) Different predicted models of a
protein have different patterns of feasible cross-links (green dotted lines). (b) Cross-
link maps represent feasibilities with conditional relationship for cross-links (rows)
given models (columns), here shown as either high (H) or low (L). (c) Experimental
identification of a cross-link l1,2 provides evidence for and against models r and s,
based on consistency with cross-link maps and modulated by the capture and noise
rates of the experimental method (here uniformly κ and ν, respectively). Other terms
arise from other cross-links, both observed and unobserved.
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shown).
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Analyzing Protein Structure
Using Almost-Delaunay Tetrahedra

Deepak Bandyopadhyay1, Jack Snoeyink1 Alexander Tropsha 2
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statistical potential, motif detection, secondary structure

1 Introduction.

The Delaunay tessellation (DT) of a protein structure [6] collects representative points of four “neigh-
boring” residues into tetrahedra. The DT has many applications in the analysis of protein structure,
of which we consider two in detail – scoring folded proteins to distinguish the native state from de-
coys [2, 4] and detecting motifs of local structure [7].

The Delaunay tessellation is defined using an “empty sphere” criterion (Delaunay, 1934) – the
circumspheres of Delaunay tetrahedra contain no other points. However, protein atom coordinates are
subject to uncertainties from rounding, measurement, conformational change and motion, and small
changes in the coordinates may cause large changes in the DT.

The almost-Delaunay tetrahedra [1] expand the set of Delaunay tetrahedra to account for perturba-
tion or motion of point coordinates. We define a quadruple of points to be in the set ofalmost-Delaunay
tetrahedrawith parameterε, denoted AD(ε), if there is a perturbation of all points by at mostε that
makes its circumsphere empty. We denote the minimum such perturbation for a quadruple itsAD
threshold. The Delaunay tetrahedra have threshold 0.

2 Experiments and Results
Our implementation in MATLAB and C++ can calculate the AD tetrahedra for typical proteins of 100-
1000 residues in a few seconds to a few minutes, for typical values of two parameters: the maximum
edge length (prune) and maximum perturbation allowed (cutoff). By studying a large number of point
sets with different structure, we observed that there are fewer AD tetrahedra at low thresholds in proteins
than in random point sets; hence the DT is more stable in proteins.

Simplicial Neighbor Analysis of Protein Packing (SNAPP) [2, 4] scores protein structures by sum-
ming the frequencies with which the four-tuples of amino acids observed as Delaunay neighbors, occur
in native protein structures. We calculated SNAPP scores using AD tetrahedra for 6 proteins and their
decoys from the4statereduced[5] set. Overall, the modified scores were as successful as the original
at distinguishing proteins from decoys, and made a slightly stronger distinction between proteins and
highest-scoring decoys. Thus, decoy discrimination using the DT is robust.

We observed that the histogram distribution of AD tetrahedra vs. threshold for an idealα-helix has
sharp peaks atε = 0.3, 0.7 and1.2. These values ofε correspond to specific patterns in the residue
sequence numbers, as shown in Figure 1. Histograms for proteins containingα-helices reveal the same
peaks and patterns; we can mark the corresponding tetrahedra asα-helical, and determine the residues in
α-helical conformation using a heuristic. We may identifyβ-sheets andβ-turns similarly by decoding
patterns present in their AD tetrahedra. For details of the methods, see http://www.cs.unc.edu/∼debug/

1Department of Computer Science, University of North Carolina at Chapel Hill. E-mail:{debug,
snoeyink }@cs.unc.edu
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papers/AlmDel. Secondary structures assigned using the AD method match the widely used DSSP [3]
assignments in most cases (a few are shown in Table 1). They are consistent and robust in cases where
DSSP is not, and are closer to visual assignments done by a human expert.

(a) µ(ε) σ(ε) Patterns
0 0.00 •••• ••◦••
0.31 0.11 •◦••• •••◦•
0.64 0.03 ••◦◦••
0.74 0.04 •◦◦••• •◦•◦•• •◦••◦•••◦•◦• •••◦◦•
0.82 0.08 •◦◦••◦• •◦••◦◦•
1.22 0.04 •◦◦◦••• •◦◦•◦•• •◦•◦◦•••◦•◦•◦• ••◦◦◦•• ••◦◦•◦•••◦•◦◦• •••◦◦◦•
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Figure 1:(a) Patterns forAD(ε) tetrahedra in a syntheticα-helix. •=residue,◦=gap, prune= 10Å and cutoff
ε < 2Å. (b) Histogram showingα-helical peaks, also seen in (c) 2cro and (d) a decoy with same secondary structure.

PDB ID # α-helix β-sheet β-turn
/chain resid DSSP AD DSSP AD PRO AD
1brx 209 158 158 10 8 12 10
1lrv 233 90 100 0 0 29 36
1timA 247 106 101 42 51 15 18
1bg5 254 70 102 0 12 68 32
1ejdA 418 128 138 105 134 43 40
1oen 524 133 112 126 138 86 94

Table 1:α-helical,β-sheet andβ-turn residues assigned by DSSP [3] and by our AD patterns for 6 protein chains
with varying lengths and CATH architectures.
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Avoiding Local Optima in Single Particle Reconstruction

Marshall Bern, 1 Jindong (JD) Chen,2 H. Chi Wong 3

Keywords: Electron microscopy, cryo-EM, maximum likelihood, EM algorithm.

1 Introduction

Cryo-Electron Microscopy (cryo-EM) uses a transmission electron microscope to acquire 2D projections
of a specimen preserved in vitreous ice. A 3D electron density map can then be reconstructed from the
2D projections computationally. In “single-particle” cryo-EM, the specimen consists of many osten-
sibly identical copies of randomly oriented particles, and the reconstruction process must estimate the
unknown orientations at the same time that it estimates the 3D structure.

The solution to this chicken-and-egg problem, developed over the last 20 years [1], is a computa-
tionally intensive process that starts from an initial guess of the shape and then iteratively aligns images
to the current shape and reconstructs a new shape from the aligned images. In the standard approach,
taken by all three of the major software packages (IMAGIC, SPIDER, and EMAN [2]), each particle image
contributes equally to the reconstruction, with orientation set by the image’s best alignment, typically
determined by maximum correlation. The standard approach is remarkably successful, giving correct
structures from images that to the human eye appear to be almost pure noise. Yet occasionally, depend-
ing upon the initial guess, the standard approach gives a completely incorrect structure, close to a fixed
point for the iteration but nowhere near the true structure. Figure 1 gives an example.

a

Figure 1:(a) A piece of a micrograph showing images of p97 AAA ATPase [3] particles (the dark blobs). (b) An
isosurface of a correct reconstruction of p97 made from about 4000 particle images. (c) An incorrect reconstruction
made from about 600 images, using EMAN’s default initial guess. What went wrong is that some of the “top” and
“bottom” views (hexagonal rings) of the particle were mistaken for “side” views. (d) A better reconstruction using
EMAN with the same initial guess, along with multiresolution refinement and “annealing” of image orientations. (e) A
“best-possible” reconstruction from the 600 images using the reconstruction from (b) as the initial guess.

An alternative to the standard approach is a more theoretically grounded (and even more compu-
tationally intensive) approach, due to Sigworth [4]. Sigworth’s approach assumes a simple probabilis-
tic model of cryo-EM imaging (i.i.d. Gaussian pixel noise) and seeks the maximum-likelihood (ML)
reconstruction. The well-known Expectation Maximization algorithm (EM applied to EM!) is used to
maximize the likelihood; this amounts to adding each image into the reconstruction for each possible
orientation (that is, “soft” rather than “hard” orientation assignments), weighted according to the proba-
bility of that orientation. Sigworth demonstrated his ML approach on an analogous 2D problem: recon-
structing an image from a number of noisy copies, randomly rotated and translated. The ML approach

1Palo Alto Research Center, 3333 Coyote Hill Rd., Palo Alto, CA 94304 E-mail:bern@parc.com
Work performed in part while visiting Departamento de Ciˆencia da Computac¸ão, UFMG, Belo Horizonte, Brazil.
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 2:(a) The original particle, designed to have an incorrect local optimum (a square). (b) A data image with
10% signal, meaning that the image is a weighted average of a randomly rotated and translated copy of the original
particle and 90% Gaussian noise. Both the standard algorithm (c) and the ML algorithm (d) give correct reconstruc-
tions from 100 images with 10% signal. (e) The standard algorithm starts to fail with 6% signal. The ML algorithm
(f) starts to fail with 5% signal, but the ML algorithm with multiresolution (g) still gives good results. (h) The ML
algorithm with multiresolution starts to fail with 4% signal.

shows reduced sensitivity to the initial guess and can recover structures from images with lower signal-
to-noise ratio. In this poster we address the question: can the maximum-likelihood approach also help
avoid incorrect local optima?

2 Our Experiments
We implemented the standard approach and a speeded-up version of the ML approach for the 2D prob-
lem. The speeded-up version does not use all possible assignments of orientation, but rather only the
single best translation for each rotation; it gives results indistinguishable from the full ML approach.
Figure 2 shows that this version of ML can indeed avoid an incorrect local optimum at a lower signal-
to-noise ratio than the standard approach; this result turns out to be essentially independent of the initial
guess. (We believe that because each 2D data image contains a full copy of the original, the 2D and
3D problems differ in their sensitivities to the initial guess.) We made another modification to the ML
approach that turned out to be a substantial improvement (Figure 2(g) and (h)): this “multiresolution”
algorithm low-pass filters each image before determining orientation probabilities and adding it into the
reconstruction, and gradually reduces the filtering in later iterations. The rationale is to smooth out the
optimization and remove local optima. (Low-pass filtering is also helpful because particle shape is often
stronger relative to noise at low spatial frequencies.)

Will these results carry over to 3D? We modified EMAN in an attempt to correct the problem shown
in Figure 1(c). Ludtke (personal communication) had previously tried to implement Sigworth’s ML ap-
proach in EMAN, but could not find a robust definition of probability for the possible orientations of an
image. (The experiments with synthetic data do not suffer from this problem, because the synthetic noise
really does conform to the probabilistic model.) We tried a crude hack instead: simply adding a random
component to EMAN’s matching score for each image-orientation pair. Thus suboptimal asssignments
occasionally win by chance. The size of the random component is reduced in later iterations, as in simu-
lated annealing. Our modified version of EMAN also includes the multiresolution idea described above,
and both “annealing” and multiresolution seem to be necessary to avoid the local optimum for the p97
data set. Figure 1(d) shows our 3D results.
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1 Abstract.  
 
The most straightforward computational method to generate protein folding pathways consists in 
running Molecular Dynamics (MD) simulations. The time-dependent behavior of the atoms that 
form the protein and the surrounding solvent is obtained by solving the Newton’s equations of 
motion given all the interaction forces present in the system. The disadvantages of this approach are 
well known: first, the time step of the simulations must be chosen small enough to accurately 
represent the fastest modes of atomic motion, hence a huge number of steps are needed in order to 
reach the timescales of interest, and second, a realistically sized protein contains thousands of 
atoms, which makes the calculation of the forces an extremely expensive task. Nevertheless, MD 
simulations can still be used to study problems simpler than finding the pathway that connects the 
unfolded state with the native structure. For example, determining the structural changes induced 
by single point mutations in the primary sequence [1], or more traditionally, refining the atomic 
coordinates obtained from experimental techniques such as X-ray diffraction or NMR.  
These limitations observed in MD, caused by the high dimensionality of the system and by the 
presence of extremely fast motion modes, prompted the development of simplified or coarse-
grained models to represent protein structure. The “standard” simplifications consist in treating the 
solvent implicitly and using the torsional coordinates of the protein backbone as the only degrees of 
freedom. However, these reductions have a cost, mainly the low resolution of the simulated 
structures and the need of using additional data-base information in order to generate reasonable 
conformations. With regards to the search algorithm, all these models usually rely on some 
variation of Monte Carlo (MC) sampling, frequently combined with a cooling schedule on the 
temperature to allow wider moves at the beginning of the simulation, but “freezing” when getting 
closer to a “good” structure. Important progress has been made with these techniques, particularly 
in the prediction of native folds given the primary sequence [2, 3]. 
Because MC evolves the system towards the equilibrium conformation, regardless of the real 
pathway, the simulated transitions cannot be interpreted dynamically and there is no clear 
correlation between the MC steps and real time. Leaving aside the question of whether or not the 
native structure of a protein corresponds to the state of global equilibrium, it is evident that a 
different approach is required to generate folding pathways that can be matched with real folding 
events. Even though the sole prediction of the native fold from the sequence is generally regarded 
as the central objective of any protein folding algorithm, the prediction of additional dynamical 
information has considerable practical relevance, as shown by the important role played by 
disordered and misfolded proteins in numerous biological processes [4]. 
Under the light of all these facts, we propose a coarse-grained model to codify the main structural 
features of a protein, which, as many other previous models, has an implicit treatment of the 
solvent and considers the backbone torsional angles (ϕ, φ) as the only coordinates to characterize 

                                                 
1 Searle Chemistry Laboratory, University of Chicago, 5735 S. Ellis Ave. #126, Chicago, IL, 60637. 
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folding. For a detailed discussion of this model, see ref. [4]. But instead of using MC as the 
sampling scheme, we have introduced a Dynamical Monte Carlo (DMC) algorithm [5, 6] to 
compute transitions in torsional space. DMC (also known as Kinetic Monte Carlo, KMC) is aimed 
to describe the time evolution of processes directed mainly by the kinetic barriers between local 
configurations of the system, which we assume is one of the main features of protein folding.  
In order to apply DMC in our model, we have discretized the torsional angles (ϕ, φ). For each 
amino acid k along the protein chain, the integer variable Rk is defined as the Ramachandran basin 
that contains the point (ϕk, φk) (see ref. [4]). The DMC process is defined at the level of these 
discrete variables by generating transitions between the Ramachandran basins available to each 
amino acid. 
For the DMC algorithm to be complete, the inter-basin transition rates must to be specified in such 
a way that they satisfy detailed balance. We have defined these transition rates using the thermally-
exited process approach, in which the rates are barrier controlled: 

W(amino acid k goes from basin i to basin j) = exp{-β Bk(i, j)} 
where Bk(i, j) is the kinetic barrier associated to the basin change. This barrier can be estimated by 
computing the interactions that are “affected” (either by being formed or dismantled) by a basin 
change at site k. 
Given that the sequence of basin hops for each amino acid k is independent, it results that the time 
evolution of the variables Rk follows a Poisson process. More importantly, it is possible to find a 
correspondence between the simulation steps and real time, given by: 

τi = - ln U / R 
where U is an uniform variable in [0, 1] and R is the total rate of the process at simulation step i. 
We have implemented a protein simulation framework, called Open Protein Simulator (OPS) in 
which this DMC algorithm has been coded to test different functional forms for the kinetic barriers 
Bk(i, j). Results in terms of folding pathways and applicability to predict native structure from the 
sequence alone are discussed. 
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3 Online resources 
 
Source code implementing the Dynamical Monte Carlo algorithm and simulations generated with it are 
available at: 
http://sosnick.uchicago.edu/aifoldlab.html 
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1 Introduction.  
 
Protein structure prediction has been of great interest recently, as witnessed by the past five 
worldwide events in Critical Assessment of Protein Structure Prediction (CASP). Even with 
enormous efforts from various groups, protein structure prediction remains a challenging and 
unsolved problem1. A derived and arguably equally challenging problem is how to refine the model 
structures from homology modeling or fold recognition methods. Even for homology models, the 
typical RMSDs from the native structures are about 3Å (even larger for typical fold recognition 
targets). However, structures with higher resolution (1.5-2.0Å RMSD) are often needed for many 
important studies, such as ligand-protein binding affinity prediction in drug design. In this study, 
we will use an extensive sampling technique, the replica exchange method, to systematically 
examine the structure refinement protocol with a wide range of model protein structures.  

 
2 Methods.  
 
The replica exchange method (REM)2 is a powerful tool for efficient sampling of conformational 
space. Normal molecular dynamics (MD) or Monte Carlo (MC) methods are usually not very efficient 
for sampling because protein systems are often trapped in many local minima at room temperature. 
With REM, however, the high temperature replicas can traverse energy barriers more effectively, thus 
providing a mechanism for low temperature replicas to overcome the energy barriers they would 
otherwise encounter. The method can be briefly described as a two-step algorithm:  (i) Each replica, i 
= 1, 2…M at fixed temperature Tm (m=1, 2, ..., M), is simulated simultaneously and independently for 
a certain number of MC or MD steps. (ii) Pick a pair of replicas, and exchange them with the 
acceptance probability:  

)}exp(,1min{)'( ∆−=→ xxT ,     (1) 
)]()'()[' xUxU − − ( = ∆ ββ ,      (2) 

β and β’ are the two reciprocal temperatures; and U (x) and U (x') are potential energies at the 
configurations {x} and {x’}. In this study, a total of 18 replicas are used for each protein system with 
a temperature range from 300K to 502K. Each replica is run with MD for 2ns and conformations are 
saved every 1ps (it takes on average ~2 months CPU on IBM-Power3-375MHz SP nodes for each 
replica). Only neighboring replicas are attempted for swap with an acceptance ratio of about 20-40%. 
The total energy of protein conformations are calculated with the widely used OPLS-AA force field 
and a continuum solvent model, the Surface Generalized Born (SGB)3 model: 
                      (3) 

cavSGBvac UUUU ++=
where Uvac is the vacuum potential energy from the OPLS-AA force field, and USGB is the 
electrostatic contribution to the solvation energy,3 and Ucav is the nonpolar contribution to the 
solvation energy.3 The structure with the lowest total energy will be picked as the best one.  
 

                                                 
1 IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, E-mail: gdent@us.ibm.com 
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3 Results and Discussion.  
 
Protein sequence targets were selected for structure prediction and refinement from a non-
redundant subset of PDB structures with a pairwise sequence identity below 25%. A predicted 
initial model was created for each target using homology modeling.4 Three different classes of 
model structures were selected for this systematic study of refinement based on the backbone 
RMSD from the native structures: (1) RMSD < 3Å, (2) 3Å < RMSD < 8Å, and (3) RMSD >8Å, to 
represent a wide range of qualities in the initial models.   
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Figure 1:  Total energy vs. RMSD for all conformations in each category: (a) initial RMSD < 3Å; (b) 3Å< 

RMSD < 8Å; and (c) RMSD >8Å. 
The conformations sampled from REM is then clustered and minimized. The final results from 
three representative structures, one from each category, are shown in Figure 1. The first model, 
1jhb (106 residues) has a starting RMSD of 0.5Å. The REM sampling shows only two structures 
having a lower energy than the model, but none of them has a lower RMSD. Other models in this 
category show similar limited improvements. The second model, 1g4d_A (69 residues) with a 
starting RMSD of 6.5Å, is found to have many structures with a lower energy and a smaller RMSD. 
This is a clear instance where refinement has improved the structure significantly, from 6.5Å to 
~3Å. The last model, 1kp6_A (79 residues) with an initial RMSD of 16.8Å, shows some 
improvement as well, about 2-3Å. Overall, we do observe successes in refining some protein 
models, particularly those with larger initial RMSDs. Also, we found that with only a few 
exceptions the native structures are indeed the lowest total energy structures. However, the 
improvement is limited for the highly homologous models with very small RMSDs. This is 
probably the most useful category of structures with relevance to drug discovery applications, thus, 
further work is needed in this direction. Also, interestingly, the majority of the conformations 
sampled are further away from the native structure, indicating that the total sampling space is 
enormous and the total simulation time for effective refinement can be very long, perhaps 
comparable to the folding time. Further improvement and efficiency is likely through biased 
sampling to constrain the sampling around “native-like fragments” based on a suitable confidence 
measure. 
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Visualization and Analysis of Eukaryotic Gene
Signals on Protein Structures

Vivek Gopalan1, Shang Liang2, Tin Wee Tan3, Shoba Ranganathan4

Keywords: evolution, protein, gene, structure

1 Introduction.

Any relation between eukaryotic gene signals on protein structures is essential for analyzing the
origin and evolution of genes. Here we present an approach for analyzing the correspondence
between boundaries of the protein structural elements such as go-modules, domains and secondary
structures and the intron positions in homologous eukaryotic genes. As a first step, we have
developed a program that visualizes the various structural elements and provides detailed statistics
about the significance of the intron positions in a single or set of protein structures.
The results from the analysis can be used for testing the Exon Theory of Genes (ETG) or inron
early theory, which advocates that genes in primordial cells contain introns and proposes exon
shuffling as the main process for protein diversity.

2 Methods

The intron positions and phases of eukaryotic genes are extracted from Xpro [1], which is
eukaryotic protein encoding database based on GenBank (version 137)[2]. The algorithm for
prediction of go module boundaries is based on de Souza et al [3]. The intron positions and phases
are mapped on the PDB protein chain sequences based on conserved region in the BLAST
alignment against the subset of protein sequences that represent intron containing genes in Xpro
database. The E-value cutoff for the BLAST search was kept as 10-4 [4]. The program is written in
Java 2 and Java 3D API is required for visualization of protein structures. The cartoon model of the
protein structure is obtained based on the MOLSCRIPT program [5].  The secondary structures of
the protein chains are obtained from the definitions in the PDB file.

3 Results

Figure 1 shows the Go plot for the chain A of the PDB code 1TIM. The module regions and their
boundaries are shown as rectangular blocks in the hypotenuse of the Go plot. Figure 2 shows the
screen shot of the of the protein structure for the PDB code 1TIM with Go-module mapped on it.
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Figure 1: Screen shot showing Go plot for chain A
for PDB code 1TIM at 28 Å diameter.

Figure 2: Cartoon model of a PDB structures with Go-
modules mapped on protein 3D structure. The spherical
region in the left chain indicates a Go-module (PDB code
– 1TIM, chains – A,B).

The lower region of figure 2 shows the Go-modules mapped a PDB chain in addition to the mapped
intron positions and domain definitions from various domain definition databases such as CATH,
SCOP, DALI, and 3Dee. Provisions for changing the Go-module diameter and visualizing each of
the domain regions, exon encoded regions or module boundaries are built-in within the program. In
conclusion, we have developed an integrated platform for analyzing and visualizing features related
to protein structures and eukaryotic gene signals.
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1 Introduction.   
 
Cells communicate with their extracellular environment through a diverse range of proteins that are 
present in the membrane. Membrane proteins account for the ~25% of the genes in most genomes. 
Ion channels are membrane proteins that have a ubiquitous presence in cells and reflecting their 
roles in cellular physiology. Potassium (K+) channels form a large and diverse family responsible 
for a range of functions in various cell types and tissues, including control of cell electrical 
excitability in the nervous and cardiovascular systems. K+ channels that are responsible to maintain 
and stabilize the resting membrane potential are the inwardly rectifying potassium channels (Kir). 
ATP-sensitive K+ channels (KATP) belong to this group and are responsible in coupling the 
membrane electrical activity to energy metabolism. In the beta cells of the pancreas, they couple 
the rate of insulin release to the blood glucose levels and it has been well established that type II 
diabetes results from defective metabolic regulation of KATP channels. Despite the recent advances 
in the understanding of the K+ channel structure and function, the molecular mechanisms 
underlying the ATP-dependent inhibition of Kir channels still remain elusive. 

 
2 Results.  
 
The crystal structure of the C-terminal intracellular domain of the inwardly rectifying K+ channel 
Kir3.1 has recently been published at 1.8Å [1]. In the present study, molecular dynamics 
simulations were performed to investigate the conformational dynamics of both monomeric and 
homotetrameric forms of the protein. The structure of the Kir3.1 domain also provides a template 
for homology modeling of the equivalent domain of other Kir channels, and thus offers the prospect 
understanding their mechanisms of inhibition and gating. Models of the monomeric and tetrameric 
forms of the intracellular domains of the mammalian Kir6.2 channels were built based on the x-ray 
structure of the C-terminal domain of the Kir3.1 channel. Automated docking was employed to 
identify the residues and the binding site involved in the inhibition of Kir6.2 channels by ATP [2].  
Extensive molecular dynamics simulations were performed to investigate the stability of these 
structures, with and without bound ATP in both the monomeric and tetrameric forms. Simulations 
were carried out for a total of 10 ns using GROMACS. The overall RMSD (root mean square 
deviation) of the Ca atoms for the simulations are described in Table 1. The loop regions form the 
most flexible part of the monomeric structure. They are stabilised in the tetramer by interactions 
with the adjacent subunits. The RMSD for the core region (i.e. excluding the loops) is low, 
suggesting the stability of the core structure. It has been experimentally observed that the mutation 
of Lys185 to Asp/Glu reduces ATP sensitivity considerably [2]. The distance between Lys185 and 
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the ß-phosphate from ATP averaged over the entire trajectory for the structures was between 3.1-
3.5A suggesting that Lys185 interacts with ß-phosphate of ATP. These simulations help in studying 
the nature of residues that contribute to the binding of ATP to the channel and thus could be 
involved in the structural and functional properties. Furthermore, such computational studies aid in 
understanding and interpreting the mutation data and relate the structure to the physiological 
function at an atomic level. 

 
3 Figures and tables.  

 
Figure 1: RMSF (root mean square fluctuation) of residues in each subunit of the intracelleular domain 

from (a) Kir3.1 and (b) Kir6.2. The RMSF peaks correspond to loops in the structure and the corresponding 
regions are indicated using arrows.  

 
 

Protein  Ligand Time RMSD RMSD 
  (ns)  (Overall, Å) (cutoff at 2.5 Å) 

Kir3.1 monomer - 5 2.8 2.2 
Kir3.1 tetramer - 5 2.6 1.9 

Kir6.2 monomer - 5 3.8 2.7 
Kir6.2 monomer ATP 5 3.2 2.0 
Kir6.2 tetramer - 5 3.2 2.9 
Kir6.2 tetramer ATP 5 3.7 2.4 

 
Table 1:  Summary of simulations. 
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Hybrid Probabilistic Roadmap and Monte Carlo

Methods for Biomolecule Conformational Changes

Li Han
1
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1 Introduction

Biomolecule conformational changes play important roles in biological functions and are an
integral part of various important structural problems addressed in computational biology
such as ligand binding and (mis)folding of proteins and nucleic acids. The current structural
biology experimental techniques are not yet as powerful for providing information on dynamic
molecular motion as on static molecular structures; but there has been a large body of work
using computational approaches to study conformational changes. Even with the growth of
computer power and the impressive results generated from computational study, computer
modeling and simulation of biomolecules remain challenging in general, since molecular sys-
tems follow complex physical laws and involve high dimensional conformation spaces. In
this work, we have developed a hybrid Probabilistic Roadmap and Monte Carlo planner for
biomolecule conformation study. The planner has been designed to integrate the strengths
of both probabilistic roadmap and Monte Carlo simulation methods, and its effectiveness
has been demonstrated in our promising preliminary results.

2 Prior Work

Monte Carlo (mc) methods have been successfully applied to statistical physics and chem-
istry where the motion of complex systems of thousands of atoms is studied. Given an initial
conformation of a molecular system, a new conformation is generated through a perturbation
of the initial conformation. If the energy of the new conformation is lower than that of the
initial one, the new conformation is accepted. Otherwise, the new conformation is accepted
with some probability: the higher the new energy, the lower the acceptance rate. Such a
method can be used to generate a trajectory of molecular conformations obeying the Boltz-
mann distribution. While the algorithmic simplicity and theoretical grounding have made
mc appealing to a wide variety of problems, mc methods are quite computationally expen-
sive. For large molecules, random Monte Carlo moves generally result in high rejection rates
and long running time. Furthermore, each simulation run is generally treated independently
from other runs, without using any knowledge generated from prior runs. Regarding the high
rejection rate problem, it has been identified that perturbing one or few atoms at each step
generally leads to a low percentage of rejections. This type of moves also facilitates efficient
computation of molecular structures and energy[4] since a small number of perturbed atoms
will partition a molecule chain into a small number of subchains, where the perturbation only
causes non-rigid relative motion between the subchains and only the energy terms involving
atoms of different subchains need to be updated. As for reusing prior computation results
to improve the simulation efficiency, we believe that probabilistic roadmap (prm) methods
provide a natural framework.
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prm [2] was originally developed for robot motion planning problems and has been suc-
cessfully adapted to studying computational biology problems[1, 3]. Given a molecular sys-
tem, the general methodology of prm planners is to construct a graph(roadmap) to capture
the properties of the conformation space. Roadmap vertices are randomly sampled confor-
mations with their inclusion in the roadmap determined by some acceptance criteria, and
roadmap edges correspond to transitions between ‘nearby’ vertices found with simple local
planning methods such as the linear interpolation, again with inclusion of edges subject to
some acceptance conditions such as the Metropolis criteria. After generating a roadmap,
numerous trajectories between pairs of conformations can be extracted from the graph. This
is one distinct feature of prms as compared to Monte Carlo simulation, where each successful
simulation run generates one trajectory and many simulation runs simply fail. The success
of prm can be partly attributed to its efficient reuse of nodes and edges in the roadmap.

3 Our Methods

prm planners generally need to sample and connect a large number of conformations in order
to build a roadmap that reflects the properties of the conformation space. Conventionally,
roadmap nodes are generated independently from each other. Such an approach need to
compute the energy of each conformation from scratch and move most, if not all, atoms to
connect each pair of conformations, which contribute to long computation times and low
acceptance rates.

We have recently developed a hybrid Probabilistic Roadmap and Monte Carlo (prm-mc)
planner to combine the favorable properties of prm – capturing the connectivity of confor-
mations and facilitating the reuse of already identified conformations and conformational
changes – with those of mc – efficiently updating molecular conformations and energy after
perturbations of a small number of atoms at each step. First the planner generates a small
number of seed conformations. These seed conformations can be experimentally determined
structures stored in PDB or random conformations generated from some conformation space
sampling schemes. Then the planner uses Monte Carlo simulation to generate and con-
nect conformations originated from the perturbation of the seed conformations. Finally the
planner uses prm type connection strategies to try to find more energetically feasible con-
formational changes that have not been identified in the Monte Carlo step. Our preliminary
simulation results have indicated that the prm-mc planner can efficiently generate roadmaps
useful for the study of molecule conformation space and conformational changes.
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1 Introduction.

Protein structure prediction at atomic detail, an important aspect of the protein folding
problem, remains one of the fundamental unsolved problems in the field of computational
molecular biology. The final stage of protein structure prediction usually involves ranking
or evaluating a protein model with a scoring function, an algorithm that gives a score for
an input structure to its fitness, that is used to judge the models likelihood of being the
native structure, or at least of being close to the native. There are two classes of scoring
functions: knowledge-based and physics-based approaches[1, 2]. The two scoring functions
are constructed from very different starting points. Knowledge-based approaches are derived
from distributions of experiment structural data[3]. Physics-based approaches assume that
the protein potential energy function can be broken down into terms of bond stretching,
angle bending, torsional and nonbonded interactions.

2 Methods and results.

A well-behaved physics-based all-atom scoring function for protein structure prediction is
analyzed with several widely used all-atom decoy sets. This scoring function, termed as
AMBER/PB, is based on a refined AMBER force field[4] for intramolecular interactions and
an efficient Poisson-Boltzmann model for solvation interactions[5, 6]. Testing on the chosen
decoy sets shows that the scoring function, designed to consider detailed chemical environ-
ments, is able to consistently discriminate all 62 native crystal structures after considering
the heteroatom groups, disulfide bonds, and crystal packing effects that are not included
in the decoy structures. When NMR structures are considered in the testing, the scoring
function is able to discriminate 8 out of 10 targets. In the more challenging test of selecting
near-native structures, the scoring function also performs very well: for the majority of the
targets studied, the scoring function is able to select decoys that are close to the correspond-
ing native structures as evaluated by ranking numbers and backbone Cα RMSD. Overall
summary is shown in Table 1. Various important components of the scoring function were
also studied to understand their discriminative contributions towards the rankings of na-
tive and near-native structures. It was found that neither the non-polar solvation energy as
modelled by the SA model nor a higher protein dielectric constant improve its discriminative
power. The terms remained to be improved are related to 1-4 interactions. We found that
the most troublesome term is the large and highly fluctuating 1-4 electrostatics term, but
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not the torsion-angle term. These data support ongoing efforts in the community to develop
protein structure prediction methods with physics-based potentials that are competitive with
knowledge-based approaches.

3 Tables.

Decoys Sets Discrimination RMSD Rank Best RMSD Deviation
EMBL misfolded 18 / 19 N/A N/A
CASP1 homology 5 / 5 1∼2 / 10 0.00∼0.89
Globin homology 30 / 30 1∼6 / 29 0.20∼2.98
Park & Levitt ab initio 7 / 7 2∼28 / 650 0.00∼0.68
MMPBSA ab initio 11 / 12 6∼20 / 30 0.58∼0.84

Table 1: Performance of the AMBER/PB scoring function on decoy sets. Discrimination: number
of native structures discriminated out of the total decoy number. RMSD rank: ranking position of
the lowest Cα RMSD by the scoring function out of total number of decoys. Best RMSD: refers to
the lowest Cα RMSD in the top 5 ranked decoys. Best RMSD Deviation: The deviation from the
lowest RMSD in the decoy set to the Best RMSD (Å). n/a: not applicable due to insufficient data.
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1 Introduction.

Finding recurring structural features among protein three-dimensional (3D) structures is an important
problem in bioinformatics. We apply a novel subgraph mining algorithm to three related graph represen-
tations of the sequence and proximity characteristics of a protein’s amino acid residues. The subgraph
mining algorithm is used to discover spatial motifs that can be used to discriminate among proteins in
different families found in the SCOP database.

Protein structure may be modeled using a variety of graph representations [6]. Our approach uses
a labeled graph in which the nodes represent the amino-acid residues comprising the protein, and the
edges represent proximity relations among the residues. Two types of edges are identified: a bond
edge connects two residues that are contiguous in the primary sequence, and a proximity edge connects
two (non-bonded) residues within a given distance Æ of each other. Spatial motifs appear as recurring
subgraphs among a set of proteins represented in this fashion.

A fundamental challenge for applying frequent subgraph mining to find patterns from a group of
proteins is the huge list of frequent subgraphs. As the underlying operation of subgraph isomorphism
testing is NP-complete, it is critical to minimize the number of frequent subgraphs that need to be
considered. We investigate techniques to reduce the number of edges in a contact graph (CG). In
particular, we choose edges from the Delaunay tessellation and its recently developed extension to
almost-Delaunay [1]. The Delaunay tessellation graph (DG), based on Delaunay tessellation of the
protein backbone residues, captures neighbor relations between points representing residues or atoms.
It has been used to analyze packing [3, 5] and structure [2, 4] in proteins. The almost-Delaunay edges
(AD) expand the set of Delaunay edges to account for perturbation or motion of point coordinates,
controlled by a parameter �. A property of these representations is that �� � ����� � �� for all
� � �.

The results indicate that the Delaunay and almost-Delaunay subsets of the contact graph are ro-
bust, sparse, and adequate to produce simplified graphs for mining spatial motifs, yielding motifs with
discrimination qualities similar to, or better than, those obtained from the full contact graph.

2 Experimental Results

We applied the frequent subgraph mining (support is set to 90%) on the Delaunay graph constructed
from the SCOP serine protease family using 10 Å for distance prune. The mined subgraphs are then
used to query the PDB-select 60 dataset, which contains 4672 diverse protein structures with pair-wise
similarity between any two sequences is no more than 60%. Those subgraphs having low background
frequency (0.6%) are selected and reported. In Figure 1, we present the largest motif which is specific
to the serine protease family according to our setup.
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Figure 1: the largest spatial motif which are specific to the serine protease (SP) family. We show the
motif’s occurrence in three members of the SP family: Human Kallikrein 6 (Hk6) (1L06, left), Porcine
Pancreatic Elastase Acyl Enzyme (1GVK, middle) and Human Coagulation Factor Ixa (1RFN, right).

We also applied the coherent subgraph mining algorithm, a postprocessing technique to extract
features fast from a graph database, to multiple SCOP families. The extracted features are then used
for binary classification. The first dataset (��) included two protein families from different SCOP
superfamilies: the nuclear receptor ligand-binding domain proteins and the prokaryotic serine protease
family. The second dataset (��) included the families of eukaryotic serine proteases and the prokaryotic
serine proteases, which belong to the same SCOP superfamily.

Table 1 summarizes the total number of features we identified from different graph representations
and the classification accuracy. From the table, we can see that the Delaunay graph, which mines
significantly small number of features, still preserves the high classification accuracy.

Data Set�� Features Dist. F. Accu%
DG 20,646 934 100

AD(0.1) 23,130 1093 100
AD(0.25) 26,943 1234 96
AD(0.5) 32,463 1582 100

AD(0.75) 37,394 1674 96
CG 40,274 1859 95

Data Set�� Features Dist. F. Accu%
DG 15,895 20 95

AD(0.1) 18,491 29 95
AD(0.25) 23,288 35 93

AD(0.5) 29,083 35 95
AD(0.75) 32,569 36 95

CG 34,697 20 98

Table 1: Binary Classification Results - number of distinguishing features and classification accuracy
with different graph representations: DG (Delaunay) and AD (almost-Delaunay, with perturbation in
the parenthesis), CG (contact graph).
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1 Introduction.  
 

Homologous recombination is important in the generation of genetic diversity and in DNA repair 
in all organisms. One of the crucial steps in recombination is branch migration of a Holliday 
junction. The binding of a tetrameric RuvA to the Holliday junction DNA is followed by the 
loading of RuvB which in turn drives the branch migration. However, the structure of Holliday 
junction DNA complexed with RuvB, has not yet been solved by X-ray crystallography. Therefore, 
in order to perform the molecular dynamics (MD) simulation of branch migration, it is necessary to 
substitute the force generated by RuvB as a result of ATP hydrolysis with an artificial force.  

In order to understand in the molecular level how RuvA recognizes the Holliday junction and 
how branch migration occurs, MD simulations of RuvA – Holliday junction DNA complex were 
performed with and without external forces on the Holliday junction DNA. 
 
2 Methods  
 
   First, MD simulations of (1) an uncomplexed Holliday junction DNA (25 nucleotides × 4 strands), 
and (2) RuvA tetramer – Holliday junction DNA complex (PDB code: 1C7Y [1]) were performed 
for 1nano second at a constant pressure, one bar, and temperature, 300K. 

 Second, MD simulations of modeled RuvA tetramer – Holliday junction DNA Complex were 
performed by substituting the DNA sequence of 1C7Y with the 
sequences of poly(dA)-poly(dT), poly(dT)-poly(dA), poly(dC)- 
poly(dG), poly(dG)-poly(dC) for 1nano second at the same 
pressure and temperature. Then the external screw forces of 5pN in 
the direction of DNA groove were applied on 24 phosphor atoms 
of 15A-20A, 6B-11B, 15C-20C and 6D-11D (see Fig.1) along the 
translocation. The MD simulations of branch migration were 
performed for 500ps at a constant pressure, one bar, and 
temperature, 300K. These simulations were carried out using the 
ABMER7 program. 
 

Figure 1: Schematic picture of Holliday junction DNA with numbering from A-strand to D-strand. 13th bases 
are unpaired. Arrows at the center indicate the direction of branch migration. 
 
3 Results  

1. Atomic fluctuations in thermal equilibrium 
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It was found that the hole at the center of the uncomplexed Holliday junction became smaller 
while the hole at the center of RuvA tetramer – Holliday junction DNA complex remained wide. 
Moreover, it was found that the atomic fluctuations of the 11th and 19th nucleotides interacting 
with HhH motifs of RuvA were small and the atomic fluctuations of nucleotides between the 12th 
and 18th nucleotides were rather large (Fig. 2). The same results were obtained for the modeled 
RuvA tetramer – Holliday junction DNA Complex with the DNA sequences of poly(dA)-poly(dT), 

poly(dT)-poly(dA), poly(dC)-poly(dG), poly(dG)-poly(dC). 
It is considered that the acidic pins (the carboxyl side chains of 

Glu55 and Asp56) located in the center of the RuvA tetramer kept 
the DNA junction center wide and mobile to facilitate the branch 
migration. However, the spontaneous branch migration is unlikely 
to be observed in the scale of a 1nano scale simulation. Therefore, 
in order to observe the branch migration by molecular dynamics, 
steered MD simulations were carried out by applying artificial 
external forces which facilitate the branch migration. 
 

Figure 2: Average RMS fluctuations for heavy atoms of the bases in Holliday junction DNA against the 
nucleotide number 

 
2. Initial process of branch migration 

 
In the steered MD simulation, the initial process of disconnecting and reforming of hydrogen 

bonds at Holliday junction center was seen in the system of poly(dA)-poly(dT), poly(dT)-poly(dA) 
although it was not observed in the system of poly(dC)-poly(dG), poly(dG)-poly(dC). This may 
imply that the three hydrogen bonds between cytosine and guanine are strong enough to tolerate the 
external force for 500ps. 

In the system of poly(dA)-poly(dT), for example, Fig. 3 shows that the disconnection and 
reformation of hydrogen bonds between T14B and A12C (14th Thymine of B-strand and 12th 
Adenine of C-strand), A13C and T13D. A pair of T14B and A12C was broken quickly at 50ps 
although A12C-A13C stack remained until the reformation of hydrogen bonds between A13C and 
T13D at 250ps. It is considered that the disconnection of the hydrogen bonds preceding the unpaird 
13th bases triggered the separation of the two strands, and could facilitate the complete disruption of 

base pairing and stacking that accompanies strand exchange at 
the cross-over point.  

It is suggested that the acidic pins modulate the process of 
the branch migration [2]. During the simulation of migration, 
the change of interaction between the unpaired nucleotides 
and the acidic pins through water-mediated bonding was seen 
when A12C-A13C stack started to break. It is considered that 
the water between the unpaired nucleotides and the acidic 
pins may be crucial for the process of the branch migration. 
 
 

Figure 3: Time evolution of the distance between 1H6 of T14B and O4 of A12C, O4 of A12C and O4 of A13C, 
O4 of A13C and 1H6 of T13D 
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1 Introduction.  
 
Major histocompatibility complex (MHC) molecules are highly polymorphic cell surface molecules 
that present antigenic peptides to cells of the T-cell compartment of the immune system. In the design 
of molecular vaccines for the treatment of diseases, identification of T-cell epitopes from 
immunologically relevant antigens is an important prerequisite. However, the experimental 
identification of T cell epitopes is a time consuming and expensive process due to the large number 
and diverse nature of MHC alleles and candidate peptides. This study presents a new protocol for 
rapid and precise docking of peptides to MHC class I and class II receptors.  
 
2 Methods  
 
Our docking procedure consists of three steps: (i) peptide residues near the ends of the binding groove 
are docked by using an efficient pseudo-Brownian rigid body docking procedure followed by (ii) loop 
enclosure of the remaining backbone structure by satisfaction of spatial constraints and subsequently 
(iii) refinement of the entire backbone and ligand interacting side-chains and receptor side-chains 
around atomic clash regions between MHC receptor and peptide.  
 
3 Results  
 
Evaluation of our modeling procedure is performed systematically in the following two steps: (1) 
Rebuilding of 40 test case complexes; and (2) docking of 15 solved peptides into templates of 
appropriate alleles. In the first test, 33 out of 40 MHC class I and class II peptides can be modeled 
with Cα RMSD < 1.00 Å. In the second test, 11 out of 15 MHC-peptide complexes were modeled 
with Cα RMSD < 1.00 Å. To the best of our knowledge, these results represent up to five-fold 
increase in accuracy compared to available techniques in the remodeling of MHC-peptides and up to 
three times increase in speed. 
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4 Figures and tables.  
 
 
Peptide Technique Author RMSDa RMSDb 
TLTSCNTSV Simulated Annealing Rognan et al [5] 1.04 0.46, 0.58 
FLPSDFFPSV Simulated Annealing Rognan et al [5] 1.59 1.10, 1.48 
GILGFVFTL Simulated Annealing Rognan et al [5] 0.46 0.32, 0.38 
ILKEPVHGV Simulated Annealing Rognan et al [5]  0.87 0.87, 0.73 
LLFGYPVYV Simulated Annealing Rognan et al [5] 0.78 0.33, 0.69 
RGYVYQGL Combinatorial Buildup Algorithm Desmet et al [4] 0.56 0.32, 0.66 
FAPGNYPAL Multiple copy Algorithm Rosenfeld et al [6,7] 2.70 0.40, 0.90 
GILGFVFTL Multiple copy Algorithm Rosenfeld et al [6,7] 1.40 0.32, 0.38 
LLFGYPVYV Combinatorial Buildup Algorithm Sezerman et al [8] 1.40 0.33, 0.69 
ILKGPVHGV Combinatorial Buildup Algorithm Sezerman et al [8]  1.30 0.87, 0.73 
GILGFVFTL Combinatorial Buildup Algorithm Sezerman et al [8] 1.60 0.32, 0.38 
TLTSCNTSV Combinatorial Buildup Algorithm Sezerman et al [8] 2.20 0.46, 0.58 
 
Table 1:  Benchmarking of our MHC-peptide procedure with previously published works in MHC class I peptide 
modeling. aRMSD of peptide backbone atoms obtained from the works of respective authors. bRMSD of peptide 
backbone atoms obtained in our work from redocking bound complexes and docking into single template 
respectively. 
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1 Introduction.  
 
Proteins play an important role in biological processes and detailed knowledge about protein functions 
is fundamental to understand the complex biological pathways that occur in living organisms. A large 
number of sequence information has been experimentally determined and deposited in numerous 
databases. However, only a small fraction of protein sequences have been experimentally 
characterized. In this context, theoretical prediction of protein functions is becoming critically 
important in furthering our understanding of biological processes. In recent years, several groups have 
adopted the use of SVM as a prediction tool for protein functional family classification. This study 
investigates the 11 amino acid attributes (surface tension, hydrophobicity, normalized Van der Waals 
volume, relative mutability, polarity, polarizability, charge, bulkiness, solvent accessibility, predicted 
secondary structure and predicted trans-membrane region) to the accuracy of transporter protein 
family classification using the leave-one-property-out procedure.  
 
2 Methods  
 
Our dataset currently covers 81 protein functional families from the class 2A super family of TCDB 
[6]. These include 774 Swiss-Prot protein records from TCDB, 1065 Swiss-Prot records collected 
from Pfam, and 9764 NCBI’s non-redundant protein database records. The program SVMlight [3] was 
adopted in this study for SVM calculations. Secondary structure assignment was performed using 
PSIPRED [4] and trans-membrane assignment was achieved using MEMSAT [5].  
 
 
3 Results  
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A three-fold cross validation was adopted to investigate the contribution of each amino acid property 
on the accuracy of the classifier. From the amino acid properties used in our current study, 11 
iterations were performed using the leave-one-property-out validation with the exclusion of a specific 
property during each train-test phase in order to determine the significance of each property on the 
accuracy of prediction. Our study reveals that radial basis function presents the best performing kernel 
function and the exclusion of polarity (#5) and polarizability (#6) from the protein-chain descriptors 
resulted in the optimal prediction accuracy of 84.00% to 99.95% for 81 functional families from the 
2A family of transporter in Transporter Commission Database (TC-DB). Refined versions of our 
SVM can serve as a useful tool for transporter protein classification of the entire TC-DB. In this way, 
the effort to create a universal classification system for all currently identified and yet-to-be 
recognized transport proteins could be greatly facilitated. 
 
 
4 Figures and tables.  
 

Exclude Property Property All 
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 

Ave. Acc. 
(%) 99.31 99.10 99.14 99.29 99.28 99.43 99.40 99.27 99.29 99.28 99.21 99.26 

Ave. Acc. 
of top 5 
biggest 
subclasses 
(%) 

97.04 95.76 96.15 96.95 96.93 96.34 96.21 96.94 96.99 96.93 96.41 96.94 

Prec/Recal
l Score 
Freq 

0.543 0.193 0.218 0.523 0.519 0.860 0.852 0.482 0.535 0.519 0.420 0.457 

 
Table 1: SVM prediction accuracy using the leave-one-property-out validation 

 
5    References 
 
[1] Cai CZ, Han LY, Ji ZL, Chen X, and Chen YZ. 2003. SVM-Prot: Web-based support vector machine software 
for functional classification of a protein from its primary sequence. Nucleic Acids Res. 31, 3692-3697. 
 
[2] Dubchak I, Muchnik I, Holbrook SR, and Kim SH. 1995. Prediction of protein folding class using global 
description of amino acid sequence. Proc. Natl. Acad. Sci. U. S. A. 92, 8700-8704. 
 
[3] Joachims T. 2001. Learning To Classify Text Using Support Vector Machines - Methods, Theory, Algorithms. 
Kluwer Academic Publishers 
 
[4] Jones DT. 1999. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. 
Biol. 292, 195-202. 
 
[5] Jones DT, Taylor WR, and Thornton JM. 1994. A model recognition approach to the prediction of all-helical 
membrane protein structure and topology. Biochemistry (Mosc). 33, 3038-3049. 
 
[6] Saier MH Jr. 2000. A functional-phylogenetic classification system for transmembrane solute transporters. 
Microbiol. Mol. Biol. Rev. 64, 354-411. 
 
 
 
 

Dana Jermanis


Dana Jermanis
Protein Structure

Dana Jermanis
409



 
 

Combining structure and function information in a local 
alignment search tool for sequence-sequence comparison. 
 

Maricel Kann1, Paul Thiessen1, Anna Panchenko1, Alejandro Schaffer1, 
Stephen F. Altschul1 and Stephen H. Bryant1. 

 
Keywords: protein sequence alignment, alignment algorithms, statistical significance, similarity 
search. 
 

1 Introduction.  
 
With thousands of recently sequenced proteins, sequence-sequence comparison methods have become 
the most widely used tool in bioinformatics and related fields. Several popular methods (i.e., PSI-
BLAST and IMPALA) [1, 2] implement the search using a position-specific scoring matrix (PSSM) 
as a scoring scheme, which captures important information about the protein sequence, and achieves a 
fast and effective search for sequence homologies. However, explicit information about the structure 
and function of proteins in the databases during the search is difficult to include. One could 
incorporate such information by modeling the indels, represented by gaps in the alignment, and/or by 
correctly aligning all biologically relevant residues. In most of the algorithms for sequence 
comparison, however, the choice of the gap penalties is determined ad-hoc, gaps occur anywhere, and 
key residues are aligned only if this increases the total score for the alignment. In this paper, we 
introduce an algorithm, Structure-based Local Algorithm Method or SLAM; that uses a new approach 
for the placements and penalization of gaps with a novel approach for the definition of aligned 
regions. This algorithm produces a local alignment between a query protein sequence and a database 
of PSSMs, and uses a scoring scheme based on the differences in conservation along the protein 
sequences. Highly-conserved regions (or blocks) will be aligned from start to end without any gaps 
and without penalties for the insertion of gaps (up to a maximum length) between those blocks. For 
the classification of the families, definition of the blocks or conserved domains (CDs) and PSSMs, we 
use an approach developed by our group in which multiple sequence alignment of related sequences 
have been manually curated to represent the function of that family. The scores obtained using SLAM 
follow an extreme value distribution which allows the correct estimation of their statistical 
significance. The fact that CD database have been manually curated with key residues necessary for 
the specific function of each of the families and inter-block regions carefully selected, suggests that 
SLAM's alignments are highly biologically significant. SLAM's performance in the search for 
biological relationships, alignment accuracy and speed is very similar to IMPALA's. Based on these 
results, SLAM has been successfully included into Cn3D (tool for visualization of protein structures) 
as an alternative choice for the alignment of new sequences. 
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1 Introduction.  
 
Secondary structure prediction from protein sequences is the most studied problem in computational 
biology. Current matter of thinking implies that a complete solution to all aspects of the protein 
structure problem require that the information available from the analysis of large structural and 
sequence databases be combined with the physical-chemical principles of structure formation. 
The approach of secondary structure prediction proposed by us [2,3] is ab initio method and uses a 
molecular mechanics for the analysis of standard conformations in proteins. A model for prediction of 
α-helical regions in amino acid sequences has been tested on the mainly-α protein structure class. The 
modeling represents the construction of a continuous hypothetical α-helical conformation for the 
whole protein chain, and was performed using molecular mechanics program ICM [1] that represents 
macromolecules in internal coordinate system. The results of the modeling clearly demonstrated that 
the profile of energy along the model α-helical protein reveals minima corresponding to real α-helical 
segments in the native protein. 
 
2 Method and results.  
 
In spite of good performance for α-helices the method is rather computer time consuming (about 6h 
for protein of 100 residues on a regular PC). To move to the fast statistical prediction based on 
molecular modelling we have undertaken an analysis of an energy distribution of all possible short 
oligopeptides, natural and non-natural, 
involved in α-helical pattern. For 
oligopeptide in length of 4 we modeled 204 

= 160 000 structures. In order to reveal a 
contribution of every tetrapeptide to forming 
α-helix we constructed and optimized 
polyalanine α-helices with analyzed 
tetrapeptide built into the central area of 
such model – Аla10Х4Аla10. The energy 
profiles of all possible combinations of 
tetrapeptides were calculated (Fig. 1). The 
central, 11th point of the energy profiles 
corresponds to value of energy of a tested 
combination of four amino acids. Analysis 
of profiles results in some conclusions: 
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Figure 1: Energy profiles of optimized α-helical 
models of polyalanine chains with insertions of 
AlaAlaAlaAla, TyrTyrTyrTyr or ArgCysGluLeu at the 
11th position. 
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(1) The fact that end-regions of profiles coincide at different models after optimization of their 
structure, suggests that the central sites of these profiles can be compared with each other. 
(2) Energy of polyalanine tetrapeptide fragments on the middle part of a chain, not subjected to edge 
effects (tetrapeptides 5th to 17th), is -18,9 kcal/mol and does not change. 
(3) Energy of the other tetrapeptide fragments in the middle part of a chain can accept values above or 
below the polyalanine level and unambiguously characterize given tetrapeptide. 

This approach promises great 
benefit – exploring non-natural 
peptides. The estimated number of 
tetrapeptides that occur in native 
proteins is about 9000 [4], which is 
significantly less than the all-
possible combinations of 
oligopeptide in length of four. 
Some of the native tetrapeptide 
fragments always prefer to be in α-
helical conformation, others never 
adopt that type of secondary 
structure. Energies of model 
tetrapeptides will result in bias of 
given oligopeptides to the specific 
type of secondary structure. After 
the energy analysis of all 
oligopeptides one could suggest 
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Figure 2: Energy distribution of modeled in α-helix tetrapeptides
from two groups (of 510 combinations in each) that differ by
occurrence in the nature.  
such amino acid combination that 
have not yet been found in nature but can adopt some kind of secondary structure with high efficiency, 
which will be of interest for design of de novo proteins. 
We performed the exhaustive and statistical analyses of oligopeptide occurrence of in different 
conformations in PDB database [4]. That distribution was compared with calculated energy 
distribution. 
The analysis shows that tetrapeptide fragments occurring with probability of 80 to 100% in the nature 
in α-helices preferably have energy values of –18 kcal/mol and lower in the model (Fig.2). Thus, this 
energy level serves as a cutoff benchmark to divide tetrapeptide fragments into favorable and 
unfavorable for α-helices formation.  
 
References 
 
[1] Abagyan, R.A. and Totrov, M.  1999. Ab Initio Folding of Peptides by the Optimal-Bias Monte Carlo Minimization 
Procedure. J. Comp.Phys., 151:402-421. 
 
[2] Kilosanidze, G.T., Kutsenko, A.S., Esipova, N.G. and Tumanyan, V.G. 2002. Use of molecular mechanics for 
secondary structure prediction. It is possible to reveal α-helix? FEBS Lett. 510:13-16. 
 
[3] Kilosanidze, G.T., Kutsenko, A.S., Esipova, N.G. and Tumanyan, V.G. 2003. Analysis of forces leading the helix 
forming in α-proteins. Protein Science (in press). 
 
[4] Vlasov, P.K., Kilosanidze, G.T., Ukrainskii, D.L., Kuz'min, A.V., Tumanian, V.G. and Esipova, N.G. 2001. 
Left-handed conformation of poly-L-proline type II in globular proteins. Biofizika. 46:573-576. 

Dana Jermanis


Dana Jermanis
Protein Structure

Dana Jermanis
413



 
 

Web-based Prediction of Membrane Spanning  
ββββ-strands in Outer Membrane Proteins  

 
M. Michael Gromiha1, Shandar Ahmad2,  Makiko Suwa1 

 
Keywords: transmembrane strand, neural network, cation-π interaction, hydrophobicity 
 

1 Introduction  
 
Outer membrane proteins perform a variety of functions, such as mediating non-specific, passive 
transport of ions and small molecules, selectively passing the molecules like maltose and sucrose 
and are involved in voltage dependent anion channels. These proteins contain β-strands as their 
membrane spanning segments (known as transmembrane strand proteins, TMS). The amino acid 
sequence in the membrane part of TMS proteins contains several polar and charged residues 
compared with the stretch of hydrophobic residues in transmembrane helical proteins. Hence, most 
predictive schemes, which are successful in predicting transmembrane helical segments, fail to 
predict the transmembrane strand segments. On the other hand, the amino acid sequence of TMS 
proteins is somewhat similar to all-β globular (BG) proteins and the discrimination of all-β globular 
and TMS proteins is another task. In this work, we have systematically analyzed the characteristic 
features of amino acid residues in TMS and BG proteins and revealed the similarities and 
differences between them. Further, a neural network based algorithm has been developed for 
predicting the membrane spanning β-strands in outer membrane proteins, which shows an excellent 
agreement with experimental observations. A web interface has been set up for online prediction 
and it is available at http://psfs.cbrc.jp/tmbeta-net/. 
 

2 Database   
 
A database of TMS proteins was derived from the information about their three-dimensional 
structures available in literature (1). The residues in membrane spanning β-strands of TMS proteins 
have been assigned from their three-dimensional structures. The PDB codes of the TM proteins 
used in the present study are, 1A0SP, 1BXWA, 1BY5A, 1E54A, 1EK9A, 1FEPA, 1OPF, 1OSMA, 
1PHO, 1PRN, 1QD6C, 1QJ9A, 2MPRA, 2POR and 7AHLA. These proteins contain 5487 residues 
and 204 membrane-spanning β-strands. Further, we have set up a database of 138 β-domains for 
representing BG proteins, containing 23081 residues and 1500 β-strands. These proteins are 
selected in such a way that they are non-redundant (sequence similarity < 30%) and are solved at 
high resolution (< 2.5 Å). 
 

3 Structural analysis of outer membrane proteins   
 
A conformational parameter set for the 20 amino acid residues in BG and TMS proteins has been 
developed from the ratio between the frequency of occurrence (%) of amino acid residues in the β-
strand part of globular/membrane proteins and that of the whole protein. We found that all aromatic 
residues have the preference to be in β-strands of BG and TMS proteins. Pro has the lowest β-value 
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in both BG and TMS proteins. Ile has the highest preference to be in the β-strand of BG proteins 
and an opposite trend is observed in TMS proteins (1).  
 
The surrounding hydrophobicity of a residue in a protein is computed as the sum of the 
experimental hydrophobicity of the residues that are occurring within the radius of 8Å from the 
central residue.  We found that the aromatic and hydrophobic residues in BG proteins have higher 
surrounding hydrophobicity than that in TMS proteins. 
 
We have delineated the inter-residue contacts in BG and TMS proteins based on the sequence and 
structural information. Residues that are close to each other in space and are distant in sequence are 
termed as long-range contacts (2). We found that both the positively charged residues are making 
significant contacts with other residues in the membrane. We have further evaluated the cation-π 
interactions (CPI) in TMS proteins. Each TMS protein contains an average of 5 CPIs and a good 
correlation is observed between number of amino acid residues and number of CPIs. Further, most 
of the CPIs are influenced by long-range contacts (3,4). 
 

4 Prediction of membrane spanning ββββ-strand segments  
 
We have developed an algorithm based on neural networks for  
predicting the transmembrane β-strands in TMS proteins. We  
introduced the concept of “residue probability” for assigning  
residues in transmembrane β-strand segments. The 
performance of our method is evaluated with single residue  
accuracy, correlation, specificity and sensitivity. 
We observed a good agreement between predicted  
β-strand segments and experimental observations (5). We have  
developed a web interface in which users can input the  
amino acid sequence and obtain the probable membrane 
spanning segments along with the probability of each              Figure 1: Online prediction of membrane    
residue to be in transmembrane segment (Fig 1). It is                               spanning β-strand segments in 
available at http://psfs.cbrc.jp/tmbeta-net/.                                             outer membrane proteins. 
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Computational Studies of Thioredoxin Superfamily 
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Electrostatic interactions play important roles in diverse biological phenomena, 

controlling the function of many proteins. Their alterations are reflected in pKa values 

of ionisable, functional groups and in redox potential. Polar molecules can be studied 

with the FDPB method solving the Poisson-Boltzmann equation on a Finite 

Difference grid [1]. We present a method for the prediction of pKa and redox 

potentials in the thioredoxin superfamily. The results are compared with experimental 

pKa data where available and predictions are made for members lacking experimental 

pKa data. The CXXC motif of this superfamily is essential for the catalysis of redox 

reactions and exhibits extensive variation of redox equilibria. A noteworthy example 

is the difference between E. coli thioredoxin E0’=-270mV and E. coli DsbA E0’=-

122mV [2].  We show how our model, which includes sidechain rotamer variation for 

the CXXC motif, can be an effective predictive tool for pKas and redox potential in 

the superfamily. A qualitative, rather than quantitative, correlation between cysteine 

pKa and redox potential indicates that a pH-independent factor also plays a role in 

determining redox potentials across the superfamily [3]. A possible molecular basis 

for this feature is proposed. A clustering method that uses matrices of distances 

improves the speed of our calculations without loosing any accuracy.  A pKa spectrum 

across members of the superfamily is presented. 
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1 Introduction.  
 
One of the most difficult problems in structural bioinformatics is aligning two or more protein 
structure geometrically. Our structure alignment method involves the principle component analysis 
(PCA). PCA is well-known as one of the statistical methods for multivariate analysis. In general, 
PCA is used to reduce dimensionality of multi dimensional data. However, in this research work, 
PCA is used to align the two protein structure.  
 
Many protein structure alignment methods have been proposed to compare with protein structures. 
Among them, one is a method using distance matrix for alpha carbons of proteins structure[1] 
while another is a method using distance matrix for the mass center of the alpha carbons consisting 
of a segment which consist of several residue[2]. That is, the former was improved into the latter. 
And the other research approach aligns protein structure by vectors of secondary structures.[3] 
Then it measures a similarity with the vector representation. A recently proposed precise method 
aligns by incremental combinatorial extension(CE) of the optimal path[4]. 
 
Methods mentioned above maximize similarity function to optimize the alignment. They may 
perform optimization process repeatedly. This is a weak point of above methods. 
 
But, it is the advantage of proposed method that it does not need to optimize similarity function to 
align structure as other methods. 
 
2 Method. 
 
PCA is a popular statistical method for dimensionality reduction. However, we approach the point 
of geometrical view of PCA. Geometrically, PCA transforms all atom coordinates on the original 
coordinate space to those on a new one where the variant with largest variation of covariance 
matrix is first principle component. Two protein structures aligned by PCA is used to measure 
similarity.  

 
3 Application: nearest neighbor search. 
 
Here, we used bond line distribution as similarity measure. We named bond line distribution the 3 
dimensional edge histogram. 3D edge histogram is a distribution of 10 edge patterns that stands for 
atom bond. 

 
The flowchart of protein structure comparison by PCA alignment is shown in Fig.1 
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Figure 1:  Flowchart of protein structure comparison by PCA alignment. 

 
4  Discussion. 

 
We verified the effectiveness of alignment by PCA through application to nearest neighbor search. 
We propose a protein structure alignment method of new concept by PCA. The proposed method 
does not need to optimize similarity function to align structure, while other existing methods may 
perform optimization process repeatedly. This reduces the time cost for alignment and makes the 
nearest neighbor search from huge database rapid. 
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Protein Fold Recognition Using an Optimal Structure-
Discriminative Amino Acid Index  
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1 Introduction.  
 
Identifying the fold class of a protein sequence of unknown structure is a fundamental problem in 
modern biology. We have applied a supervised learning algorithm FoldID [1] to the classification of 
protein sequences of length 64 to 300 with low sequence identity from a library of 174 structural 
classes created by the Combinatorial Extension (CE) structural alignment methodology [2,3].  A class 
of rules is considered that assigns test sequences to structural classes based on the closest match of an 
amino acid index profile of the test sequence, which is a numerical vector of dimension N for 
sequences of length N, to a numerical profile centroid vector for each class.  A mathematical 
optimization procedure is applied to determine an amino acid index of maximal structural 
discriminatory power by maximizing the ratio of between-class to within-class profile variation.   The 
optimal index is computed as the solution to a generalized eigenvalue problem, and its performance 
for fold classification of aligned sequences in the training library is compared to that of other 
published indices using cross-validation techniques.      
 
The algorithm is also tested on raw, unaligned sequences using a combination of local and global 
alignment techniques to align the numerical profile vectors corresponding to raw sequences with 
the various class centroid vectors.  

 

2 Computational Results.  
 
For aligned sequences in the CE training library, the optimal index has significantly more structural 
discriminatory power than all currently known indices in the AAindex database [4], including average 
surrounding hydrophobicity, which it most closely resembles (Figure 1).  It demonstrates more than 
70% cross validation classification accuracy on the structurally aligned sequences in the CE fold 
library over all folds, and nearly 100% accuracy on many individual folds with distinctive conserved 
structural features such as the EF hand fold family of calcium binding proteins. 
 
For unaligned raw sequences, the corresponding numerical profile vector is first aligned with each 
class centroid using both local and global dynamic programming techniques.  Sufficiently high 
scoring subsequences that match particular fold class centroid profiles are tentatively assigned to 
that structural class.  The method has proved to be successful in many cases for properly classifying 
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subsequences of the raw sequences on which the CE library is based and extracting the CE 
structural alignments based only on the sequence, particularly where the number of gaps and/or 
deletions is relatively small.  Tests on raw sequences outside the CE library are encouraging, with 
successful structural identifications (as determined by subsequent CE analysis) having been made 
for structural classes with highly conserved features.  For example, all seven test instances of EF 
hand structures not in the original CE library were correctly identified and aligned using FoldID.  
 
3 Figure. 
 

   
 

Figure 1.  Relative performance of various amino acid indices for CE fold classification.  Each EIGi index is 
computed by FoldID as the i-th eigenvector of the generalized eigenproblem.  The remaining indices are 
various members of the hydrophobicity family.  
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1 Introduction.  
 
D-Amino acid oxidase (DAO, EC 1.4.3.3) catalyzes the enantioselective oxidation of a variety of D-
amino acids to the corresponding α-keto acids. DAO has been known to distribute widely in nature 
from microbes to mammals. The physiological functions of DAO, however, remain unclear because 
its substrates, D-amino acids, are not abundant in vertebrates. Possible functions proposed so far 
include the catabolic means of bacterial cell wall components, regulator of D-serine, an agonist of 
N-methyl-D-aspartate receptor in mammalian brain, and metabolizing agents of exogenous and/or 
endogenous free D-amino acids. Recently, we cloned a gene encoding DAO from carp for the first 
time in animals other than mammals [1]. In view of the enigmatic nature and the industrial potential 
of DAO, more enzymes from different sources are required to pave the way for further research on 
biological functions and applications of DAO. Thus, we purified and characterized recombinant 
carp hepatopancreas DAO (chDAO).   

 
2 Materials and Methods.  
 
The expression vector containing carp DAO cDNA was constructed with pET 11c vector and 
transformed into a host E. coli strain AD494(DE3)pLysS. DAO expressed in E. coli was purified 
with DEAE-Toyopearl, Phenyl-Toyopearl, and HiPrepTM 16/60 SephacrylTM High Resolution gel 
filtration columns. Three-dimensional model was constructed by using primary sequence of chDAO 
with ProModII supplied by Swiss-Model [2].  
 
3 Result and discussion.  
 
Recombinant chDAO was purified to 5.6-fold with a yield of 50%. chDAO had a specific activity 
of 293 unit/mg protein. It showed high activity against D-alanine with a Km of 0.227 (mM) and 
Kcat of 190 (S-1) (Table 1). Whereas, Kcat values for pork kidney (pkDAO) and Rhodotorula gracilis 
(RgDAO) are about 10 (S-1) and 300 (S-1), respectively. The optimum temperature and pH were 35°C 
and 8.5, respectively. This enzyme exhibited a good thermal and pH stability. It was completely 
inhibited by Ag+ and Hg+. The inhibition by creatinine, p-chloromercuribenzoate, and benzoate was 
competitive with a Ki of 5.1, 6.0, and 12.5 mM, respectively. Three-dimensional (3D) model of 
chDAO was analogous to that of pkDAO [3] and RgDAO [4] (Figure 1). Two main topological 
differences were observed from pkDAO as well as RgDAO. One is the presence of shorter active site 
loop (9 residues in chDAO versus 13 in pkDAO). The active site loop contains an important residue 
Tyr224 probably involved in a broad range of substrates/products fixation and interaction with 
substrate α-amino group. In yeast this active site loop is not present, however, Tyr238 (corresponding 
to Tyr224) found at a similar position plays the same role. Another is the absence of a long C-terminal 
loop found in RgDAO (6 residues in chDAO and 4 in pkDAO verses 21 in RgDAO). This long C-

                                                 
1 Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University 

of Tokyo, Bunkyo, Tokyo 113-8657, Japan. E-mail: sarower@gawab.com 

Dana Jermanis


Dana Jermanis
Protein Structure

Dana Jermanis
423

Dana Jermanis
J24.



terminal loop allows “head to tail” dimer mode that is more stable than “head to head” one found in 
mammals and carp. The conformational change in large size active site loop controls the overall rate 
of turnover of the mammalian enzyme, where product release is rate-limiting. Comparison of the 3D 
structures of chDAO with pkDAO and RgDAO suggests that evolutive pressure has led to the 
conformational change from microbes to mammals DAOs that share the same chemical process, but 
use different kinetic efficiency for catalysis. 
 

Table 1: Kinetic parameters of chDAO for some representative D-amino acid oxidase 

Substrate Relative activity V max K m K cat K cat/K m
(%) (U/mg) (mM) (s -1) (s -1/mM)

D-Alanine 100 292 0.227 189.8 836.1
D-Valine 89.9 262 0.263 170.3 647.5
D-Proline 75.1 219 1.13 142.35 126.0
D-Phenylalanine 63.0 183 0.357 118.95 333.2

 
 

C-terminal loop (297-301) 
Active site loop (218-226) 

 
Figure 1. Ribbon representation of chDAO structure. Arg283, Tyr224, and Tyr228 are thought to be 
key catalytic residues in pkDAO [3]. Active site loop and C-terminal loop are shown in black. 
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reports alternative alignments including structure permutations 
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1 Introduction.  
 
The torrential protein 3D structural data are a rich resource for understanding protein evolution and 
function. To make maximal use of this resource, there is a pressing need for a protein structure 
comparison (PSC) method that is not only very fast but also versatile enough to detect and 
characterize permuted and alternative alignments. Here, we introduced a new PSC tool, called 
OPAAS for Optimal, Permuted, and Alternative Alignment of protein Structure, and constructed a 
website that is clear, comprehensible and informative for displaying the results of the algorithm. 
Two main services, database search of one structure and comparison of two structures, are provided 
on the internet. Our website offers several advantages over other PSC methods. Firstly, a 
precomputed result of database comparison is ready for users to retrieve and interrogate. Secondly, 
a hierarchical representation including a list of alternative alignments, diagramed permuted 
alignments, real-time 3D protein structure superimpositions and detailed structure-based sequence 
alignments, allows users to acquire most relevant information and knowledge. Thirdly, a permuted 
index is devised for showing the complexity of an alignment, and with it user can infer the non-
topological relationship of two structures. We believe this website will give structural/molecular 
biologists the most useful and comprehensive information from structure comparison of proteins 
(URL: http://gln.ibms.sinica.edu.tw/software.php). 
 

 

2 Methods.  
 
OPAAS,[1] as its predecessor FLASH,[2] is a protein structure comparison method by probability-
based matching of secondary structure elements. Besides being very fast, FLASH can also report 
multiple alignments of two protein structures, if any, and distinguish them as the optimal or 
alternative alignment according to their statistical similarity scores. OPAAS, the new version, 
inherits all the merits from FLASH, and in addition introduces non-topological mechanisms to 
identify permuted alignments, which are quite common but usually neglected in structure 
comparison studies.  
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1 Introduction  
 
Protein Structure data is stored in geographically dispersed databases. Most of these databases have 
flat files as exchange format and each of them have a different representation. We propose a 
database representation BIOlogical DataBase (BIODB) which provides a unified structured 
representation for protein structure records covering all the aspects of protein structure description. 
It contains information about residue sequences, atomic structure, bonding and folding for every 
protein structure, collected from existing protein databases – PDB [1], SWISS-PROT [2], 
PROSITE [3] and PIR [4]. It is not dependent on any particular data format. 
We created a representation of BIODB that will be used to construct an efficient similarity 
detection method for protein structures, in our project BIOlogical MAPping (BIOMAP). Each of 
the documents generated from BIODB database record corresponds to a protein structure 
description. These documents possess tree like structure. Associations can be built up among trees 
rather than single atomic values. The tree like structure of document is very helpful in comparing 
the Protein Structures among themselves and with other biological structures from the type of 
information that is being searched. It allows definition of the sub-trees which contain that 
information. It provides a faster way of searching the candidates and also organizes the vast amount 
of data available about the Proteins. Using the containment relationship of the elements in the 
documents generated we also found large similar patterns with high levels of confidence. This 
representation also provides a way of creating a map between the BIODB database and the data 
structures of existing Protein Databases. This greatly helps in creating interoperability and sharing 
information from different databases. Thus the information can be represented in existing Protein 
Database formats if needed.  
 
2 The BIODB Database 
 
The BIODB contains information about Protein Structures in a way that represents the relationships 
between various Protein Structure elements. It takes into greater consideration formation of the 
ultimate protein conformation and the relationships that exist in the data, rather then just storing the 
data. 
 

Table Description 

DatabaseEntry Protein Database Entry Record Details from the Protein Database from 
where entry is fetched. 

Entry Protein Entry Description Details. 
Compounds Details of Molecular Compounds present in Protein. 
Source Organism Source from where Protein is taken and its description. 
Revisions Revisions done to Protein.  
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Citations Citation of Protein in Publications. 
Conflicts Conflicts between Atom records and Database Entry of Protein. 
DBRef Databases that parts of Protein Sequence refer to. 

ATOMSequence Details of each Atom Structure in a Chain of Residue Sequences of 
Protein. 

ModifiedResidues Residues that have been modified during Protein Evolution. 
Helices Helices present in the Protein Structure. 
Turns Turns present in the Protein Structure. 
Sheets Sheets present in the Protein Structure. 
NonStandardResidues Description of Non Standard Residues in Protein Structure. 

NonStandardAtomGroups Details about Atom Structure within a Chain of Non Standard Residue 
Groups in Protein Sequence. 

AtomListEnd Identification of end of Atom list for all Standard Residues in Protein. 
DisulphideBonds Disulphide Bonds in Protein Structure. 
HydrogenBonds Hydrogen Bonds in Protein Structure. 
ResidueLinks Residue Links in Protein Structure. 
SaltBridges Salt Bridges in Protein Structure. 
CISPeptides Peptides found in CIS Conformation of Protein. 
Sites Important Binding Sites and their description in Protein Structure. 
UnitCell Crystallographic information Parameters of Protein Structure. 

 
Table 1: Tables of BIODB Database 

 
We intend to construct a Complete Protein Data Representation with interfaces, available on the 
Internet. This representation will be extended to other types of biological data (RNA, DNA, etc.) 
and a complete map to understand the relationship between these biological elements will be 
created to understand the cell physiology. 
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Protein-protein recognition: relationship between
domain and interface cores in immunoglobulins
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1 Introduction.

Protein-protein recognition plays a major role in cell function. A question of key importance is how
the two proteins interact (i.e., which residues form the interface and what interactions primarily
stabilize the complex). There are several theoretical approaches to predict if a residue (or a set of
residues) is included in a protein-protein interface. These approaches are founded on empirical
rules derived from an analysis of protein-protein, or domain-domain, interfaces. Such predictions
still are restricted in accuracy. As a result, there are currently intensive efforts to extract additional
levels of information relating to interacting surfaces from the structural database. A general aim in
these studies is to clearly recognize the site of interaction. However, in most cases, predicting a
unique interface region has remained elusive, probably because the interface as a whole has
approximately the same character as the surface as a whole. Thus, a different approach may be
needed to distinguish the interface residues of a protein dimer. In our research, we are developing a
prediction approach that is based on analysis of the relationship between protein sequence/structure
and interface properties. In the present study we use a statistical approach to derive the protein-
protein interface core and further analyze its structural conservativity. A set of 47 immunoglobulin
structures was evaluated to determine the residue positions that play a primary role in protein -
protein dimer association of the heavy and light chains (VL-VH and CL-CH1 associations).

2 Results and Discussion.

Recently, we discovered in beta sandwich-like proteins an invariant supersecondary substructure
called ‘interlock’ [1]. Two interlocked pairs of beta strands located on separate sheets (B, E on one
and C, F on the other) are situated at the center of each domain. Eight conserved, hydrophobic,
residue positions (B6, B8, C4, C6, E8, E10, F6 and F8) within the interlocked strand pairs form the
common geometric core of all beta sandwich-like proteins, including immunoglobulins. The C-
alpha atoms of residues at these eight conserved positions were used as reference points for
superimposition of structures.

Database. Two hundred and eighty one structures of Fab fragments from the PDB were extracted
using the SCOP database. Structures of resolution 2.3 Å or better were retained and Fab fragments
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selected such that none had more than 80% sequence identity with any other. The final database
consists of 47 structures.

Interface core definition. The core is defined in four steps: 1. All inter-domain contacts are
determined for each structure using CSU software [2]; 2. The average contribution to the summated
(virtual) interface surface area of all structures was calculated for each interface position; 3. The
minimal set of contacts that form 80% of the average contact surface area was selected; 4. The
positions constituting the interface core are then chosen based on: (i) frequency at the interface; (ii)
conservation of residue character (hydrophobic, hydrophilic or neutral) for both residues of a
contact pair; (iii) physical-chemical compatibility of a contact at the atomic level; (iv) spatial
conservation (RMSD of C-alpha atoms ≤2.0 after superimposition of all structures). The interface
between beta sheets within a domain (VL, VH, CL, CH1), and domain core, were derived in the
same manner as above.

VL-VH interface core. Analysis of our database showed that, in summation, residues at 51 VL and
46 VH positions are involved in the inter-domain virtual interface. For any given Ig structure,
approximately 24 residues in each domain make up the interface, yielding an average contact
surface of 1074 Å2, while 11 VL and 7 VH positions constitute the interface core. The dominant
contacts in the core are hydrophobic interactions (formed by hydrophobic residues or by aliphatic
part of hydrophilic ones). Similar sort of data were obtained for the CL-CH1 interface and each of
the four domain cores.

Relations between interface and domain cores. We found that: (i) almost all residues of the
interface core occupy positions on beta strands rather than loops; (ii) seven of eight interlock
positions are bordered by interface core residues in VL-VH and CL-CH1; (iii) 66% of interface core
residues are immediately adjacent to residues forming the domain core. The probability for such
grouping ranges from ~10-3 to ~10-4.

3 Conclusions.

We demonstrated the existence of a highly conserved interface core between domains for Ig-like
proteins that is considerably smaller than the interface itself. We discovered that the interface
surface is geometrically wedded to the domain core, suggesting that the latter controls interface
rigidity in immunoglobulin (and probably other) domains.
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1 Introduction.  
 
It has been reported, based on sequence analysis, that about 14% of all proteins contain repeating 
amino acid segments, which occur more in eukaryotic proteins than in prokaryotic proteins owing to 
unique functions of eukaryotes [1]. However, a method for comprehensively detecting internal repeats 
in protein 3D structures is lacking until recently. One investigation used wavelet transformations to 
identify motif repeats in both protein sequences and structures and found many well-known repeated 
proteins [2]. Another study analyzed a smoothed score matrix in structure alignment and applied 
Fourier transformations to detect protein repeats [3]. 
 
Here, we applied a new protein structure comparison (PSC) method, called OPAAS for Optimal, 
Permuted, Alternative Alignments of protein Structures (Shih & Hwang, submitted), to detect internal 
repeats in protein structures. OPAAS differs from most of existing PSC methods by the ability to 
identify distinctive alternative alignments in a very efficient way. Using alternative alignments, 
protein structures with internal repeats can be readily identified by structure comparison to itself. 
 

2 Methods.  
 
The SCOP database release 1.55 was analyzed in this study. A total of 4940 domains (class a-f) 
sharing less than 90% sequence identity and with ≥ 3 SSEs (Secondary Structure Element) were 
selected and structure-compared to itself. 
 
After generating alternative alignments in each pair of self-aligned protein domains, as overlap ratio of 
the number of aligned residues shared by two distinct alignments of the same protein structure was 
calculated. When the overlap ratio is greater than or equal to 0.5, the alternative alignment is 
indicative of a structure containing a sub-structural internal repeat. The alignment was then manually 
inspected, the internal repeat extracted and characterized. 

 

3 Results.  
 
Applying to SCOP, we identified 401 repeat-containing domains in 96 SCOP folds. We catalogued 
these repeats into four types, spiral (solenoid), circular, irregular, and duplicate, based on the ways 
how the repeat units are arranged spatially. We identified all the prolific repeat proteins that have been 
observed previously; in addition, we discovered many protein repeats not reported in the literature. 
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Assignment of structural domains in proteins:  
why is it so difficult? 

 
Stella Veretnik1, Ilya N. Shindyalov1.  Phillip E. Bourne, 1,2 

 
Keywords: 3D protein structure, detection of 3D protein domains, automatic domain assignment 
methods, consensus approach, curated domain resources. 
 
1 Introduction.  
Structural domains are often considered to be basic units of protein structure.  Assignment of 
structural domains from atomic coordinates is crucial for understanding protein evolution and 
function. Currently there is no good agreement among different assignment methods for what 
constitute the basic structural unit, underscoring the complexity of structural domain assignment.  
This work discusses tendencies of individual methods and highlights the problematic areas in 
assignment of structural domains by experts as well as by fully automated methods. 

 
2 Methods.  
Domain assignments were analyzed for three automatic methods (DALI[1], DomainParser[2], 
PDP[3]) and three expert methods (AUTHORS[4], CATH[5], SCOP[6]), using a 467-chains dataset 
assigned by all 6 methods.  The following features were investigated: agreement on the number of 
assigned domains, agreement on domain boundaries, distribution of domain sizes and tendency 
toward assignment of discontinuous domains.  Consensuses among automatic, expert and all 
methods were defined and used during comparison to tease out the behaviors specific to individual 
assignment methods or groups of methods.    

 
3 Results and Discussion.  
We observe that unambiguous domain assignments (when all methods agree on domain 
assignment) are confined predominantly to one-domain chains.  Agreements among all methods in 
multi-domain chains are infrequent; in all cases the domains are compact and clearly spatially 
separated.  For the majority of multi-domain proteins, there is no agreement on domain assignment 
among all methods.  From the consensus analysis we observe that the majority of the difficulties of 
fully automated methods stem from overwhelming reliance on the structural cues 
(compactness/contact density) during domain assignments and the lack of functional/evolutionary 
information. Thus the cases in which domains are positioned close together are difficult or 
impossible for automatic methods to resolve.  On the other hand, the differences in expert methods 
arise from different philosophical approaches underlying the specific methods.  Authors of the 
structures (AUTHORS method) tend to define domains based on functionality, which may produce 
small and structurally not clearly defined domains.  The creators of SCOP, on the other hand, often 
look for the largest common structure (fold) as a domain, which often consists of several distinctive 
structural units. The CATH method appears to strike a balance between sometimes contradictory 
structural, functional and evolutionary information.  The inconsistencies in expert assignments are 
well reflected in the propensities of different fully automated methods, as those are trained and 
validated using a specific expert method, thus reflecting its philosophical biases.  Detailed analysis 
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of structures which do not have consensus between the assignment methods regarding the number 
of assigned domains indicates the following problematic areas: (1) assignment of small domains, 
(2) discontinuous domains and unassigned regions in the structure, (3) splitting of the secondary 
structure elements between domains (if required), (4) convoluted domain interfaces and 
complicated architectures.  Comprehensive domain re-definition, which takes into account the 
above issues is overdue and will be a great step toward improvement of domain definitions in 
multi-domain proteins, which represent (by an estimation [7]) 66-75% of the sequence database. 
Also, the intensive growth of 3D protein data demands fully automated approaches to be used to 
maintain currency and uniformity of domain information relative to the PDB. 

 
Figure1.  Distribution of single- and multi-domain structures within different consensuses of 
domain assignment methods.  
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Introduction 
 
Recurring local structures of proteins, which may be represented by a set of structural alphabets or 
libraries of structural motifs, are increasingly used to study the relationship between sequence and 
structure and to predict protein three-dimensional (3D) structures. We have recently derived a set of 
protein local structural alphabets (LSA) from clustering > 130,000 fragments, each of five residues 
in size, excised from ~1,000 non-redundant and diverse known protein structures [1]. In the present 
study, we employed the derived LSA for fold assignment, i.e. assigning the SCOP fold for a given 
protein structure, and evaluated the size of LSA required for optimal performance of the assignment. 
 

Methods  
 
With LSA, we can approximate a protein 3D structure and converted it into a 1D character string, 
or sequence, of LSA. To evaluate to what extent the LSA sequence representation can capture the 
essence of a protein 3D fold; we tested the fold assignment performance by training Hidden-
Markov models (HMM) on 43 populated SCOP fold families, each having at least 20 member 
structures. For each fold family selected, we identified a reference structure, and aligned all the 
other member structures onto it using a fast structure comparison algorithm FLASH [2]. The HMM 
was trained on this multiple structural alignment, which was represented in the form of a multiple 
LSA sequence alignment. A protein structure can then be assigned to one of the 43 SCOP folds, i.e. 
the HMM having the maximal probability score. For evaluation of the fold assignment performance, 
we conducted a 5-fold cross-validation on a dataset with less than 40% pair wise sequence identity 
chosen according to the ASTRAL Compendium database. 
 

Results 
 
The HMM was run on different sets of LSA, in size of 5, 10, 15, 20, 25, 33 and 40 
alphabets, respectively. The 5-fold cross-validation results showed that a performance 
plateau was reached at 20 alphabets, beyond which improvement was negligible. 
Furthermore, the use of a substitute matrix giving different substitution scores for 
different alphabets elevated the assignment accuracy by ~7% for all the different alphabet 
sets, and yielded an accuracy of 82% for the set of 20 alphabets. A comparison with the 
results of Cootes et al. [3], which used a very different approach to capture fold 
signatures, showed that our method performed better in three of the four major protein 
classes. The less-optimal results for +α β structures can be attributed in large part to a 
gross misalignment of long helices in the form of 1D LSA sequence for, particularly, the 
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Zincin-like fold. Our results suggested that protein fold signatures can be largely captured 
by local structures even if they are represented in the form of 1D alphabet sequences.  
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A Probability-Based Similarity Measure for Saupe
Alignment Tensors with Applications to Residual
Dipolar Couplings in NMR Structural Biology
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Keywords: SO(3), rotations, subgroup method, orthogonal image, alignment tensor, resid-
ual dipolar couplings, RDC, Saupe matrix, NMR structural biology, resonance assignment

1 Introduction
High-throughput NMR structural biology and NMR structural genomics pose a fascinating
set of geometric challenges. A key bottleneck in NMR structural biology is the resonance
assignment problem. We seek to accelerate protein NMR resonance assignment and struc-
ture determination by exploiting a priori structural information. In particular, a method
known as Nuclear Vector Replacement (NVR) has been proposed as a method for solving
the assignment problem given a priori structural information [4, 5]. Among several different
kinds of input data, NVR uses a particular type of NMR data known as residual dipolar
couplings (RDCs). The basic physics of residual dipolar couplings tells us that the data
should be explainable by a structural model and set of parameters contained within the
Saupe alignment tensor.

In the NVR algorithm, one estimates the Saupe alignment tensors and then proceeds to
refine those estimates. We would like to quantify the accuracy of such estimates, where we
compare the estimated Saupe matrix to the correct Saupe matrix. In this work, we propose
a way to quantify this comparison. Given a correct Saupe matrix and an estimated Saupe
matrix, we compute an upper bound on the probability that a randomly rotated Saupe tensor
would have an error smaller than the estimated Saupe matrix. This has the advantage of
being a quantified upper bound which also has a clear interpretation in terms of geometry
and probability.

While the specific application of our rotation probability results is given to NVR, our
novel methods can be used for any RDC-based algorithm to bound the accuracy of the
estimated alignment tensors. For example, there is research on using RDCs in resonance
assignment, as well as structure determination and refinement [1, 2, 3, 4, 5, 6, 7, 8].

Furthermore, our method is a general framework for characterizing the accuracy of ro-
tations. As a result, it may be applicable to many of areas, including X-ray crystallography
or molecular docking to quantitate the accuracy of calculated rotations of proteins, protein
domains, nucleic acids, or small molecules.
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When and where do protein folds come from? an 
evolutionary view 

 
 

Song Yang1, Phil Bourne2 
 
Keywords: SCOP, fold evolution, disulfide bond, phylogenetic tree 
 

 
Compared with the fast-growing numbers of protein sequences, the number of possible protein 
structures is quite limited. It has been proposed that there may be only 400-4000 protein folds 
existing in all organisms. Thus structure represents a more conserved and alternative measure by 
which evolution can be studied. Thus as more and more complete genomes of organisms in every 
kingdom are sequenced, it is possible to compare protein folds across various genomes in the tree 
of life to gain an evolutionary view. 
 
We have used existing databases (SUPERFAMILY[1] and PEDANT[2]), which contain fold 
assignments for complete genomes (based on the protein fold classification defined by SCOP[3] 
and using the homology search methods PSI-BLAST or HMMs), to obtain protein fold counts in 17 
Archaea, 123 Bacteria and 16 Eukaryota[4]. The accompanying graph shows a Venn diagram of 
fold distribution (defined as the second level in SCOP) in the three kingdoms. Among the total 753 
folds, only one fold, d.199, is unique to Archaea. Since the only representative of d.199 in PDB is a 
transcription factor from bacteriophage T4, it is likely that Archaea obtained this fold from a virus. 
Therefore, Archaea have hardly any unique folds, if any. In contrast, Bacteria and Eukaryota appear 
to have invented a substantial number of new folds since the divergence of the three kingdoms. 
About 40% of the folds (24 of 61) unique to Eukaryota contain disulfide bonds, whereas the 
percentage of folds containing disulfide bonds found only in Bacteria is 31% (5 of 16), those folds 
found in both Eukaryota and Bacteria is 22% (36 of 165), and those common to all kingdoms is 
only 6% (30 of 491). This suggests that many protein domains stabilized by disulfide bonds 
emerged after the atmosphere became more oxygen-rich, under which conditions Eukaryota 
generated more disulfide bond-containing folds than the other groups. 
 
On another front, we were able to build a phylogenetic tree based on the existence and abundance 
of folds in each genome. The tree is similar and comparable to phylogenetic trees built with gene 
sequences or other features. Detailed analyses of certain folds were also performed. 
 
 
 
 
 
 
 
 
 
 
 
                                                 

1  Department of chemistry and biochemistry, University of California, San Deigo 
2  San Diego Supercomputer Center, Department of Pharmacology, UCSD, Burnham Institute 

Dana Jermanis


Dana Jermanis
Protein Structure

Dana Jermanis
439

Dana Jermanis
J33.



 
 

 
 
 
 
 
 
References 
 
[1] Gough, J., Karplus, K., H
using a Library of Hidden Ma
919 
 
[2] Frishman, D etc. 2003. The
 
[3] Lo Conte L., Brenner S. E
accommodate structural genom
 
[4] Gustavo Caetano-Anollé
Protein Architecture. Genome

 

Eukaryote

Archaea Bacteria

1 16

10 

61

165 

491 

9 

SCOP fold 
Figure 1: Protein fold  distribution among three kingdoms
ughey, R. and Chothia, C. 2003. Assignment of Homology to Genome Sequences 
rkov Models that Represent all Proteins of Known Structure. J. Mol. Biol., 313: 903-

 PEDANT genome database. Nucleic Acids Research 31: 207-211. 

., Hubbard T.J.P., Chothia C., Murzin A. 2002. SCOP database in 2002: refinements 
ics. Nucl. Acid Res. 30: 264-267. 

s and Derek Caetano-Anollés. 2003. An Evolutionarily Structured Universe of 
 Res. 13: 1563-1571. 

Dana Jermanis


Dana Jermanis
Protein Structure 

Dana Jermanis
440



 
 

Hydrophobic Moment of Multi-Domain Proteins:  
Magnitude and Spatial Orientational Bias 
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1 Introduction.  
 
The understanding of multi-domain protein folding and structures is of great interest recently. 
Protein domains are generally hypothesized to demarcate compact units that fold independently. 
This suggests that the distribution of residue hydrophobicity for individual domains as well as 
aggregate sets of domains should exhibit special properties. If domains do fold independently, one 
expects individual domains to exhibit a core composed predominantly of hydrophobic residues with 
an exterior composed predominantly of hydrophilic residues. Furthermore, as a consequence of 
domain coalescence within the aqueous environment one expects the amphiphilicity of spatially 
adjacent domains to reveal a bias of hydrophobic residues in the region of domain contact. In this 
study, we examine the hydrophobic spatial profiling2-3 of all single-chain multi-domain proteins in 
PDB to see if such expected bias is reflected in the hydrophobic moment of the individual domains.  

 
2 Hydrophobic Moments.  
 
Hydrophobicity is widely used to examine the protein structures. Each amino acid exhibits a 
different degree of hydrophobicity hi based upon its solubility in water4. As a good approximation, 
the protein shapes can be represented by an ellipsoidal,2-3
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The prime designates the value of hydrophobicity of each residue after normalization (mean zero 
with standard deviation of 1) to enable comparison between different proteins2-3.  When the value 
of d is just sufficiently large enough to collect all of the residues, the net hydrophobicity of the 
protein vanishes, i.e., H0(d) vanishes at this maximum value of d0. And the location at which the 
2nd-order moment vanishes is defined as d2.  The hydrophobic-ratio is then defined as,

02 / ddRH =  
(consult previous papers2-3 for more details). Surprisingly, RH is found to be relatively constant, and 
a value of 0.71 ± 0.08 was found for all native globular soluble protein domains in PDB2-3.  
 
3 Results and Discussion.  
 
A total of 162 non-redundant multi-domain proteins (single chains) and 358 corresponding domains 
have been selected from PDB following a similar procedure as described previously3. Surprisingly, 
these multi-domain complexes profile like the individual domains with a well-defined hydrophobic 
ratio RH. Fig. 1 shows the distribution of RH for both the individual domains and the multi-domain 
complexes, with RH= 0.71 ± 0.08 for individual domains, and 0.74 ± 0.08 for complexes. 
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(a)                                                     (b) 

Figure 1:  Hydrophobic ratio distribution: (a) individual domains; (b) the multi-domain complexes.  
 

These otherwise surprising results could occur only if during folding and the exclusion of water 
from the region between domains, a predominantly hydrophobic interface was formed. This, in 
turn, would appear as an imbalance in the distribution of residue hydrophobicity across the 
individual domains which could be characterized by the magnitude and direction of the 1st-order 
hydrophobic moment. Fig. 2a shows one example of the 1st-order moments for protein 1dhy. The 
vector orientations show that the hydrophobic moments point towards each other, reflecting the 
prevalence of hydrophobic residues near the domain interface. Thus, an orientation score f(θ) is 
defined to quantify such orientation bias. For a two-domain protein, it is simply,   
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Figure 2:  (a) The 1st-order hydrophobic moments of protein 1dhy; (b) The distribution of the function f(θ).  
 

For more than two-domains, it is just the average over all pairs of domains. Fig. 2b shows the 
distribution of the scoring function f(θ). If no preference in the direction of the 1st-order moments, 
a random distribution of f(θ) would occur with a mean value of ~0. The results, however, show that 
79.4% of complexes yield a value that is greater than zero (with a mean of 0.32). Thus, individual 
domains distribute a greater number of hydrophobic residues in the vicinity of the domain interface, 
suggesting that during the multi-domain protein folding each individual domain develops its own 
hydrophobic core while generating the hydrophobic imbalance at the domain interface, required for 
the final assembled complex. There is a strong tendency for individual domains to re-orientate 
themselves in order to bury more hydrophobic residues during the last stage of multi-domain 
protein folding. This would explain the origin of the well-defined hydrophobic profiles and 
hydrophobic ratios obtained for the multi-domain single-chain complexes. 
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1 Introduction.  
 
An analytical model is presented for the prediction of NMR order parameters of methyl groups in 
proteins. The model, which is an extension of the local contact model for backbone order parameter 
prediction, uses a static 3D protein structure as input. It expresses the methyl-group S2 order 
parameters as a function of local contacts of the methyl carbon with respect to the neighboring 
atoms in combination with a term that takes into account the number of consecutive mobile 
dihedral angles between the methyl group and the protein backbone. For six out of seven proteins 
the prediction results are good when compared with experimentally determined methyl-group S2 
values with an average correlation coefficient r=0.65±0.14. For cytochrome c2, which is an 
unusually rigid protein, no correlation between prediction and experiment is found. Despite its 
simplicity, it represents a first comprehensive relationship between protein NMR side-chain 
dynamics and protein structure.  

 
. 

2 Figures and tables.  
 

The analytical model reads: ( ) cnCaS b
ii −⋅= /tanh2

, where a, b, c are empirical parameters, Ci 

is the local contact experienced by methyl carbon i, and ni is the number of mobile covalent bonds 
between the methyl carbon i and the backbone.  

 
Figure 1: Prediction of ubiquitin methyl group order parameters using analytical model 
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Significance of conformational biases in Monte Car lo 
simulations of protein folding 

 
 

Ter esa  Pr zytycka1 
 
K eywords: protein folding, Metropolis-Hasting algorithm, detailed balance principle, biased 
sampling, hierarchical folding, minimalist models 
 

 
Despi te si gni f i cant  ef f or t , the probl em of  predi ct i ng a protei n's three-
di mensi onal  f ol d f rom i t s ami no-aci d sequence remai ns unsol ved.  A n i mportant 
l i ne of  at tack i s to t reat  f ol di ng as a stat i st i cal  process, usi ng the M arkov chai n 
f ormal i sm, i mpl emented as a M etropol i s M onte Car l o al gor i thm.  A  f ormal  
prerequi si te of  thi s approach i s the condi t i on of  detai l ed bal ance,  the pl ausi bl e 
requi rement  that  at  equi l i br i um, the t ransi t i on f rom state i  to state j  i s t raversed 
wi th the same probabi l i t y as the reverse t ransi t i on f rom state j  to state i .   
Surpr i si ngl y, some rel at i vel y successf ul  methods that  use bi ased sampl i ng f ai l  
to sat i sf y thi s requi rement  [ 1,2,4,5] .  I s thi s compromi se merel y a conveni ent  
heur i st i c that  resul ts i n f aster  convergence?  Or, i s i t  i nstead a crypt i c energy  
term that  compensates f or  an i ncompl ete potent i al  f unct i on? I  expl ore thi s 
quest i on usi ng M et ropol i s-Hast i ng M onte Car l o si mul at i ons.  Resul ts f rom these 
si mul at i ons suggest  the l at ter  answer  i s more l i kel y.  The si mul at i ons are carr i ed 
usi ng a new f ul l  atom mi ni mal i st  model . We argue that  thi s model  i s more 
natural  than the Go model  [ 3]  
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Structure-based assessment of missense mutations in the
HMGB domain of SRY identified in 46,XY females with sex

reversal

Sharmila Banerjee-Basu1 and Andreas D. Baxevanis1

Keywords: SRY, HMGB domain. mutation, molecular modeling

1 Summary

The SRY (sex-determining region of the Y chromosome) plays a key role in mammalian sex
determination, as expression of the SRY gene initiates the process of testicular differentiation [1].
Mutations in the SRY gene are responsible for ~15% of 46,XY male-to-female sex reversal in
humans. A total of 28 mutant proteins harboring sex-reversal missense mutations located in the
conserved high-mobility group box (HMGB) domain of SRY were examined here. Comparative
model building techniques were used to generate atomic structures of mutant proteins based on the
NMR solution structure of HMGB domain of human SRY-DNA complex [2]. The impact of the
missense mutations on the three-dimensional structure, stability, and surface electrostatic charge
distribution of the HMGB domain of SRY are examined here.  Seventeen missense mutations are
located on the inner concave face of the HMGB domain; this region is involved in making contacts
with the DNA recognition site as well as in nuclear localization.  Nine specific missense mutations
interfere with the pairwise interactions needed to stabilize the hydrophobic core of the HMGB
domain.  The mutant models have been compared to the wild-type protein in order to better
understand the structural factors underlying these sex-reversal mutations.

References

[1]  Berta P., Hawkins J., Sinclair A., Taylor A., Griffiths B., Goodfellow P., and Fellous M. 1990. Genetic
evidence equating SRY and the testis-determining factor. Nature 348: 448-50.

[2]  Murphy E., Zhurkin V., Louis J., Cornilescu G., and Clore GM. Structural basis for SRY-dependent 46-X,Y
sex reversal: modulation of DNA bending by a naturally occurring point mutation. 2001 Journal of Molecular
Biology 312: 481-99.

                                                  
1 Computational Genomics Program, Genome Technology Branch, National Human Genome Research Institute,
NIH, Bethesda, MD 20892-8002, USA. E-mail:  sharmib@nhgri.nih.gov; andy@nhgri.nih.gov

Dana Jermanis


Dana Jermanis
Protein Structure

Dana Jermanis
445

Dana Jermanis
J38.



 
 

Sequence and Structural Templates for Protein 
Protein Recognition Motifs 

 
Owen V. Lancaster1, Jo Avis2 & Simon J. Hubbard3 

 
Current methodologies for recognizing protein sequence patterns are predominantly based upon 
homology relationships between protein and nucleotide sequences. These methods are widely 
exploited to annotate new genomes and assign putative functions to new genes.  However they are 
usually based on sequence data alone. More recent approaches have made use of available 
structural data and incorporated this information into methods to improve upon the predictions 
compared to just sequence based methods alone. So far these approaches have not been widely 
exploited in bioinformatics. 
 
We have examined atest system containing degenerate but short, repeating motif,  the 
tetratricopeptide repeat (TPR). Sequence analysis was done to assess the effectiveness of common 
search tools for finding TPR motifs. These methods included Blast, PSI-Blast and Hidden Markov 
Models . A full structural analysis was also performed. The simple repeat nature of the TPR motif 
allowed structural information to be obtained, and structurally conserved features in TPRs 
comprising conserved interacting residue pair positions were revealed.   
 
Current work has involved building and evaluating models of all TPR sequences with unknown 
structures (over 7000) to check if they fit the TPR motif structure. From these and other models the 
interaction energy of structurally adjacent residue pairs has been calculated f residues. These 
models were generated by mutating residues in key conserved positions to all possible amino acid 
combinations. The energy is then evaluated for all these pair combinations - 20x20. This energy 
will then be integrated into sequence based methods such as Hidden Markov Models or other 
profiles with the aim of improving TPR predicting. Future work will be to go on to apply these 
methods to other simple repeating motifs. 
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Partition Function and Base-Pairing Probability
Algorithms for Nucleic Acid Secondary Structure

including Pseudoknots

Robert M. Dirks1 and Niles A. Pierce2

Keywords: DNA, RNA, secondary structure, pseudoknots, partition function, base-pairing
probabilities, recursion probabilities

Abstract

Nucleic acid secondary structure models usually exclude pseudoknots due to the difficulty of
treating these non-nested structures efficiently in structure prediction and partition function
algorithms. Here, the standard secondary structure energy model is extended to include
the most physically relevant pseudoknots. We describe an O(N5) dynamic programming
algorithm, where N is the length of the strand, for computing the partition function and
minimum energy structure over this class of secondary structures [3]. Furthermore, we
describe a general method for transforming the partition function algorithm to compute a
series of quantities termed recursion probabilities [4]. These, in turn, can be used to calculate
base-pairing probabilities with or without pseudoknots. The partition function and base-
pairing probabilities are useful for analyzing or designing the ensemble properties of RNA
and DNA molecules, as illustrated for a human telomerase RNA implicated in dyskeratosis
congenita and for a synthetic DNA nanostructure.

Introduction

Over the last two decades, polynomial-time dynamic programming algorithms have been
developed to predict the minimum energy secondary structure [14, 9, 17, 5] of an RNA
or single-stranded DNA molecule based on a nearest-neighbor empirical potential function
[11, 7]. By eliminating redundancy in the recursive process, it is also possible to efficiently
compute the partition function and base-pairing probabilities over secondary structure space
[8]. In their original forms, these algorithms exclude the possiblity of pseudoknots, a bio-
logically relevant class of secondary structures [13] that also arises in DNA nanotechnology
applications [15, 16]. Pseudoknots present a major obstacle to dynamic programming meth-
ods because they destroy the locality implied by the nesting of loops in a secondary structure
(see Figure 1). In fact, the structure prediction problem becomes NP-hard if all pseudoknots
are included in the ensemble of secondary structures [6]. Recent extensions to the struc-
ture prediction [10, 1, 3] and partition function [3] algorithms allow the inclusion of certain
physically-relevant pseudoknots while maintaining polynomial-time complexity.

The ensemble equilibrium can also be characterized by the matrix of base-pairing prob-
abilities with entries pi,j corresponding to the probability that base i is paired with base
j. We describe a general method for mechanically transforming the new pseudoknot parti-
tion function algorithm [3] to compute recursion probabilities, which can be used in turn to
compute base-pairing probabilities [4]. The transformation approach is generalizable to any
future partition function extensions that follow the same dynamic programming paradigm.

1Chemistry, Caltech. E-mail: dirks@caltech.edu
2Applied and Computational Mathematics, Bioengineering, Caltech. E-mail: niles@caltech.edu

Dana Jermanis


Dana Jermanis
Protein Structure

Dana Jermanis
447

Dana Jermanis
J40.



a
b

c

d

e

f g

h

i

j

k
l

m
n

o
p

q
rs

t

multiloop
interior
loop

hairpin

hairpin

pseudoknot

bulge
loop

stacked bases

stacked bases

ma b c de f g h i j k l n o p q r s t

multiloop

bulge loop

hairpin hairpin

interior loop

ba

ba

ef

e f

d c

dcg h g h

b)

a) Figure 1: a) Canonical loops of nucleic
acid secondary structure. These loops
structures are all nested so there are
no crossing arcs in the polymer graph
with the polymer backbone drawn as a
straight line. b) A sample pseudoknot
with base pairs a·f and c·h (with a < c)
that fail to satisfy the nesting property
a < c < h < f . This leads to crossing
arcs in the polymer graph.

Base pairing probabilities assist in the analysis of biologically relevant pseudoknots. Here,
we examine human telomerase RNA, which exists at equilibrium in both hairpin and pseudo-
knotted forms [2]. A two-point mutation, implicated in the disease dyskeratosis congenita,
alters the thermodynamic balance between these competing structures [12]. This shift in
equilibrium is clearly identifiable when the base-pairing probabilities for the two sequences
are compared. Base-pairing probabilities that permit pseudoknots are also useful in analyz-
ing sequences designed for DNA nanotechnology applications [15, 16].
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Profile–profile methods provide improved
fold–recognition.

A study of different profile-profile alignment
methods.

Arne Elofsson 1 Tomas Ohlson 2 Björn Wallner 3

Keywords: fold recognition, profile–profile alignment, PSI-BLAST, homology detection,
sequence alignments

1 Introduction.

To improve the detection of related proteins it is often useful to include evolutionary infor-
mation for both the query and target proteins. One method of including more evolutionary
information is the use of profiles in profile–profile alignments. Profile–profile alignments can
be implemented in several fundamentally different ways. In this study we present a large
scale comparison of different profile-profile alignment methods. We show that the profile–
profile methods perform 30 to 50% better than standard sequence-profile methods both in
their ability to recognize superfamily related proteins and in the quality of the obtained
alignments. Among the fold recognition methods the Log Aver method developed by von
Öhsen and Zimmer and a probaility based scoring method similar to PICASSO by Heger
and Holm seem to be preferred as they can create good alignments and show a good fold
recongition capacity using one set of gap–penalties gap–penalties, while the other methods
need to use different parameters to obtain similar performances.

2 Conclusions

In this study we have shown that several different profile–profile methods perform signifi-
cantly better than standard sequence–profile methods. The profile–profile methods show a
greater ability to identify structurally related residues, provide better recognition and better
alignments than standards sequence–profile methods. The different profile–profile methods
perform quite similar if the gap–penalties are optimized individually for alignment and fold
recognition abilities. However, it is possible that Log Aver and prob score has a slight ad-
vantage as these are the only method that show good performance in both fold recognition
and alignment quality using identical parameters.

What are the reasons to the good performance of Log Aver and prob score ? Our as-
sumption was that a good ability to identify related residues would be a requirement for good
performance. However, this is obviously not the case, as prob score show among the lowest
ability to identify the related residues, while Log Aver is the best method at identifying re-
lated residues. The distribution of the scores in DP appears not to be ideal as it is necessary

1Stockholm Bioinformatics Center, Stockholm University, 106 91 Stockholm, Sweden. E-mail:
arne@sbc.su.se

2Stockholm Bioinformatics Center, Stockholm University, 106 91 Stockholm, Sweden. E-mail:
tomas.ohlson@sbc.su.se
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to use quite different gap–penalties to obtain high quality alignments in comparison with
the optimal penalties for fold recognition and vice–versa.

This study highlights that a better understanding of how different profile–profile methods
perform should be useful for improving these methods. It is not obvious how the best
distribution separating related and unrelated residues should look like, even if our intuition
would tell us that the Gaussian distributions are good. The alignment quality performance
seems to show some correlation with the ability to detect distantly related residues, while
fold recognition ability seems not to be. It is promising that the quite different profile–profile
methods perform quite well compared with PSI-BLAST. However, it is clear that a better
understanding in what factors that affect the performance of fold recognition and alignment
qualities has to be obtained if better methods are going to be developed.
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1 Introduction.  
 
We developed a new method for the bipartite cis-regulatory module based on Shannon’s entropy 
[1] minimization principle and applied to a set of known PXR/RXRα binding sites [2]. This work is 
an extension to [3]. A bipartite module is an independent functional unit on the upstream of a 
regulated gene and recognized by a protein binding complex such as PXR/RXRα heterodimer. We 
assume that two proteins (PXR and RXRα) cooperatively bind to the module with constrained 
spacers. The heterodimer binding controls the expression of co-regulated genes such as CYP3A4, 
which is involved in detoxification of drugs and xenobiotics [2]. We built the models for different 
motif widths and validated them based on the relative binding strength of the testing sequences.     
 
2 Bipartite Motif Model.  
 
A bipartite module has two components, left and right motifs, and the associated gap function, g(d) 
defined as –log(n(d)/n) and n(d) is the number of sites with d. Shannon’s entropy or uncertainty [1] 
was used to define the objective function (total information content, IC) which is given as, 
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Here Jm is the width of motif m and e(n) is a sample correction [3]. Obviously the left and right 
motif sub-models are subject to a gap constraint. These two motifs are not allowed to be 
overlapping and the gap size (d) is set to a limited range [dmin, dmax] based on biological 
observation. The entropy Hm(l) for motif m at position l is expressed as, 
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cl,b is the count of symbol b at position l, bβ is the pseudo-count [2] of b and n is the number of  the 
DNA training sequences.  
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3 Entropy Minimization in Bipartite Model.  
 
The goal is to estimate the model parameters ),( )|()|( drightdleft fff =  that maximize IC. This 
problem can be reduced to minimize the total Shannon’s entropy or uncertainty for each model, 
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where nkJLIIa mk
m

k ,,1},1,,1{},{ )( LL =+−=∈=Θ , )(m
ka  is a set of start positions for motif 

m, and Lk is the length of sequence k. We applied a greedy algorithm to search the multiple local 
alignment space (Θ). The same idea can be applied to homogeneous model without gap. 
 
4 Model Validation and Selection  
 
The individual IC values (Ri) based on bipartite and homogeneous models were computed. The 
linear regression models were built to fit the IC change fold (Xi) to the binding strength (Yi), 

},,2,1{,)()( nirefKtKY ii K∈∀=   (7) 
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i K∈∀= −    (8) 
K is a competition constant at the equilibrium, ti and ref is the tested and reference sequences 
respectively. The Akaike’s information criterion, ,2)/log( knSSEnAIC +=  was used to validate 
and compare the models, here k is number of parameters and SSE is sum of squared error. 
   
5 Discussion.  

 
The algorithms were implemented in C++/Perl and successfully applied to finding homogeneous 
and bipartite motifs using a set of PXR/RXRα protein binding sites. To validate the models, we 
scanned a set of testing sequences (binding strength data to be presented) using homogeneous and 
bipartite models and calculated their Ri values. Based on the regression models, we computed the 
correlation coefficients (r) and AICs for each model. The best model is the one with the smallest 
AIC values. There are twelve homogeneous model candidates with width ranging from 12 to 23 
bps. Given the biologically defined gap range [0, 6], we set the half-site width ranging from 6 to 9 
bps. Each bipartite model is one combination of half-sites separated by gap. Among the best 
bipartite models that fit the experimental data are 7<3>7 (7 bps on left and right half-sites with 
dominant spacer of 3 bps), 8<2>7 and 9<2>7 (r > 0.83). Therefore the width varies from 16 to 18 
bps.  
 
The results may support our hypothesis that PXR and RXRα transcription factors cooperatively 
bind to two adjacent motifs with variable spacing. Laboratory validation studies show that binding 
by the 16 bps motif reasonably approximates the prediction of the bipartite model. 
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1 Introduction.  
 
An explosion in the amount of available genomic data has changed the ways in which these data are 
analyzed.  It has become possible to locate transcription and translation regulatory regions based on 
large scale comparisons of regions upstream of Open Reading Frames (ORFs).  The use of self-
organizing maps (SOMs) can aid in this search for cis regulatory elements in an organism by 
segregating similar patterns in different parts of the map. 
 
A SOM is a basic neural network algorithm based on unsupervised learning.  It implements reduced 
dimensionality mapping of the training set to produce a map that follows the probability density 
function of the data.[1]  This unsupervised training system provides a relatively fast clustering that 
is, in many ways, better than traditional clustering models. The process of clustering upstream 
regions attempts to divide sequences of DNA into different groups based on feature vector values 
derived from a a positional weight matrix.[2] The use of this approach in the study of 5’ flanking 
regions of Sulfolobus solfataricus ORFs has produced specific clustering that reveals different 
regulatory features associated with sets of ORFs. 
 
It has been previously found that archaea use both eukaryotic and eubacterial means of 
transcription and translation.[3,4].  The use of SOM clustering has enabled us to identify a Shine-
Dalgarno (S-D) region associated with some ORFs is complimentary to the 3’ end of 16S ribosomal 
RNA in Sulfolobus solfataricus.  We have observe an A box and a B box in a relatively fixed 
position upstream of the start of translation.  By analysis of known data sets, we show that ORFs 
that are internal members of operons cluster together and generally lack the transcriptional feature 
we have identified. Conversely, first ORFs in operons cluster and have the A and B boxes. 

 

2 Approach.  
 
We used an approach that supports dynamic exploration of regulatory patterns in clusters of ORFs in 
Sulfolobus solfataricus by use of positional weight matrices and Kohonen’s self-organizing map 
(SOM) algorithm. We have explored the data using different dimensions in the SOM lattice. We have 
also varied the extent of the windows to be used in scrutinizing the 5' flanks. ORFs are seen to cluster 
into groups with and without the regular TATA feature (A and B boxes) and with and without the 
Shine-Dalgarno sequence.  
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The implications of these regulatory features with respect to the location of the ORFs in operons are 
considered. 

 

3 Results.  
 
ORFs were classified as either Distant or Nearby depending on the location of the their translation 
start sites relative to the stop codon of the nearest ORF. ORFs with starts located within ±25 
nucleotides of the nearest stop codon were classed as Nearby. First ORFs in operons and Internal 
ORFs represent sets of about 100 ORFs each identified by inspection of the genome. 
 

 First ORFs in Operons Internal ORFs in Operons 
Features S-D  TATA Mixed S-D  TATA Mixed 
 21% 60% 19% 62% 21% 17% 

 Distant ORFs Nearby ORFs 
 30% 63% 7% 57% 33% 10% 

 
Table 1:  Percentage of ORFs in clusters with identifiable cis elements. Window was -5 to -40 from translation 

start codon. Dimensions of SOM were 2 X 5. 
 

Changes in window size and location had little impact on the clustering. Use of higher dimensions 
in the SOM allowed finer discrimination of cluster features but past some number of dimensions, 
the weight matrices become too noisy to analyze. 
 

4 Conclusions 
 
SOM used in conjunction with positional weight matrices allows for visualization of 
patterns of cis regulatory elements in genomes. Here we use Sulfolobus solfataricus as an 
example and show that the preponderance of ORFs internal to operons have only an S-D element as 
a recognizable feature. The preponderance of first genes in operons lack an S-D sequence but have 
a TATA box in a relatively fixed location. Other ORFs may lack this element or, more likely, have 
it in another location relative to the start codon. They may also have significant deviation from the 
recognizable consensus sequence. Division of ORFs into Nearby and Distant gives a similar 
clustering of cis elements as seen in the operon data. It would be expected that Nearby ORFs are 
much more likely to be members of an operon as compared to Distant ORFs.[5] 
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Gene finding in the presence of RNA editing

Ralf Bundschuh, 1 Jonatha Gott 2

Keywords: gene finding, RNA editing, Hidden Markov Model, sequence alignment

1 Introduction.

The central dogma of molecular biology states that the genetic information on the DNA is
transcribed into messenger RNA which in turn is translated into proteins. For most organ-
isms the messenger RNA has the same sequence as the DNA — possibly after eliminating
introns — and the knowledge of the genetic code allows a one-to-one assignment of genomic
sequences on the DNA and the protein sequences they correspond to. However, there are
organisms that edit their messenger RNA sequences, i.e., a dedicated biological machinery
in these organisms, substitutes, inserts, or deletes single or dinucleotides of the messenger
RNA [4]. While the editing machinery for some of these organisms is known, it remains
a complete mystery in other organisms. One of the organisms in which hardly anything
is known about the editing machinery is the mitochondrion of the slime mold Physarum

polycephalum. Its most frequent editing event is the insertion of single cytidines [3] and its
mitochondrial genome has been sequenced [5].

In order to understand the RNA editing machinery in such organisms it is desirable
to identify as many examples of sites at which the messenger RNA is edited as possible.
However, the very existence of RNA editing complicates the application of traditional tech-
niques to such organisms: In order to amplify and sequence a given messenger RNA exactly
complementary primers are required. Due to the RNA editing, even the knowledge of the
whole genomic sequence of an organism does not allow the construction of such primers
because the edited sites are not contained in the genomic sequence of a gene. Also, the
computational identification of genes within the genome is hindered by RNA editing since
the unedited sequence in the genome lacks the features computational gene finders look for.
Here, we present an approach that (i) is able to predict the location of genes on a genome
of an organism with RNA editing and that (ii) predicts the position of editing sites in such
genes thereby enabling primer selection

2 Approach.

Since the mitochondrial genes of a large number of organisms are known we choose a com-
parative approach to gene finding. We start with the protein sequence of a mitochondrial
gene from a different organism and build a profile of the amino acid sequences of this gene
using PSI-BLAST [1]. This protein sequence profile implies a hidden Markov model for the
protein family along the lines of the models in the PFAM database [2].

We first turn this hidden Markov model which describes amino acid sequences into a
hidden Markov model that describes underlying nucleotide sequences. Then, we modify this
hidden Markov model in such a way that it takes into account the possibility of the inser-
tion of individual cytidines. Scoring a piece of the genomic sequence of the mitochondrion

1Department of Physics, The Ohio State University, 174 West 18th Avenue, Columbus, Ohio
43210-1106, USA. E-mail: bundschuh@mps.ohio-state.edu

2Center for RNA Molecular Biology, Case Western Reserve University, 10900 Euclid Avenue,
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of Physarum polycephalum with this hidden Markov model corresponds to calculating the
probabilities for the translations of each possible way to insert cytidines into the genomic
sequence to be members of the protein family in question and choosing the most probable
among these ways of inserting cytidines. The dynamic programming algorithm of the hid-
den Markov model finishes this in principle exponential task with a time complexity that is
quadratic in the sequence length.

The location of the gene on the genome can be determined by finding the region of the
genome that scores the highest under local alignments against the hidden Markov model. In
addition, tracing back through the model produces the most likely position of the inserted
cytidines. The predictions are improved by incorporating biological information like the
codon frequencies and typical sequence patterns in the vicinity of editing sites.

3 Results.

First, we apply our algorithm to the six mitochondrial genes of Physarum polycephalum for
which mRNA sequences including the editing sites are available in GeneBank. We use the
nad7 gene to optimize the two free parameters of the model and apply the algorithm to the
other five genes, namely cox1, cox3, cytb, atp, and pL. We find that in total over 90% of the
amino acids and over 70% of the actual editing sites are correctly predicted by the algorithm.

Second, we turn to the four genes nad2, atp8, nad4L, and nad6 that had been reported
to be completely missing from the mitochondrial genome in Takano’s analysis [5]. Our
algorithm is able to find the location of each of these genes. We use the predictions for
the editing sites to design primers and experimentally verify that all four genes were indeed
present where predicted and had simply escaped gene prediction programs that do not take
RNA editing into account in the past.
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1 Introduction

Although fairly accurate databases exist for protein-coding genes, little is known about
another important class of genes known as noncoding RNA genes. These genes, which
have been implicated in a wide variety of critical biochemical pathways including brain
development [7] and viral defense [5], are not translated into polypeptides. Instead, their
transcribed RNAs fold into stable, base-paired secondary and tertiary structures that confer
catalytic ability. For the purposes of this paper, it is especially important to note that these
secondary structures cause noncoding RNA genes to contain pseudo-palindromic sequences.

Unfortunately, these pseudo-palindromic and other signals are not statistically sufficient
for the computational identification of such genes [9]. Because they are difficult to detect
even through biological techniques, it is important that accurate computational approaches
be developed [10]. Although many heuristic and specialized methods have been suggested,
comparative genomics approaches [8] have shown particular promise. However, even these
approaches are primitive. For instance, current comparative genomics approaches are limited
to two sequences, despite recent work showing the importance of using several related species
[2]. Other problems include various heuristic approximations and poor scaling.

Here, we briefly present a machine learning approach to genome-wide noncoding RNA
gene prediction with multiple sequence alignments. The algorithm we describe scales lin-
early with respect to the length and number of genomes. More importantly, the approach
is statistically sound, and allows the direct computation of probabilities through modular
protein-coding, noncoding RNA, and intergenic sequence models.

2 Theory

We have developed a graphical model that integrates probabilistic context-free grammars
(PCFGs) and phylogenetic trees within a generalized hidden Markov model (GHMM) frame-
work. The latter of these models, the GHMM, is a straightforward generalization of the
HMM in which a state can explicitly choose the length of its emission (according to a spec-
ified length prior). Our GHMM can be conceptually considered as three different states,
each of which emits sequence alignments based on protein-coding, noncoding RNA, or inter-
genic sequence models.3 The protein-coding and intergenic models emit multiple alignment
columns according to standard GHMMs [1] and phylogenetic trees.

On the other hand, the noncoding RNA model emits columns according to PCFGs and
phylogenetic trees that define a joint probability distribution over pairs of columns. This si-
multaneous emission of multiple, distant columns allows the PCFG to model the evolutionary
dependencies between base-paired positions within noncoding RNA genes [9]. In addition,
the inclusion of phylogenetic trees permits us to model the expectation that base-paired

1Dept. of Computer Science, Univ. of Calif., Berkeley. E-mail: kushalc@uclink.berkeley.edu
2Dept. of Computer Science, Univ. of Calif., Berkeley. E-mail: dlong@ocf.berkeley.edu
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positions within noncoding RNA genes will undergo compensatory mutation. Perhaps more
importantly, alignments of several, closely related genomes can be used (phylogenetic shad-
owing) [2]; because noncoding RNA genes tend to mutate faster than protein-coding genes,
such sequence sets prevent pathological alignments and increase the accuracy of comparative
genomics approaches. Despite these apparent benefits, phylogenetic trees that define joint
distributions over pairs of columns have only been recently developed [6].

Unfortunately, because PCFGs are too inefficient for long sequences, they must be ap-
proximated. Although Rivas and Eddy [9] use a windowing approach, it is both inefficient
and probabilistically unsound. We instead enforce a standard constraint on the GHMM
length priors, ie. that it be zero for all lengths beyond some constant C. This constraint
allows us to straightforwardly and efficiently compute the necessary PCFG probabilities in
time O(C3 +LC2), where L is the length of the multiple alignment. For instance, the inside
probability of the first C bases can be computed in the standard fashion in time O(C3), while
the necessary probabilities for each remaining base can be incrementally computed in time
O(C2). We briefly note that this approximation is “perfect,” ie. the probability computed
in this fashion is exactly equivalent to the probability computed naively.

3 Experimental Results

Seven yeast species were downloaded and analyzed. Genome-wide homology maps were first
generated for these species [4], which were then used to align the genomes [3]. Aligned ge-
nomic DNA for annotated ORFs and noncoding RNAs was then extracted, and the remainder
was classified as null sequence. The model was then used to reclassify these sequences; these
model reclassifications were then compared against the known (true) classification. Although
initial results are very promising, we intend to systematically study the performance of our
algorithm against other noncoding RNA genefinders in the future.

References
[1] Alexandersson, M., Pachter, L., and Cawley, S. 2003. SLAM: Cross-species gene finding and

alignment with a generalized pair hidden markov model. Genome Research, 13:496-502.

[2] Boffelli, D., McAuliffe, J., Ovcharenko, D., Lewis, K.D., Ovcharenko, I., and Pachter, L., and
Rubin, E.M. 2003. Phylogenetic shadowing of primate sequences to find functional regions of
the human genome. Science, 299:1391-1394.

[3] Bray, N. and Pachter, L. MAVID: Constrained ancestral alignment of multiple sequences.
Genome Research, in press.

[4] Dewey, C. Personal communication.

[5] Hamilton, A., Voinnet, O., Chappell, L., and Baulcombe, D. 2002. Two classes of short inter-
fering RNA in RNA silencing. The EMBO Journal, 21(17):46714679.

[6] Jow, H., Hudelot, C., Rattray M., and Higgs, P.G. 2002. Bayesian Phylogenetics Using an RNA
Substitution Model Applied to Early Mammalian Evolution. Molecular Biology and Evolution,
19(9):1591–1601.

[7] Krichevsky, A.M., King, K.S., Donahue, C.P., Khrapko, K., and Kosik, K.S. 2003. A mi-
croRNA array reveals extensive regulation of microRNAs during brain development. RNA,
9(10):12741281.s

[8] McCutcheon, J.P. and Eddy, S.R. 2003. Computational Identification of non-coding RNAs in
Saccharomyces cerevisiae by comparative genomics. Nucleic Acids Research, 31(14):4119-4128.

[9] Rivas, E. and Eddy, S.R. 2000. Secondary structure alone is generally not statistically sufficient
for the detection of noncoding RNAs. Bioinformatics, 16(7):583-605.

[10] Storz, G. 2002. An expanding universe of noncoding RNAs. Science, 296(5571):1260-1263.

Dana Jermanis
Recognition of Genes and Regulatory Elements 

Dana Jermanis

Dana Jermanis
460



 
 

Discovering Transcription Factor Binding Sites in the Yeast 
Saccharomyces Cerevisiae 

 
Xue-wen Chen1, Jianwen Fang2*, Xinkun Wang3*

 
Keywords: transcription factor binding site, genome sequence, microarray, fuzzy clustering  
 
1 Introduction.  
 
With the availability of whole genome sequence information and the large amount of gene expression 
profiling data from high throughput functional genomics approaches, it becomes clear that genome 
wide computational tools are needed for the analysis of transcript factors (TF) and for the 
identification of their binding sites. Even without knowing either a set of binding sites for a particular 
TF or a set of co-regulated sequences, computational algorithms are capable of predicting binding 
sites and finding their locations in sequences. Typical binding site identification algorithms find co-
regulated genes using clustering algorithms. As microarray data are typically noisy, expression profile 
based clustering is fuzzy by nature. Thus, it is desirable to allow each gene to associate to all clusters 
with some degrees of certainty. In this paper, we introduce a fuzzy clustering based method for 
discovering binding signals. An initialized fuzzy C-means algorithm (initFCM) [1] is used for 
clustering genes in terms of their expression profiles; a web-based interface is developed to search for 
gene upstreams; furthermore, a standard motif discovery tool MEME [2] is used to find consensus 
patterns. The statistical significance of consensus patterns is measured in terms of both p-value and E-
value, as this helps find distinctive patterns with little chance to be the background.   

 
2 Methods.  
 
The proposed system consists of the following components: fuzzy clustering, upstream search, and 
multiple sequence analysis. Gene expression profiles are first analyzed by the initFCM algorithms to 
find co-regulated genes. This algorithm is an iterative partitioning method and gives well-separated 
initial centers while avoiding the choice of outliers. Instead of assigning each gene to one and only 
one cluster, we allow each gene to have a membership value associated to each cluster. This cluster 
membership measures the degree of believe that a gene belongs to that particular cluster. Only genes 
with a certain degree of believe are considered to be coregulated. A web-based interface connected to 
a local yeast genome database is developed to retrieve the upstreams of co-regulated genes. It takes a 
list of gene ID, the length of an upstream sequence, and the position of the upstream starting site as 
inputs. The output is upstream sequences in FASTA format, which are fed to a multiple local 
alignment program, MEME, to identify the motifs and thus putative binding sites. The statistical 
significance of these motifs are evaluated in terms of their E-values (expectation values) and p-values. 
The E-value is an estimate of the number of motifs that would have equal or higher log likelihood 
ratio if the training set sequences have been generated randomly, while the p-value is the probability 
of a random sequence having the same match score or higher. The consensus sequences identified are 
considered to be potential regulatory signals.  
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3 Results.  
 
The data set analyzed here is the cDNA microarray data of Saccharomyces Cerevisiae in cell 
structures which were collected for 6221 genes under 80 different experimental conditions (e.g., cell 
cycle, sporulation, and diauxic shift) [3]. The initFCM algorithm is first applied for clustering yeast 
genes. The number of clusters is chosen to be 120. After clustering, some genes can be easily assigned 
to a cluster, while some can not. Figure 1 (a) and (b) show the degrees of believe versus the cluster 
index for two ORFs, YAL023C and YAL008W, respectively. For each gene j, we calculate the ratio 
of the maximum value of ukj (k = 1, … , 120) and the second largest value of ukj. If this ratio is no less 
than two, we assign this gene j to cluster . Otherwise, we conclude that the cluster 

membership of gene j is fuzzy, and the corresponding gene will not be considered further. Clusters of 
sizes of 20 or more genes will remain for further analysis. For each gene in a cluster, the 600 bp 
upstreams are extracted using our web based interface; these upstreams are then fed to the MEME 
program to identify regulatory signals. Further analysis shows that most of the binding sites identified 
by our system are either verified by biological experiments or found in TRANSFAC database.  For 
example, one cluster with 48 co-regulated ORFs, identified by our approach, has a consensus 
upstream sequence GAGGAAATTGAA (E-value = 8.1

kj
k

uk maxarg=

× 10-17), which is a substring of the 
experimentally verified sequence GAAGAGGAAATTGAA in SCPD database [4]. This sequence is 
related to the transcript factor GAL4 MCM1 UAS2CHA UASH.  
 

             
                            (a)                                                                             (b)  

Figure 1: The degree of believes in clusters for (a) YAL023C and (b) YAL008W. 
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1 Introduction.  

The control of gene expression, i.e. the transfer of biological information from DNA to RNA 
(transcription) and RNA to protein (translation), is central to all mammalian cellular processes. The 
majority of gene regulation occurs at the level of transcription initiation. This information is hardwired 
in the gene regulatory regions formed by cis-regulatory elements that bind specific TFs. Examples of 
the process of gene expression have been described for several organisms [1]. The basal 
transcriptional machinery of RNA polymerase II assembles at the core promoter, which is a minimum 
stretch of DNA sequence (from –35 to +35 nt of the transcription start site (TSS)) that is sufficient to 
direct the transcription initiation [2]. The proximal promoter region (from –500 to +250 nt of TSS) 
contains the cis-regulatory elements of most of the TFs. Enhancers and silencers are located several 
kbp upstream of the TSS. Extensive molecular research has provided a wealth of such information 
about experimentally characterized proximal promoter sequences, TFs and their binding sites. This 
information is dispersed throughout various databases, such as GenBank, PubMed, TRANSFAC and 
DBTSS. The integration of such essential information with the human and rodent genome sequences 
is one of the major challenges of the post-genome era. The database may be searched for promoter 
sequences, TFs, and their direct target genes through a user-friendly web interface at 
http://bioinformatics.med.ohio-state.edu/MPromDb.  A facility for batch download of a set of 
promoter sequences is also available at this website. 

 
2 MPromDb.  

We developed a novel database MPromDb, which consists of mammalian promoters with 
annotation of first exon (transcription start site to first donor site) and experimentally supported cis-
regulatory elements. Promoter sequences of orthologous genes from different species are linked with 
each other and displayed in same annotation image.  The current release of MPromDb (release 1.0) 
contains experimentally supported (Table 1) promoters and first exons, 6,088 TF binding sites (3,319 
of human & 2,769 mouse) and 1,503 transcription factors with links to corresponding PubMed and 
GenBank references. Currently, MPromDb contains 9,907 pairs of human-mouse orthologous genes.  
The corresponding record displays both of the promoters of the orthologous genes, allowing a visual 
platform for comparison (Figure 1).  We have implemented in house developed JAVATM application 
framework called Genome Data Visualization Tool Kit (GDVTK) [3] for MPromDb database 
management and information presentation in the form of an image map of gene regulatory regions 
with interactive contextual menus for easy navigation. A Web interface to the MPromDb has been 
developed using the J2EE technology (JSP and Servlet). Users can search the database and retrieve the 
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promoter sequence and associated annotation information of a specified gene in several ways. For 
example, a user may obtain the promoter of a gene by searching with Gene Name or Symbol, Locus 
Link, UniGene or GenBank Accession IDs.  Alternatively, a user may obtain TF information, 
including binding site position, binding sequence and promoter annotation of target gene, by simply 
searching with its corresponding name. 
 
3 Figures and tables.  
 

 
Figure 1: Screen shot of the genome view associated with the BAX promoter annotation 

 
Promoter/first-exon mapping supported by 

Organism full-length 
5’UTR/ 

mRNA* e.g. 

exon 
(numuber=1) 

e.g. 

prime-transcript 
e.g.:A01198 DBTSS Bidirectional 

promoter 

Total 
number of 

records 

Human 5,213 1,109 174 4,010 3,274 13,780 
Mouse 3,637 886 215 479 3,806 9,023 
Rat 3,494 925 230 472 30 5,151 
Total 
number of 
records 

12344 2920 619 4961 7110 27954 

 
Table 1: Promoters/first-exons in MPromDb that are supported by different types of experimental data 
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A Whole-genome Analysis of Transcription Factor Binding
Sites for Human and Mouse Orthologs

Caroline S Finnerty1, Dr. James O McInerney1

Keywords: transcription factor binding sites, gene regulation, human and mouse orthologs.

1 Introduction.

We aim to test the hypothesis that dissimilarities in the control regions of genes are responsible for
species-specific variation. We will do this by comparing human and mouse orthologs and analyse their
upstream regions for presence or absence of various transcription factor binding sites (TFBS). We
hope to see species-specific variation in TFBS that may be responsible at some level for species-
specific differences. The biological significance of this work will be to determine if two genes which
share a particular subset of transcription factors will have a similar function and if they will be
expressed to the same level and conversely, if two genes have very divergent upstream sequences will
their functions and expression levels also be dissimilar? The ultimate goal is to infer gene function
from regulatory sequence.

2 Methods.

Our approach is to analyse, on a genome-wide scale the upstream regions of human genes with an
emphasis on transcription factor binding sites. In order to take a conservative approach we have only
used human genes, which have a corresponding mouse ortholog. This is commonly known as
phylogenetic footprinting. Using existing databases such as TRANSFAC“ [2] to retrieve transcription
factor binding site data we have recoded each transcription factor binding site with a different number
so that each upstream region is identified by a different string of numbers. Using these newly recoded
vectors, pairwise alignments using SWNumString.java (In-house software) have been carried out.

3 Discussion and Future Work.

These approaches should enable one to identify homologous upstream regions as well as those that are
divergent which we can then analyse further.
We also hope to examine interspecies variation by performing multivariate analysis [3] on this dataset

    1National University of Ireland, Maynooth, Co. Kildare, Ireland E-mail: caroline.s.finnerty@may.ie
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Identification of Regulatory Controls for Sets of  
Co-expressed Genes 
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1 Introduction.  
 
The use of large-scale gene expression profiling experiments to decipher underlying transcriptional 
networks is an intriguing and challenging area of research in bioinformatics. Creative 
computational algorithms are required to elucidate the transcription factors (TFs) that give rise to 
observed co-expression patterns by searching for shared cis-regulatory motifs in the regulatory 
regions of co-expressed genes.  We have developed an integrated approach that combines cross-
species comparisons with promoter motif identification tools for the automated detection of 
significantly over-represented transcription factor binding sites (TFBS) in sets of coordinately 
expressed genes. 
 
The use of position-specific scoring matrices (PSSMs) to detect known TFBS is well-established 
(reviewed in [1]).  However, these methods typically yield a large number of false positive 
predictions due to the short, variable nature of TFBS.  Dramatic improvements in the specificity of 
TFBS prediction are attained by limiting the search space to regions of conserved, non-coding 
DNA using a comparative genomics approach known as phylogenetic footprinting [2]. 
 
2 Methods.  
 
The promoter regions of human genes (defined as 5kb upstream and 1kb downstream of the 
annotated transcription start sites), were aligned to the corresponding promoter regions of their 
mouse orthologs (as defined by EnsEMBL).  Regions of the alignments with greater than 75% 
sequence conservation were searched for matches to 75 vertebrate-specific TF binding profiles 
present in the JASPAR database [3].  Computational methods utilized the TFBS suite of regulatory 
analysis Perl modules [4]. 
 
Two statistical measures were calculated to determine which, if any, TFBS were over-represented 
in the set of promoters for co-expressed genes.  These represent two distinct models for counting 
the occurrences of binding sites.   
 
The z-score uses a simple binomial distribution model to compare the frequency of occurrence of a 
TFBS in the set of co-expressed genes to the expected frequency estimated from a background set 
containing all genes on the microarray chip.  For a given TFBS, let the random variable X denote 
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the number of predicted binding site nucleotides in the conserved non-coding regions of the co-
expressed genes.  Let p be the rate of occurrence of predicted binding site nucleotides in the 
background sequences.  Using a binomial model with n events, where n is the total number of 
nucleotides examined from the co-expressed genes, and p is the probability of success, the expected 
value of X is np=µ , with standard deviation )1( pnp −=σ .  Let x be the observed number of 
binding site nucleotides in the conserved non-coding regions of the co-expressed genes.  By 
applying the Central Limit Theorem and using the normal approximation to the binomial 

distribution with a continuity correction, the z-score is calculated as
σ
−µ−= 5.0x

z . Then, the 

probability of observing x or more binding site nucleotides in the conserved non-coding regions of 
the co-expressed genes is given by ( )zZxX ≥≅≥ Pr)Pr( .   
 
In contrast, the one-tailed Fisher exact probability compares the proportion of co-expressed genes 
containing a particular TFBS to the proportion of the background set that contains the site to 
determine the probability of a non-random association between the co-expressed gene set and the 
TFBS of interest.  It is calculated using the hypergeometric probability distribution that describes 
sampling without replacement from a finite population consisting of two types of elements [5]. 
Therefore, the number of times a TFBS occurs in the promoter of an individual gene is disregarded, 
and instead, the TFBS is considered as either present or absent. 
 
3 Results.  
 
The method was validated on a number of reference sets, and then applied to genes significantly 
down-regulated in cells treated with a compound known to inhibit the NF- κB  signaling pathway.  
TFBS that were significantly over-represented in the down-regulated set relative to the background 
set are shown in Table 1. 
 
 TFBS TF Class z-score 

p-value 
Fisher 
p-value 

 TFBS TF Class z-score 
p-value 

Fisher 
p-value 

1 NF-κB Rel/ NF-κB 0.0e+00 3.2e-09 7 SPI-B ETS 1.7e-17 2.2e-03 
2 p65 Rel/ NF-κB 0.0e+00 4.0e-08 8 HFH-2 Forkhead 8.5e-17 2.0e-03 
3 c-Rel Rel/ NF-κB 0.0e+00 1.5e-04 9 FREAC-4 Forkhead 3.8e-16 5.9e-04 
4 p50 Rel/ NF-κB 0.0e+00 5.5e-04 10 Max bHLH-ZIP 2.4e-07 8.6e-03 
5 Pbx Homeo 3.3e-32 2.1e-03 11 SRY HMG 1.8e-04 8.8e-03 
6 Sox-5 HMG 1.5e-18 4.1e-03      

Table 1: Significant TFBS detected in genes down-regulated by treatment with the inhibitor (p-values less than 
0.01 for both the z-score and Fisher measures). 
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Alignments 

 
Yuri Kapustin1;  Alexander Souvorov,  Tatiana Tatusova2 
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programming 
 

1 Introduction.  
 
As the number of available mRNA and EST sequences continues to grow, ability to accurately 
determine gene structure based on comparison with spliced sequences becomes a corner stone in 
eukaryotic genome annotation. Alignments with spliced sequences provide the most objective 
criteria for building gene models. 
 
Although several programs have been developed in recent years aiming at the same goal, there is 
still a demand for a tool that would be computationally effective, comprehensive and accurate. To 
address this challenge, we developed a program called Splign utilizing a hybrid approach, where 
specialized global alignment procedures are applied locally to parts of sequences selected with 
Blast. 
 

 
2 Methods.  
 
At the core of the method is a modification of the Needleman-Wunsch algorithm that specifically 
accounts for conventional splice signals and imposes limits on lengths of introns. To facilitate 
proper handling of cases when sequencing errors affect splice signals, dynamic programming 
recurrences maintain scores associated with different levels of damage to every splice signal. 
 
Before applying accurate, but costly dynamic programming procedure, the spliced sequence is 
aligned with Blast against its genomic counterparts to localize candidate locations on the genomic 
sequence. At this step, a procedure is used which based on the analysis of mRNA coverage by hits 
coming from different locations. After the candidate locations have been established, they are 
further refined with the dynamic programming algorithms limited to those regions that were missed 
or ambiguously aligned by Blast. 

 
3 Comparisons.  
 
In a series of comparisons performed over a set of mRNA sequences from human chromosomes 7 
and 22, Splign has been compared to Sim4, Est_Genome and Spidey. Initial set of mRNA 
sequences was selected so that all the methods under comparison generated exactly the same 
models on it. Then random mutations were introduced to either mRNA, Genomic or to both 
sequences. For every mutation level, Splign has demonstrated the best accuracy and error tolerance 
running within the same time bounds as the other programs. 
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In silico studies of the transcriptional regulation of
the genes coding for the novel IL28A, IL28B, and
IL29 protein family: A computational screening

approach applicable on a genomic scale.

William Krivan,1 Brian Fox,2 Emily Cooper,2 Teresa Gilbert,2 Frank
Grant,2 Betty Haldeman,2 Katherine Henderson,2 Wayne Kindsvogel,2

Kevin Klucher,2 Gary McKnight,2 Patrick O’Hara,2 Scott Presnell,2

Monica Tackett,2 David Taft,2 Paul Sheppard2

Keywords: interleukins, interferons, transcriptional regulation, phylogenetic footprinting

The novel IL28A, IL28B, and IL29 protein family consists of three non-allelic human
proteins, and homologous mouse proteins, which are distantly related to interferons and
IL-10 [1]. We use this protein family to illustrate an approach to the computational identifi-
cation and characterization of putative transcriptional regulatory regions that consists of a
combination of available and novel techniques (see [2] for a review) that can be applied on
a genomic scale.

Insights into the regulatory mechanisms of the novel IL28A,B and IL29 protein family
may be gained from comparisons of their potential regulatory regions with the regulatory
regions of characterized cytokines such as IFN-alpha, beta, and gamma. In metazoans,
however, it is in general not feasible to study co-regulation of paralogous genes by simply
performing alignments of the upstream genomic sequences, an approach that has been suc-
cessfully pursued for yeast and bacteria. Comparisons of potential regulatory regions must
reveal subtle similarities such as individual transcription factor binding sites. However, the
low binding specificity of transcription factors results in a high rate of false predictions in the
computational analysis of genes from metazoan species. The number of predicted sites can
be reduced by about one order of magnitude to a set more likely to have sequence-specific
functions by means of phylogenetic footprinting, a conservation-based filter based on the bi-
ological observation that regulatory regions are often more highly conserved between species
than other non-coding regions [3]. Another technique that can be used for the selection of
presumably functional motifs is motivated by the observation that groups of transcription
factors rather than single factors are required for biologically functional regulatory regions
and is based on the hypothesis that statistical significance of clusters of sites is correlated
with biological function [4, 5].

We illustrate the combined application of these techniques for the characterization of
putative regulatory regions of IL28A,B and IL29. We also present results from genomic
screens using a liver-specific model [6] and a model for immune-related gene function [7].
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4:63–68.

[2] Wasserman, W.W. and Krivan, W. 2003. In silico identification of metazoan transcriptional
regulatory regions. Naturwissenschaften 90:156-166.

1ZymoGenetics, Inc. 1201 Eastlake Ave. East, Seattle, WA 98102, USA. E-mail: krivan@zgi.com
2ZymoGenetics, Inc. 1201 Eastlake Ave. East, Seattle, WA 98102, USA.

Dana Jermanis
Recognition of Genes and Regulatory Elements 

Dana Jermanis

Dana Jermanis
472

Dana Jermanis
K12.



[3] Wasserman, W.W. et al. 2000. Human-mouse genome comparisons to locate regulatory sites.
Nat Genet. 26:225-228.

[4] Wagner, A. 1999. Genes regulated cooperatively by one or more transcription factors and their
identification in whole eukaryotic genomes. Bioinformatics 15:776–784.

[5] Frith, M.C., Li, M.C. and Weng, Z. 2003. Cluster-Buster: Finding dense clusters of motifs in
DNA sequences. Nucleic Acids Res. 31:3666-3668.

[6] Krivan, W. and Wasserman, W.W. 2001. A predictive model for regulatory sequences directing
liver-specific transcription. Genome Res. 11:1559-1566.

[7] Liu, R., McEachin, R.C. and States, D.J. 2003. Computationally identifying novel NF-κB-
regulated immune genes in the human genome. Genome Res. 13:654-661.

Dana Jermanis
Recognition of Genes and Regulatory Elements 

Dana Jermanis

Dana Jermanis
473



 
 

Gene modeling using cDNA or amino acid to genomic 
sequence alignments 

 
Roland Luethy1 

 
Keywords: gene model, splice sites, exon detection 
 

1 Introduction 
 
The availability of large sequence databases and completed genome sequences have made the 
mapping of cDNA or protein sequences onto genomic sequences an important genomics analysis 
technique [4, 7, 2, 1]. Knowledge of the exact location of the exons is necessary to design probes to be 
used for the detection of polymorphism within a specific exon. At the same time the locations of 
noncoding regions is important to know for studying regulatory processes. New genes and their exon 
structure can be predicted by matching the sequences of homologous proteins from other species onto 
a new genome [2, 1]. Another aspect of gene-modeling is the search for alternative splice forms of a 
gene. Alternative splicing is thought to be a way to expand the gene repertoire and the alternative 
splice forms of a gene might have different or attenuated functions. Here we describe a software tool 
to find the exons and introns of a gene and to construct a gene model with correct splice sites. This is 
achieved by aligning a cDNA or amino acid sequence to a genomic DNA sequence using a double 
affine Smith-Waterman algorithm with the second gap extension penalty set to 0. This allows long 
gaps to span over the introns. These intron-spanning gaps are expected to start and end close to, but 
not exactly at the appropriate splice donor and acceptor sites. Therefore the alignments are modified 
such that intron spanning gaps start and end at canonical splice sequence motifs. 

 
2 Methods and Results  
 
   A software tool called GeneDetective was developed that uses the following four steps to build 
correctly spliced gene models: 

1. a database search to find the best matching sequences using Tera-BLAST [6].  
2. select a region of the genomic sequence around the initial matches. 
3. re-align the genomic sequence region from step 2 with the cDNA or amino acid 

sequences using a variant of the Smith-Waterman algorithm [5], where the gap 
extension penalty drops to zero after 20 extension steps. This allows for long gaps 
that span over the intronic regions. In the case of protein to genomic sequence 
alignments the occurrence of frameshifts is also allowed. 

4. the alignments from the previous step are inspected for occurrences of matching 
GT..AG or CT..AC splice donor-acceptor sites in the neighborhoods of starts and 
ends of long gaps. If such sites are found, the corresponding gaps are adjusted to 
start and end at the splice motifs. 

 
A test dataset was derived from a set of 178 genomic sequences and annotated exons from [3]. For 
testing using cDNA sequences only the 138 sequences with more than one exon were used. Exons 
were considered correct when they started and ended at the correct splice sites. The first exon was 
considered correct when the end was correct and vise versa the last exon was counted as correct 
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when it began at the correct site. With these criteria all 832 exons were correctly recovered using 
the method described above.  
For testing with protein sequences only 127 sequences with the coding regions located on more 
than one exon were used. Again to be considered correct an exon had to start and end at the correct 
splice sites. The first exon was considered correct when it started at the translation initiation site 
and the last exon was correct when it ended at the stop codon. Using GeneDetective it was possible 
to get the completely correct gene model for 117 genes and 783 out of 803 total exons were found. 
The following table compares the results obtained by GeneDetective with GeneWise [1]: 
 

 Correct  
gene models 

Correct  
exons 

Predicted 
exons 

Specificity Sensitivity 

GeneDetective 117 783 810 0.97 0.98 
GeneWise 103 752 795 0.97 0.94 
Annotated 127 803    

 
Table 1: Comparison of GeneDetective and GeneWise. Correct gene models: the number of gene models 

where all exons were correctly found; correct exons: exons that had correct start and ends as annotated;  
Specificity = correct exons/predictged exons; Sensitivity = correct exons/expected exons  

 
The missing exons were all of the kind where three or less amino acids were encoded on the first or 
last exons and the alignment was therefore missing the first or last exon. 
 
In order to find alternative splice forms a variant of GeneDetective uses a genomic sequence to 
search an EST or protein sequence database. The matching sequences are pairwise aligned to the 
genomic sequence as described in methods. The resulting pairwise alignments are then all 
consolidated into a multiple sequence alignment where the genomic sequence serves as the 
anchoring sequence. The multiple sequence alignment can then be inspected for alternative exons. 

 
 
3 Conclusions 

 
GeneDetective provides a solution to find exons in genomic sequences by aligning cDNA or 
protein sequences of the genomic sequence. It can be used to derive a gene model or to find 
alternative splice forms of a gene. 
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Detecting Functional Modules of Transcription

Factor Binding Sites in the Human Genome

Thomas Manke, Christoph Dieterich and Martin Vingron 1

Keywords: gene regulation, regulatory modules, transcription factor network

1 Introduction.

Understanding the flexible and robust response of living cells to diverse environmental condi-
tion has become a major challenge in functional genomics. The identification of transcription
factor binding sites (TFBS) and regulatory DNA elements presents only a first step into this
direction. It is often thought that complex regulatory control is achieved due to synergistic
action of transcription factor modules, which regulate gene modules with specific function.

Here we report on an in-silico approach to find putative modules of human transcription
factors and their regulated genes. Our work is based on the identification of known binding
motifs for about 400 human transcription factors (TF) in ≈ 12.000 conserved upstream
regions Below we describe a comparison of our binding data with available experimental
data, the extraction of significant and functional TF associations, and a first analysis of the
human TF network.

2 Validating in-silico Binding Data

The identification of evolutionary conserved binding sites for the human genome has been re-
ported previously in ([Dieterich et al., 2002]). We took a list of TF motifs from the TRANS-
FAC database [Matys et al., 2003] and exhaustively searched an annotated collection of con-
served sequence elements between human and mouse. In order to compare our in-silico

predictions with biological data we chose as reference the experiment by [Ren et al., 2002],
where the authors studied the binding of E2F to the selected promoter regions. Using only
exact matches to known binding patterns, our search identifies 240 E2F binding sites, where
Ren et al. find only 38. This indicates a large false discovery rate and motivates the search
for biological more meaningful TF modules. However, already at this point, we are encour-
aged by a highly significant overlap of 26 binding sites (p = 6.3 × 10−8). We also observe a
functional enrichment of the putatively regulated genes in GO-categories for DNA replication
and developmental processes.

3 Transcription Factor Associations

We observed functional enrichment also for several other TFs, but our focus is on higher
TF-modules. The simplest approach to extracting higher TF modules is to count the pair
frequency and score it with respect to an expected random distribution. The resulting rank
list of TF-pairs is represented as a threshold graph, in which synergistic TF-pairs often
appear to form higher clusters.

To extract biclusters of TFs and genes more directly from the data, we model the binding
information as a bipartite graph and apply a greedy biclustering algorithm as originally

1Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, D-14195 Berlin, Germany.
E-mail: manke@molgen.mpg.de
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Figure 1: This plot highlights those factors of the TF-network with increased regula-
tory power (e.g. SMAD-4) and those whose genes are themselves under strict control
(e.g c-Rel). The axis correspond to suitably normalized in- and out-degrees.

suggested for microarray data by Tanay et al ([Tanay et al., 2002]). While the bicluster
weights can be used to rank them according to their topological relevance, we processed the
high-ranking clusters further, and screened their gene sets for biological relevance against
different GO-categories. Since the assignment of functional categories is often somewhat
arbitrary we decided to focus on categories with 50-100 member genes - children of a given
category are automatically assigned the parental category. We refer to this binned sets as
balanced categories. Our analysis yields a number of meaningful modules (sharing up to
10 TF), elements of which have previously been implicated in common biological processes.
Other modules must remain speculative, and should be validated by further analysis.

4 Transcription Factor Network

Here we study direct genetic interactions of transcription factors as they bind to promoter
regions of other TFs. In reality such cascades may be mediated by other proteins, but in the
absence of large-scale interaction data we focus only on this simplest element of a regulatory
circuit. Based on our binding data we identified a number of transcription factors with high
regulatory power (regulating many other TFs) and those which are themselves under strict
regulatory control (regulated by many). These results can be summarized conveniently in a
power-control plot as shown in Figure 1.
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SHADOWER: A generalized hidden Markov phylogeny for
multiple-sequence functional annotation

Jon D. McAuliffe, 1 Lior Pachter, 2 Michael I. Jordan1, 3
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The prediction of functional regions in genomic sequences has traditionally been based on the iden-
tification of features associated with genes or regulatory regions. Comparison of homologous genomic
sequences, e.g. from a pair of species, facilitates such identification [1, 5]. This is because functional
regions tend to be conserved in sequences which have evolved from a common ancestor, whereas non-
functional regions are more likely to mutate.

One drawback of pairwise comparative approaches to gene prediction is that non-functional regions
are required to have diverged to a degree that enables statistical procedures to distinguish them from
biologically active regions. These methods are therefore not applicable to discovering features present
only at close evolutionary proximity, such as primate-specific genes. Thephylogenetic shadowing
principle of [2] circumvents this problem by seeking to identify conserved regions among multiple
closely-related organisms. This has numerous advantages: sequence alignment is straightforward, the
relevant phylogenetic tree is easy to infer, and identification of conserved regions is possible using
standard evolutionary models.

To provide a systematic computational methodology for annotating genomic sequences based on
the principle of phylogenetic shadowing, we have developed thegeneralized hidden Markov phylogeny
(GHMP). The GHMP is a probabilistic graphical model [4] that combines conservation-based con-
straints deriving from multiple genomic sequences with algorithmic ideas that have proven useful in
single-organism gene annotation systems. Our approach synthesizes generalized hidden Markov model
gene finders, evolutionary models of nucleotide substitution, and phylogenetic trees. Similar ideas have
been presented by [6] and [7]. Our extensions include generalized hidden Markov dynamics; a frame-
and phase-consistent dual-strand hidden state space, supporting single-exon, multi-exon, and incom-
plete gene prediction; GC isochore-specific parameters; deterministic constraints on repeats, gaps, and
in-frame stop codons; more complete splice site modeling; and an automated iterative procedure for
alignment and tree building. The annotation is obtained as the mosta posterioriprobable trajectory
through a hidden space of functional states; this trajectory is computed efficiently using algorithms for
graphical model inference. Figure 1 shows a subcomponent of the GHMP graphical model correspond-
ing to an aligned forward-strand internal exon.

To limit the number of sequenced organisms required for functional annotation, we have also devel-
oped a methodology for species subset selection. The method chooses subsets according to a maximin
criterion on the weight of subtrees within the overall phylogenetic tree relating the species. Theory and
efficient algorithms for thismaximal Steiner subtreeapproach will be described at the conference.

We have implementedSHADOWER, a gene prediction system based on the GHMP. Table 1 shows
that, by exploiting the additional constraints from multiple-species conservation,SHADOWER outper-
forms existingab initio methods on a small dataset of single exons from five separate gene regions,
across 13 primates. The data were originally reported by [2]. In addition, an analysis using species sub-
sets of various sizes, each chosen by the maximal Steiner subtree criterion, revealed thatSHADOWER

needs only five of the available 13 primates to attain the performance reported in Table 1.

1Department of Statistics, University of California, 367 Evans Hall, Berkeley, CA 94720.
E-mail: {jon,jordan}@stat.berkeley.edu

2Department of Mathematics, University of California, 970 Evans Hall, Berkeley, CA 94720.
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Figure 1: An excerpt of the GHMP graph-
ical model corresponding to an aligned inter-
nal exon on the forward strand. The hidden
chain of functional states runs along the top.
Depicted underneath is a phylogenetic tree of
nucleotides, both observed (shaded) and unob-
served (unshaded). The bounding box (plate)
around the phylogenetic tree denotes duplica-
tion, Dk times. Each copy of the tree corre-
sponds to an alignment column, which popu-
lates the tree’s leaves.Dk too is random, al-
lowing the length of aligned exons to follow
an arbitrary distribution (thusgeneralizedhid-
den Markov phylogeny). The ovals labeled
as splice sites are not part of the language of
graphical models; they appear here to reduce
visual clutter.

Exon Exon
Nucl.(%) Partial Exact
Sn Sp Sn Sp Sn Sp

GENSCAN 44.7 34.0 2/5 2/3 1/5 1/3
MZEF 37.4 63.2 3/5 3/4 1/5 1/4
SHADOWER 100.0 89.6 5/5 5/6 4/5 4/6
SHADOWERb 42.7 42.2 2/5 2/5 1/5 1/5
SLAM 80.2 100.0 3/5 3/3 3/5 3/3

Table 1: Sensitivity and specificity of various gene finders on the primate exon datasets. Results are shown at
the nucleotide, partial exon (i.e. inexact boundaries), and exact exon level.GENSCAN [3] predicts complete or
incomplete genes, using only the human sequence data.MZEF [8] predicts individual internal exons (without frame
or phase consistency), using only the human sequence data.SHADOWER employs the GHMP to analyze multiple
orthologous sequences.SHADOWERb excludes exon boundary models, to exemplify a more limited approach based
on multiple-species conservation.SLAM [1] uses human-mouse homology in a generalized pair HMM.
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Longer sequence surrounding motif distinguishes

regulatory elements from false positives

Emily Rocke, 1 James Thomas, 2

Keywords: motif, regulatory element, chemosensory, srh gene family, elegans

1 Overview.

The DNA sequence CASSTG3 is overrepresented upstream of srh-family chemosensory genes
in the nematode C. elegans. It very likely represents a regulatory binding site of interest to
nematode chemosensation, although its regulatory effects and ligands are unknown.[3]

In this abstract, we make the observation that the CASSTG motif is embedded in a much
longer (upwards of 40 nucleotides, although we look at only 26), stochastically conserved
motif which is not palindromic. Computationally, the conservation of this longer motif allows
instances of CASSTG as a regulatory motif to be distinguished from the many expected
random instances of CASSTG in the genome. Because the longer motif is loosely conserved,
the misidentification rate is high, but the approach is useful in identifying a number of very
likely motif candidates. In this abstract we discuss the effectiveness of even a very simple
algorithm which uses this additional information.

2 Introduction.

DNA regulatory elements are short DNA sequences (usually 6-20 nucleotides), typically
appearing near or in the genes they regulate, that have evolved to be favorable binding sites
for specific proteins or RNA molecules. The same type of protein or RNA molecule may bind
to similar sites near several related genes; such patterns of similar sites, known as motifs,
can often be detected computationally.

Any particular short DNA sequence is expected to occur many times in a genome by
chance alone. For example, a given 6-nucleotide sequence is expected to occur about every
4,000 nucleotides, and so many thousands or even millions of times in a typical genome. These
chance occurrences of a short pattern may overwhelm the number of legitimate binding sites,
causing a difficult identification problem. One solution is to look at clusters of two or more
nearby motif instances[1, 2], but this only works if such clusters exist in the data.

3 Method.

The nematode C. elegans has a large family of about a thousand genes that encode related 7-
transmembrane proteins, presumed to act as chemoreceptors[5]. The large srh gene family[4]
has approximately 200 genes and pseudogenes, of which 185 apparently active genes were
used as a data set. The 1Kb region preceding each gene was searched for exact instances of
CASSTG; 139 of the 185 regions had at least one occurrence of the motif, for 240 total motif
occurrences, of which the 115 that fell closest to the genes were used to construct a weight
matrix of 10 nucleotides on each side of the small motif.

1Genome Sciences Dept., University of Washington, Seattle. E-mail: ecrocke@gs.washington.edu
2Genome Sciences Dept., University of Washington, Seattle. E-mail: jht@u.washington.edu
3Here S, or strong, means that either nucleotide C or G may appear in this position
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C. elegans chromosome V, about 21.7 million bases, was scanned for matches to either
CACCTG or CAGGTG. 13,727 instances were found and sorted by the log likelihood score of
the 20 surrounding nucleotides belonging to the motif weight matrix versus the background
model. The 24 top-scoring instances were selected using a predetermined cutoff score, and
each checked for plausibility using the Wormbase database (http://www.wormbase.org/). 9
of these top-scoring instances are recovered motifs from the original set, which are ignored
since they were used in constructing the motif weight matrix.

4 Results.

Of the remaining 15 highest-scoring motifs, four immediately showed strong indications of
being regulatory motifs. The other eleven can not yet be classified.

One interesting motif instance was juxtaposed with a gene that has been assigned to
the srz family of chemosensory genes, a cousin of the srh family with about 40 member
genes. This finding, while not conclusive, leads to a strong suspicion that the CASSTG
motif regulates the srz family as well. We are now collecting data on the upstream regions
of the srz family to test this hypothesis.

Two more high-scoring motif instances occur in front of srh-family pseudogenes, or in-
active gene copies. The strong preservation of the regulatory motif suggests that these are
very recent duplications or inactivations of active srh genes, which may be informative on
the evolution of this gene family.

The fourth interesting motif instance occurs in the genome directly after the srh gene
srh-120, and immediately before a nearly-perfect copy of srh-120. This copy does not appear
to be annotated as a gene or pseudogene in Wormbase or in other sources. It is difficult to
tell through computational means alone whether this gene is an inactive, very recent copy
of srh-120, or whether it is a new active srh gene discovered through this method.

5 Conclusions.

A simple algorithm for scoring the moderately-conserved surroundings of a small, well-
conserved motif allowed several new biologically interesting motif instances to be selected
out of an overwhelmingly large set of false positives. This approach may help understand
the elusive srh gene family, but the implications go beyond C. elegans biology. There is an
intriguing possibility that other apparently small regulatory motifs are embedded in large,
loosely conserved motifs. If this is often true, then computational methods of distinguish-
ing ”real” motif instances from false positives using surrounding sequence will become an
important toolset in the arsenal of computational techniques.
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Gnomon – a multi-step combined gene prediction 
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Gnomon uses a set of heuristics to find the maximal self-consistent set of corresponding transcript and protein alignment 
data to set the constraints for an HMM-based gene prediction. The goal is to ensure that if a biological expert is presented 
with the same data, they could not produce an obviously improved gene model. Using this set of heuristics Gnomon 
predicts the gene structure in genomic DNA sequences in a multi-step fashion.  
 
The program evaluates the coding propensity of the available transcript alignments and determines their most probable 
coding regions. A single set of non overlapping transcript alignments with better coding propensity is chosen. Then the 
best matching proteins for these transcript alignments are aligned back on the genomic DNA sequence.  
 
Gnomon makes the first pass of the prediction using the above transcript and protein alignments as the constraints. For the 
transcript alignments, the program makes sure that the chosen coding region is a part of a putative mRNA than can be 
extended on both sides of the predicted coding region. For the protein alignments, Gnomon checks that the predicted gene 
has every exon in the right frame as suggested by the protein alignment. Although in this case, the program is free to 
choose the splice sites and to introduce another exons between parts of the protein alignment.  
 
The genes that were built using the alignments from the above step are included in the final output. For the rest of the gene 
models, the best matching proteins are found and then aligned back on the genomic DNA sequence. These protein 
alignments are used in the second pass of the prediction for refining the models.  
 
While doing the alignment of the best matching proteins, Gnomon finds all cases where two exons of the protein alignment 
are within 50 bp and have different frames. Since the probability of such a short intron is extremely low, in all these cases 
the program introduces a frame shift in the genomic sequence allowing for combining the exons into a single one. In some 
cases protein alignments include a stop codon in the middle of the alignment. These stop codons are disregarded during the 
prediction and appear as premature stops in the model. Both the models with frame shifts and the models with premature 
stops are annotated as possible pseudo-genes in the Gnomon output.  

 
 

 

                                                 
1 National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 

Building 38A, 8600 Rockville Pike, Bethesda, MD 20894, USA. 
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Experimental tools to determine DNA binding sites of KRAB 
zinc finger proteins in their candidate target genes – a 
challenge in computational biology of transcriptional 

regulatory networks 
 
Peter Lorenz1, Sabine Dietmann1, Christian Sina1, Dirk Koczan1, Steffen Möller1 and 

Hans-Juergen Thiesen1, 2 
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1 Introduction.  
 

The ordered expression of genes in transcriptional networks is an important means of living organisms 
to control biological processes. Transcription factors play pivotal roles in such networks. C2H2 zinc 
finger proteins form one of the largest protein superfamilies in the human genome with more than 
1300 members according to INTERPRO (domain IPR007087). Typically, these proteins contain an 
array of multiple C2H2 domains that is thought to specify nucleic acid binding and also contribute to 
protein-protein interactions. One particularly interesting subclass of the C2H2 zinc finger proteins 
contains the Krueppel-associated box (KRAB; INTERPRO domain IPR001909; more than 400 human 
members listed) domain that confers potent transcriptional repression activity upon targetted 
promoters (Thiesen, 1990; Margolin et al., 1995). We have started to combine experimental strategies 
for the search of target genes with bioinformatic approaches to define target gene signatures and DNA 
binding motifs of KRAB zinc finger proteins. The challenges to define such signatures and motifs 
reside in the degenerate binding code of individual zinc fingers, the potential different binding site 
specificities in a multi-zinc finger array in different parts of the protein and the fact that KRAB-
mediated repression can also be elicited from remote positions with respect to the regulated gene. 
 
2 Materials and Methods.  
 
The target detection assay. (TDA; Thiesen and Bach, 1990) employed random 15mer double-stranded 
oligodeoxynucleotides and recombinant KRAB zinc finger proteins Kox1/ZNF10 (X52332) to enrich 
for DNA sequences with high binding affinity and to define respective binding matrices. A variation 
of this approach employed genomic fragments from a PAC clone containing C2H2 zinc finger genes 
instead of oligonucleotides. The impact of ectopic overexpression of KRAB zinc finger proteins on 
the global RNA expression profile of cultured human HeLa cells was recorded. Genes influenced in 
their transcriptional activity by this overexpression should contain direct targets of the KRAB zinc 
finger proteins as well as genes that are affected as secondary reactions, e.g. in gene networks. 
Antisense oligonucleotides were employed to downregulate intracellular expression of Kox1 in HeLa 
cells. Then concomitant changes in RNA expression profiles were monitored. Potential target genes 
should be to a certain extent relieved from Kox1-mediated repression and thus increase in their 
expression. Bioinformatics tools have been developed to evaluate and to combine the results of the 
experimental procedures. 

                                                 
1 Institute of Immunology, Proteome Center Rostock; www.pzr.uni-rostock.de;  
  University of Rostock, Schillingallee 70, D-18055 Rostock, Germany 
2 E-mail: hans-juergen.thiesen@med.uni-rostock.de 
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3 Results.  
 
Oligonucleotide sequences derived from the TDA selection were initially compared with each other to 
define DNA binding preferences of KRAB zinc finger proteins. In a second TDA approach, 
randomised oligonucleotides were replaced by a PAC clone encoding zinc finger gene sequences on 
human chromosome 10. Furthermore, zinc finger specific target genes were identified to be induced or 
repressed in HeLa cells with ectopically expressed zinc finger proteins. Finally, target genes were 
determined by KRAB zinc finger genes that had been inactivated by antisense-oligonucleotides. 
Sequence information of all four distinct approaches were taken to determine putative binding sites by 
making use of novel software tools. Affinity selection of recombinant Kox1 protein by the TDA 
resulted in 31 15mer oligonucleotide sequences that did not lead to a homogeneous consensus binding 
matrix. Since Kox1 contains nine functional C2H2 zinc fingers and each finger potentially contacts 3 
nucleotide residues, a panel of 15mers is not sufficient in length to cover all putative binding sites 
offered by Kox1. Thus, binding activities within the same protein are most likely competing for the 
oligonucleotides being selected leading to the inhomogeneity observed. Indeed, taking into account 
the binding frequencies to 3-6mer sequence patterns argued for specific sequence preferences that 
could be found as well in the genomic DNA sequences selected by the TDA. Following the 
downregulation of Kox1 gene expression by specific antisense oligonucleotides 81 out of 44928 
probed gene sets on Affymetrix microarrays were increased in their RNA levels. These genes 
constitute a Kox1 candidate target gene list in HeLa cells. Overexpression of Kox1 in HeLa cells did 
result in the increase of 32 and the decrease of 30 gene transcripts in their abundance. However, none 
of the genes were also found on the candidate target gene list after downregulation of Kox1 expression 
by the antisense approach. By applying sophisticated software tools the distribution of putative Kox1 
DNA binding sequences were evaluated within the genomic sequences of Kox1 candidate target 
genes. Seed combinations of the double-stranded oligonucleotides selected by KOX1 proteins led to 
the identification of sequence motives within the original PAC DNA. Finally, these motives could be 
determined in target genes detected by Affymetrix microarray analysis as well. 
 
4  Discussion. 

 
The usefulness of our strategy is based on the combination of in-vitro selected DNA binding 
sequences with target gene signatures in vivo that were the result of perturbed KRAB zinc finger 
gene expression employing bioinformatic tools. However, the quality and robustness of 
bioinformatic information has still to be validated and confirmed in experimental settings – a 
challenge for developing more sophisticated algorithms mimicking DNA-protein interactions of 
KRAB zinc finger genes. 
 
6  References and bibliography. 
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A Systematic Analysis of Stress Induced DNA Duplex Destabilization (SIDD) Sites in the E. coli 
Genome: Implications of SIDD Analysis for Promoter and Operon Prediction in Prokaryotes 

 
Huiquan Wang1 and Craig J. Benham2 

 
Keywords: SIDD, promoter, operon prediction, transcription regulation, DNA supercoiling 
 
Introduction 
 
DNA structure and topologically driven structural transitions have been suggested to play important roles 
in regulating gene expression (1).  Stress induced DNA duplex destabilization (SIDD) analysis exploits 
the known structural and energetic properties of DNA to predict the sites which are susceptible to become 
separated under superhelical stress (2, 3).  Experimental results show that this analysis is quantitatively 
accurate in predicting transcriptional regulatory regions, matrix/scaffold attachment sites and replication 
origins (4, 5).  Here we report a systematic analysis of the SIDD profile of the E. coli genome using a new 
algorithm specific for long genomic DNA sequences (6).   
 
Results 

1. Less than 7% of the E. coli genome has the propensity to be destabilized at the physiological 
superhelical densities (Figure 1). 

2. Sites with high destabilization potential are statistically significantly associated with divergent 
and tandem intergenic regions, but not with convergent intergenic regions, and they strongly 
avoid coding regions (Figure 2).   

3. More than 80% of the intergenic regions containing experimentally characterized promoters are 
found to overlap these SIDD sites (Figure 3).   

4. A large majority of SIDD sites overlap long tandem intergenic regions, suggesting a potential role 
of SIDD sites in defining operon boundaries (Figure 4).   

5. Strong SIDD sites are also found in the 5’ upstream regions of genes regulating stress responses 
in E. coli, suggesting a possible link between their locations, the degrees of their destabilization, 
and the functioning of these genes (Table 1). 

 

Figure 1.  The cumulated G(x) distribution, the 
number of base pairs destabilized below the 
specified value. 

Figure 2. Percentage of SIDD sites at each level 
overlapping intergenic regions in E. coli genome 

 
------------------------------------------------------------- 
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Figure 3: Percentage of DIV, TAN, CON, DTP and 
internal gene regions overlapping SIDD sites at each 
level in E. coli genome 

 
Figure 4.  Strong SIDD sites are located at the 
boundaries of the proU operon.  The genes are 
given above the graph and transcribe directly. 

 
Table I.   Global transcriptional regulators for stress responses with their 5’ upstream regions overlapping 
the highly destabilized SIDD sites  
Stress SIDD Gene Function 
Osmotic, nutrition 
starvation, cold 

0 rpoS Sigma S (sigma 38) factor of RNA polymerase, major sigma 
factor during stationary phase 

Same as above 2 gyrA DNA gyrease, subunit A, typeII topoisomerase 
Same as above 0 

0 
hupA 
hupB 

DNA-binding protein HU-alpha (HU-2), plays a role in DNA 
replication and in rpo translation 

Same as above 1 H-NS Transcriptional regulator, DNA-binding protein HLP-II, increases 
DNA thermal stability 

Same as above? 1 crp Transcriptional regulator, cyclic AMP receptor protein (cAMP-
binding family), interacts with RNAP 

Aerobic/anaerobic 0 fnr Transcriptional regulator of aerobic, anaerobic respiration, osmotic 
balance (cAMP-binding family) 

Aerobic/anaerobic 0 narX Sensory histidine kinase in two-component regulatory system with 
NarL, regulation of anaerobic respiration and fermentation, senses 
nitrate/nitrite 

Osmotic shock 0 ompR response regulator in two-component regulatory system with 
EnvZ, regulates ompF and ompC expression (OmpR family) 
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Blind Operon Finding in Genomes with Insufficient
Training Data

Ben Westover1, Jeremy Buhler1, Jeff Gordon2, and Justin Sonnenburg2

Keywords: operon finding, Bacteroides thetaiotaomicron, transcriptional regulation

1 Introduction.

Several methods have been presented for detecting operons in bacteria, but the majority
of these methods require using a training set of known operons to learn a model of what
operons look like. Examples include [5] and [1], which describe operon finders trained for E.
coli, and [4], which describes an operon finder trained for B. subtilis. We have developed a
system for detecting operons that does not rely on previous knowledge of operon organization
within a genome but instead bases its predictions on analytical criteria derived from simple
a priori assumptions about the properties of operons. We chose this approach to enable
reliable operon predictions in bacteria containing few well-characterized operons, in particu-
lar Bacteroides thetaiotaomicron (B. theta) [7], a prominent, yet relatively uncharacterized
member of the human gut microbiota.

2 Methods.

For each pair of adjacent, same-stranded genes in the input genome, our operon finder
computes the probability that the pair is co-transcribed. Our predictions make use of four
specific types of information: distance between adjacent ORFs, functional relatedness of gene
pairs, regulatory sites predicted in the intergenic space between pairs, and homologous gene
clusters occurring in related species. We represent each source of information as a random
variable X that can take on a number of discrete observable values {x1, x2, . . . , xn}. For
each of the four sources, we calculate Pr(O|Xi = xj), which represents the probability that
a pair of genes belong to the same operon given that information source i has the value xj .
We merge all information sources to make a prediction using a naive Bayesian classifier.

A key feature of our software is the way a priori assumptions and statistical techniques
are used to generate operon predictions in the absence of a training set. We use the assump-
tions and a variation of statistical methods introduced in work by Ermolaeva et al [3].

Another important feature of our approach is our use of homologous clusters. We have
developed a novel technique for detecting and scoring clusters of genes occurring close to one
another in many genomes. In a fashion similar to [2] we use the hypergeometric distribution
to derive p-values for the clusters we detect.

3 Results.

In order to assess the performance of our blind operon finder on a dataset of known operons,
we performed operon prediction for E. coli (Figure 1A) and compared our results against

1Dept. of Computer Science and Engineering, Washington University, One Brookings Drive, St.
Louis, Missouri 63130, USA. E-mail: {ben,jbuhler}@cse.wustl.edu

2Dept. of Molecular Biology and Pharmacology, Washington University School
of Medicine, 660 South Euclid Avenue St. Louis, Missouri 63110, USA. Email:
{jgordon,jsonnenb}@molecool.wustl.edu
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Figure 1: (A) ROC curve for operon prediction in E. coli, using RegulonDB as the ref-
erence dataset. (B) ROC curve for operon prediction in B. theta using gene expression
data to generate the reference dataset.

the known operons contained in RegulonDB [6]. We used 914 gene pairs known to belong to
the same operon and 257 same-stranded gene pairs known not to belong to the same operon.

To evaluate our software’s performance in B. theta (Figure 1B), we used a set of time-
course gene expression experiments to generate a set of putative predictions. Pairs of adjacent
genes with strongly correlated expression were labeled as likely members of the same operon.
We used 911 putative pairs of the same operon and 129 same-stranded putative pairs not of
the same operon.

Our software correctly classifies around 75% of adjacent gene pairs at a false positive
rate of 20%. We are performing experiments to validate some of our predictions in B. theta.
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Bayesian Variable Selection to Identify

Quantitative Trait Loci

Dabao Zhang∗, Min Zhang†, Kristi L. Montooth‡,

Martin T. Wells§, Carlos Bustamante¶, Andrew G. Clark‖

January 1, 2004

Mutiple quantitative trait loci (QTL) regulating a specific phenotype can
be approximately identified by using available genotypic markers. Classical
approaches are usually developed using multivariate regression models with trait
values regressed on marker genotypes. However, missing values of either trait
values or marker genotypes and large number of marker genotypes relative to
sample size challenge the identification of QTL using classical approaches based
on multivariate regression models. We will take advantage of Bayesian inference
on small datasets to develop a Bayesian variable selection approach to identify
QTL, which is built up on a more natural Bayesian framework than the Bayesian
methods in literatures.
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The Estimations of Motif Effects with Longitudinal Mixed Model in Temporal 

Gene Expression Analysis 

Song Jiuzhou, Jaime Bjarnason and Michael G.  Surette 
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1 Introduction 

The identification and testing of relevant transcription factor (TF) binding sites is one of the most important and 
greatest challenges in a functional genomics era. Traditionally, TF binding sites have been characterized by 
different experimental methods, a very slow and inefficient process. Although the similarity comparisons and 
multiple alignments of upstream sequences can find many significant repeats or conserved sequences upstream 
of the coding region, the statistically significant meaning of the putative motifs is based only on the frequencies 
of the nucleotides or patterns against the genome species[1-5]. It doesn’t indicate the probability that the 
putative motifs are TF binding sites or that they have biological relevance for gene expression.  Real TF binding 
sites must be confirmed by wet-bench genetic analysis. How to screen the motif candidates is becoming a 
critical issue. The motif effect indicates the regulatory extent of the motif for a given gene expression, so the 
estimation of the individual and combinational motif effects on gene expression will provide alternative support 
for the motif candidates, and improve the quality and efficiency of the screening process.  We propose a 
longitudinal mixed model to estimate motif effects in temporal gene expression analysis,  
 
2 Material and Methods 

In a temporal gene expression experiment of iron responsive genes in S. typhimurium,[6] we clustered genes on 
the basis of their expression profile across four conditions and time points via cluster analysis. We adopted the 
Mismatch Tree Algorithm (MITRA) approach to obtain composite regulatory patterns [7]. We then assume that 

ijY  satisfies 
ijijiijijij ttY εβββ +++= 2

321
, where in  is the number of longitudinal measurements available for the ith  

gene, and where all error components ijε  are assumed to be independently normally distribution with mean 

zero and variance 2σ , iY  equals )',...,,( 21 iinii YYY , iε  equals )',...,,( 21 iinii εεε , iβ equals to )',...,,( 321 iii βββ , and 

iZ is the )3( ×in  matrix, the columns of which contain only ones, all time points ijt and all squared time points 
2
ijt . Ones have believed that OLSi,β

)  are good approximations to the real subject-specific regression parameters 

iβ , that is iii bB +=β . Then a linear mixed-effects model can be defined as any model which satisfies mixed 
model equations 

iiiii bZXY εβ ++= . 
 
3 Result and Analysis 

We found three motif candidates in the analysis, A1: GATAATAATTATT, A2: TAATGATAATCATT and 
A3: ATAATTATTATCA, B: GCGT_ACGC and motif C: GCCGGA. In the mixed model analysis, the Table 1 
shows the significant tests of the fixed effects, the motif candidates and the interactions among motifs, and time 
and quadratic time are very significant. Then the maximum likelihood (ML) and restricted maximum likelihood 
(REML) are used to estimating for all parameters in the longitudinal mixed model as shown in Table 2. The 
motif candidates A1, A2 and A3 are similar to the Fur binding site, GATAATGATAATCATTATC [8].  The  
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estimates for the parameters shows that significant effects seem to be present among the motif 
candidates A and B, although they have opposite effects. The motif candidate C has the weakest 
effects (0.0438). There are significant positive interactions between motif candidate B and time  
effects, and weaker interactions between motifs A and C and time effects. The table also indicates that 
the interaction of all motif candidates and quadratic time effects are negative and weak. Those results 
suggest that motif effects are strongly influenced by gene expression level over time. The results 
indicate the evaluation of motif candidates is possible via longitudinal analysis. 
 
 Table 1 Type 3 tests of fixed effects 
Effects DF Den DF F value Pr>F 

Motif 3 262 9.99 <0.0001 
Time*Motif 3 262 23.67 <0.0001 

2Time *Motif 3 262 18.00 <0.0001 
         
Table 2. The estimations of main effects and interaction of the motif candidates 
Effects ML(s.e.) REML(s.e.) 
Motif A 0.3278(0.0854) 0.3278(0.0869) 
Motif B -0.3569(0.0887) -0.3569(0.0901) 
Motif C 0.0438(0.1482) 0.0438(0.1507) 
Time * Motif A 0.0636(0.0436) 0.0636(0.0443) 
Time * Motif B 0.2965(0.0452) 0.2965(0.0460) 
Time * Motif C 0.6006(0.1129) 0.6006(0.1148) 

2Time * Motif A -0.0036(0.0047) -0.0036(0.0048) 
2Time * Motif B -0.0166(0.0049) -0.0166(0.0050) 
2Time * Motif C -0.1222(0.0185) -0.1222(0.0188) 
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Analysis of Ataxin-2 and other Lsm domain proteins 
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Abstract 
 
Sm and Sm-like proteins of the RNA-binding Lsm (Like Sm) domain family are generally involved 
in important processes of RNA metabolism including RNA modification, splicing, and degradation 
[1]. Lsm proteins can occur in large complexes and form cyclic hetero- or homo-oligomers [2]. 
While recent research has focused on the function and structure of small Sm and Sm-like protein 
(not more than about 150 residues), little is known about Lsm domain proteins with additional 
domains and sequence motifs.  
 
Two very long Lsm domain proteins with both N- and C-terminal sequence extensions are the 
human ataxin-2 (1312 residues) of unknown cellular function and its yeast homolog PBP1 (PAB1-
binding protein 1) [3,4]. A polyglutamine expansion in the N-terminal region of ataxin-2 is 
causative of the inherited neurodegenerative disorder spinocerebellar ataxia type 2 (SCA2) [5]. This 
disorder belongs to a heterogeneous group of trinucleotide repeat disorders including Huntington’s 
disease and several other spinocerebellar ataxia types such as SCA1, SCA3, and SCA7 [6].  
 
The C-terminal regions of the homologs ataxin-2 and PBP1 contain binding sites for A2BP (ataxin-
2 binding protein) of unknown function or PABP (poly(A)-binding protein) [7,8], respectively. 
Both A2BP and PABP possess N-terminal RNA recognition motifs (RRMs) and may be 
evolutionarily and functionally related. The C-terminal tail of PBP1 has been observed in 
experiment to bind the C-terminal PABC domain of PABP and to regulate polyadenylation in 
mRNA splicing [4]. The absence of PBP1 leads to incomplete poly(A) tails, although the 3’-end of 
pre-mRNA is properly cleaved. 
 
In order to obtain functional hypotheses on ataxin-2, we performed a comprehensive bioinformatics 
analysis on the structure and function of ataxin-2 and on the yeast interaction network of PBP1. 
Further experiments including a yeast-2-hybrid screen with ataxin-2 support our predictions of an 
important role of ataxin-2 in RNA metabolism. We also found at least five novel and evolutionarily 
conserved Lsm domain proteins with as yet uncharacterized C-terminal tails. Based on yeast 
interaction data, we could assign putative functions such as RNA methylation and mRNA 
degradation to some of the new Lsm domain proteins. 
 
Our project web site provides further information: http://www.mpi-sb.mpg.de/~mario/medbioinf/ 
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1 Introduction

In this work we present PairFold, an algorithm for secondary structure prediction of pairs of

RNA molecules. Given two RNA sequences S1 and S2, PairFold finds the pseudoknot-free
secondary structure R into which S1 and S2 can fold, such that R has the smallest free
energy change under a standard thermodynamic model. The solution R may include base
pairing between the two molecules, as well as base pairing within each molecule. PairFold is
available online at http://www.RNAsoft.ca [1]. A simple extension of Zuker and Stiegler’s
algorithm [8], PairFold is currently being used by several research groups for pre-mRNA
splicing, DNA word design and thermal statistics of RNA oligomers. Other motivations
include predicting interactions between (1) a ribozyme and an RNA target [2, 4, 5, 6, 7];
(2) a probe or primer and a target RNA molecule [7]; (3) pairs of strands in biomolecular
nanostructures; and (4) molecular tags in a polymer library. When testing our algorithm on
pseudoknot-free RNA duplexes shorter than 120 nucleotides, we correctly predict approx-
imately 90% of the base pairs on average. Our predictions are limited to pseudoknot-free
structures, and do not take into consideration non-canonical base pairs or other tertiary
interactions, all these being open questions for future work.

2 Algorithm

PairFold algorithm is a simple extension of Zuker and Steigler’s algorithm [8]. Consider that
we concatenate the two input sequences, S1 and S2, yielding S1S2, and that we denote the
linkage location with b (b equals the last position in S1). With some modifications, we can
apply Zuker and Stiegler’s algorithm [8] on S1S2. The possible structures are the same as
for a single molecule (stacked pairs, hairpin loops, internal loops, multi-loops and external
loops [3]), with the exception that they can be “broken” by the molecular link b between
them. In these situations, the free energy is calculated in a way similar to the calculation of
external loops, and an intermolecular initiation penalty is added. The recurrences underlying
the algorithm are more complex than those of Zuker and Steigler [8], especially for the cases
of “broken” multi-loops. However, the time and space complexities remain O(n3) and O(n2),
respectively, where n is the sum of the input sequences lengths.

3 Results

Here we report on the accuracy of our method, when tested on several experimentally deter-
mined structures of RNA duplexes drawn from the literature. First, we evaluated PairFold

on a combinatorial library of ribozymes, whose cleavage ability has been experimentally
tested on a highly structured viral mRNA [7]. In this experiment [7], the library of ri-
bozymes has been targeted to oligos, as well as to sequences of length 1.1 kb, and 15 of the
targets have been cleaved. PairFold correctly predicted on average 97.8% of the base pairs

1Department of Computer Science, University of British Columbia, Vancouver, B.C., V6T 1Z4,
Canada. E-mail: {andrones,condon}@cs.ubc.ca
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when the oligos are targeted, while only four out of the 15 long targets have been predicted
to fold into the typical structure. These results show that PairFold performs well on short
sequences, but as the sequence length increases, the accuracy goes down.

Second, we report prediction accuracy results on a set of eight ribozyme-target duplexes
drawn from the literature, where no structure has pseudokots, but some have non-canonical
base pairs. Table 1 gives the references, sequence lengths, fraction of non-canonical base
pairs, the number of correctly predicted base pairs out of the total number of base pairs, an
accuracy measurement showing the fraction of base pairs that are correctly predicted, and
the predicted free energy. PairFold gives 90% prediction accuracy on average. Note that
only 72% of the base pairs of the third duplex are predicted correctly, and it is evident this
is directly correlated to the 22% of non-canonical base pairs contained in this structure.

Reference Len(S1) Len(S2) Fr(NC) #bp/tbp Accuracy ∆G(kcal/mol)
[5] Fig. 1d 14 55 0.00 15/18 0.83 -16.30
[5] Fig. 1c 14 65 0.00 19/19 1.00 -21.10
[6] Fig. 2 16 36 0.00 18/19 0.95 -22.60
[6] Fig. 3 17 38 0.06 17/18 0.94 -20.00
[4] Fig. 1b 21 92 0.22 33/46 0.72 -58.70
[2] Fig. 1 left 25 46 0.06 28/31 0.90 -45.80
[5] Fig. 1e 34 120 0.00 40/43 0.93 -58.20
[2] Fig. 1 right 70 100 0.03 63/69 0.91 -142.10

Table 1: Measurement of PairFold accuracy on a set of mRNA target - ribozyme pairs. About 90%

of the base pairs are predicted correctly for these structures.

In conclusion, PairFold is a useful tool that can be used to predict secondary structures
of RNA duplexes. It gives good accuracy for short pseudoknot-free strands. Future work
includes improving our method to better predict more complex RNA structures.
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improves the comprehensive functional classification and
identification of prokaryotic transmembrane proteins

Masafumi Arai1,2,*, Kosuke Okumura1, Masanobu Satake2,3, Toshio Shimizu1

Keywords: transmembrane protein, transmembrane topology, functional classification and
identification, prokaryotic species, genome-wide analysis

1 Introduction.

Many of proteins have not yet been annotated, with about one half of all proteome sequences being
classified as functionally “putative” or “unknown” at best [1].  Such is the case, in particular, for
transmembrane (TM) proteins, which account for as much as 20-30% of proteomes in individual
species [2].  This is partly because TM protein sequences of known function are much less compared
with soluble proteins.  Recent studies, however, revealed that TM protein functions are closely
correlated to their TM topologies, i.e., the number of TM segments (TMSs), positions of TMSs and N-
tail location [3].  In this study, we propose a new method for the comprehensive classification and
identification of TM protein functions by a clustering approach based on TM topology similarity.
Prior to performing the clustering, we first investigate the current status of the functional identification
of TM proteins based on sequence similarity.

2 Materials and Methods.

Out of 239,359 protein sequences of 87 sequenced prokaryotic (72 bacterial and 15 archaean) species
in the GenBank database, 51,044 sequences were extracted as TM protein and their TM topologies (1-
12 TMSs) (~21%) were predicted, by using SOSUI [4] (TM protein sequence prediction, ≥98%
accuracy), DetecSig (signal peptide prediction and removal, 88% accuracy) [5] and ConPred (TM
topology prediction, 69.6% and 83.3% accuracies for the number of TMSs & TMS positions and N-
tail location, respectively) [6].  The procedures and the genome-wide analysis of TM topologies are
described in detail in our previous paper [2].

The obtained TM protein sequences were classified into three categories, i.e., “known”, “putative”
and “unknown”, according to the level of functional annotations in the SWISS-PROT database by
homology search and sequence similarity comparison (details not shown here).  Then, these annotated
sequences were clustered by the single-linkage method based on TM topology similarity between
sequences with the same number of TMSs.  The TM topology similarity between sequences 1 and 2,
S1, 2 is calculated as:

† 

S1, 2 (%) =100 ¥ min(l1, i,  l2, i)
i=1

n +1

Â / max(l1, i,  l2, i)
i=1

n +1

Â ,
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where, n, l1,i and l2,i are the number of TMSs, the length of the i-th loop in sequences 1 and 2,
respectively, and min(l1,i, l2,i) and max(l1,i, l2,i) are the lengths of the shorter and longer loops in l1,i and
l2,i, respectively.  The thresholds of TM topology similarity were determined so that the sequences
included in the representative clusters (with ≥10 sequences) would occupy over 50% out of all the
sequences.

3 Results and Discussion.

Using our clustering approach, the functionally classified and identified TM proteome sequences was
increased from 24.3% to 60.9%.  Almost half of them used to be “unknown” sequences before
applying the clustering method.  Additional analysis of the TM topologies in the clusters provided
important information regarding TM protein functions that cannot be ascertained from sequence
similarity.

Table 1: The results of the functional classification and identification of TM proteins (1-12 TMSs) from the 87
prokaryotic species based on sequence similarity and TM topology similarity.

Based on sequence similarity Based on TM topology similarity
Functionally annotated sequences In the representative clusters (with ≥10 sequences)

Functionally annotated sequences
TMSs Total

sequences
“Known” “Putative” “Unknown”

Identified1

Threshold
TM

topology
similarity

Clusters Sequences
“Known” “Putative” “Unknown”

Classified
and

identified2

1 14,590 584 2,191 11,815 19.0% 98% 74 7,337 332 1,295 5,710 58.2%
2 6,928 229 785 5,914 14.6% 92% 46 3,660 157 534 2,969 57.5%
3 4,059 105 602 3,352 17.4% 85% 32 2,281 75 426 1,780 61.3%
4 4,493 130 813 3,550 21.0% 84% 41 2,515 97 561 1,857 62.3%
5 3,643 131 923 2,589 28.9% 81% 33 1,923 76 625 1,222 62.5%
6 4,628 180 1,411 3,037 34.4% 85% 27 2,464 108 1,024 1,332 63.2%
7 2,076 82 515 1,479 28.8% 75% 25 1,075 44 330 701 62.5%
8 1,965 82 572 1,311 33.3% 73% 26 1,037 52 398 587 63.2%
9 2,015 100 704 1,211 39.9% 74% 30 1,033 67 501 465 63.0%
10 2,061 89 525 1,447 29.8% 74% 31 1,090 42 293 755 66.4%
11 2,045 94 625 1,326 35.2% 75% 23 1,087 62 400 625 65.7%
12 2,541 132 794 1,615 36.4% 82% 22 1,286 80 499 707 64.3%

Total 51,044 1,938 10,460 38,646 24.3% - 410 26,788 1,192 6,886 18,710 60.9%
1 “Known” and “putative” sequences are counted.
2 Sequences in the representative clusters and “known” and “putative” sequences in other clusters (with 1-9 sequences) are included.
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1 Introduction.  
 

For the purpose of aligning protein sequences, the amino acid substitution process has been 
extensively studied, but the arguably more important process of insertions and deletions (indels) 
has received less attention. Here we investigate the relationship between indel propensity and 
protein structural features.  We find a particularly strong correlation with the Ooi coordination 
number, and a twice-reduced propensity for indels to occur in beta strands, as compared to alpha 
helices. 

 
Amino acid sequence alignments are widely used for the analysis of protein structure, gene 

function prediction, inference of phylogeny and other aspects of bioinformatics. An alignment of 
homologous protein sequences gives a concise presentation of which residues share ancestry, and is 
used to infer structural or functional characteristics from known proteins. Using the observation 
that homologous sequences are similar, the formal problem, for two given sequences, is to insert 
gaps into the sequences in order to arrive at the ``best'' alignment. The quantity measuring this 
goodness-of-fit, termed the score function, depends on the similarity of the aligned residues, and 
much effort has been expended on finding good so-called scoring matrices. Obviously, the 
goodness-of-fit must also include the number, position and length of the gaps themselves. 
However, this part of the score function has received far less attention. 

 
We have undertaken a systematic study of what features in a protein sequence affect the 

propensity of amino acids to be deleted (or inserted). The results confirm a correlation with gap 
propensity for the conventional features used in current alignment algorithms, but reveal new and 
previously unused features exhibiting strong correlations, which could help improve structural 
alignment algorithms. 

 

2 Structural properties and indel propensities.  
 
We undertook a survey of all structural features collected in the HOMSTRAD database [2] to 
ascertain which have the clearest relationship to indel propensities. The features used were those 
calculated by Joy [1].  
 
In current fold recognition and structure-sequence alignment software, two levels of gap penalty are 
usually employed, with the higher gap penalty imposed for the insertion of gaps into secondary 
structure elements. Our results illustrate that, as expected, indels are most abundant in coil regions, 
and are about twice as likely to occur there compared to alpha helices. However, the propensity for 
indels to occur in alpha helices is again more than twice as high as in beta sheets, suggesting that 
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separation of the secondary structure class into alpha helix and beta sheet could improve 
alignments. 
 
It is possible that the local nature of the hydrogen bonding in helices leads to their easier 
insertion/deletion. If a beta strand residue is deleted, a corresponding residue, perhaps distant in 
sequence, must be lost from its pairing strand in order not to disrupt the remaining residues of the 
strand, or alternative hydrogen bonding arrangements must be made. Thus, the non-local nature of 
beta strand bonding makes the loss of its component residues less likely. 

 
The relationship between indel propensity and the Ooi number is the most pronounced of all 

structural features considered. The Ooi number [3] is a simple approximation to solvent 
accessibility or coordination number, and counts the number of other C-alpha atoms. Within a 
sphere of certain radius, in this case 14Å, of the given residue's own C-alpha. The correlation of the 
Ooi number to indel propensity is stronger than to more involved solvent accessibility measures; in 
fact, the logarithm of the indel propensity is very nearly linearly related to the Ooi number. 

 
This linear relationship over a long range is surprising. A naive model to explain this, is to 

suppose that each C-alpha atom within the sphere of influence of the central atom has a fixed 
probability to have an important structural relationship to it, which would be disrupted when this 
residue was deleted, or displaced by an insertion. If one supposes these probabilities to be 
independent, the observed linear relationship follows. 

 

3 Conclusion.  
 

We investigated the relationship of indel propensities to various structural features, and 
identified the most informative of such features to use for alignment. Although structure dependent 
gap penalties are used in many alignment algorithms, this is the first systematic study of the data to 
inform the choice of structural parameters. 

While we confirmed the utility of hydrophobicity in predicting gap propensity, other structural 
variables, such as the Ooi coordination number, revealed an even stronger correlation with indel 
propensities. 

We found that beta strands are far less likely to contain a gap than alpha helices, a fact which 
has not been exploited in structural alignment algorithms, and which, we believe, could 
significantly improve such algorithms, with potentially important implications for structure and 
function prediction. 
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Ortholog Detection 1
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1 Introduction.

Biological primary (nucleic acid or amino acid) sequences from di�erent species are called
orthologs just in case they evolved from a sequence of a common ancestor species and
they have the same biological function. Secondary structure (SS) consists of a sequence
of local protein foldings traditionally of three types: �-helix, �-sheet, and coil. Homologs

are de�ned similarly to orthologs except they may or may not share the same biological
function. In [1] it was found that the use of experimentally determined (secondary and)
tertiary structure to increase primary alignment accuracy does did not aid homolog de-
tection with pro�le HMMs. The present study complements [1]. We use predicted SS
based machine learning attributes; employ decision tree induction with boosting, as im-
plemented in C5.0 (http://www.rulequest.com); and are concerned with ortholog detection.
We discuss below our results employing PSIPRED, arguably the best protein SS predic-
tor (http://predictioncenter.llnl.gov/casp3/Casp3.html). In our setting, predicted secondary
structure is slightly helpful for ortholog detection. The relative helpfulness of our set of SS
based attributes is assessed compared with other, more standard primary sequence align-
ment based attribute sets. This comparative evaluation is done by: 1. cross-validation with
C5.0 and 2. Area Under the Curve (AUC) from Receiver Operating Characteristic (ROC)
analysis.

2 Background.

We employ for classi�cation a positive training data set of 570 ortholog
triples (from human, mouse, and chicken), curated as in [3], and available at
http://polaris.cis.udel.edu:3000/ortho/ortholog list/. For negative data, the selection
criterion is that of [2] but with scoring scheme from [3] and restricted to cases where
mouse and human are orthologous but chicken is not. This produced a total of 2214
triples. The classi�cation task is to decide of a triple whether the chicken is orthologous
to the two orthologous mammals. For each triple, 21 attribute values are computed re
identity percentages based on alignments of primary sequences or predicted SS sequences.
For primary sequence alignment, we employ Gotoh's algorithm, Smith-Waterman's (SW)
algorithm, and Clustal W. Dynamic programming (DP) is employed for SS alignment
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U.S.A. E-mail: case@cis.udel.edu
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using a scoring scheme which empirically produces the best separation between positive
and negative training data. Also, we employ one more attribute describing the biological
function class, e.g., defense is its value for immune system proteins.

3 Results.

Cross-validation with C5.0.
We employ C5.0 with 10-tree boosting, 10-fold cross-validation, and 10 repeats. The

experiments are conducted in two ways: only-one-in and at-most-one-out. 6 The �rst way
is to compare each attribute set with one another by employing each such attribute set one
at a time. The second evaluates the e�ect of leaving up to one attribute set out. The results
are shown in Table 1. N.B. The Standard Error in the percent errors is < 0:05%.

Attribute Set Missed in Testing: +/-(%)
1A: only one in (& class)
w. CLUSTAL W 56.2 / 37.0 (4.21%)
w. SM alignment 61.9 / 42.3 (4.71%)
w. Gotoh's alignment 68.3 / 39.3 (4.86%)
w. SS DP 75.3 / 42.3 (5.31%)
1B: at most one out
w/o CLUSTAL W 46.6 / 12.7 (2.68%)
w/o SM alignment 44.2 / 12.1 (2.54%)
w/o Gotoh's alignment 45.3 / 10.8 (2.53%)
w/o SS DP 43.9 / 10.6 (2.46%)
w. all attribute sets 43.7 / 8.9 (2.38%)

Table 1: Our SS attribute set is the least useful of the attribute sets, but it is better to use it with

the others (2.38% errors) than leave it out (2.46% errors)!

ROC analysis
We construct ROC curves for single individual attributes and compute and compare their

AUC values. The best predicted SS based attribute has AUC = 0:901 which is less than that
of about 50% of the non-SS based single attributes. However, when we combine two di�erent
single attributes ai; aj by the formula b = ai cos � + aj sin �, with � chosen to maximize the
AUC value of b, the best combination of attributes which includes at least one predicted SS
based attribute has AUC = 0:968. This beats the overall best single attribute which has
AUC = 0:952. Again we see that while our SS attribute set is not by itself spectacular, it is
helpful when combined with other attribute sets.
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Using an RNA Secondary Structure Partition 
Function to Determine Confidence in Base Pairs 

Predicted by Free Energy Minimization 
 

David H. Mathews1 
 
Keywords: RNA Partition Function, RNA Secondary Structure, Statistical Mechanics 
 

1 Introduction.  
 

RNA plays many diverse roles in Biology, including catalyzing peptide bond formation [4, 10], 
catalyzing RNA splicing [2], localizing protein [11], and flagging development [5, 6].  New roles 
are being found for RNA, and the completion of whole genome projects  provides the opportunity 
to find many new functional non-coding RNA sequences [3]. 
 
To understand the detailed mechanism of action of an RNA sequence, the structure of that RNA 
must be determined.  Secondary structure, the sum of canonical base pairs, is usually determined by 
the comparative analysis of homologous sequences.  In the absence of homologous sequences, free 
energy minimization by dynamic programming can be used to predict the structure of a single 
sequence with an average of 73% sensitivity for known pairs [7, 8].  This accuracy is sufficient to 
serve as a starting point for building an alignment for comparative sequence analysis or as an aid 
for designing RNA sequences, but improvements in the accuracy of base pair predictions would 
clearly be useful.   
   
The predicted minimum free energy (MFE) structure provides a single best guess for the secondary 
structure, but it assumes that the secondary structure is at equilibrium, that there is a single 
conformation for the RNA, and that the thermodynamic parameters for evaluating conformation 
free energies are without error.  One method to represent other possible or competing structures is 
to sample suboptimal secondary structures with free energies similar to the lowest free energy 
structure [12].  Another method to demonstrate a diversity of structures, pioneered by McCaskill, is 
to determine the pairing probabilities of all possible base pairs using a partition function calculated 
with dynamic programming [9].  

 
2 Results.  
 
A partition function calculation for RNA secondary structure is presented that uses a current set of 
nearest neighbor parameters for conformational free energy at 37 ºC [7, 8].  The calculation 
includes free energy increments for the coaxial stacking of helices, but remains O(N3) in time, 
where N is the number of nucleotides.  The calculation is rapid, e.g. the base pairing probabilities 
for a 433 nucleotide Tetrahymena group I intron can be calculated in 19 seconds with a Pentium 4, 
3.06 GHz processor.     
 
For a diverse database of RNA sequences with known secondary structure [8], base pairs in the 
predicted minimum free energy structure that are predicted by the partition function to have high 
base pairing probability have a significantly higher positive predictive value for known base pairs.  
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For example, the average positive predictive value, 65.8% is increased to 90.7% when only base 
pairs with 99% or above probability are considered.   
 
The recursions were written to allow constraints on base pairing determined by experiments, such 
as enzymatic cleavage, flavin mononucleotide cleavage, or chemical modification.  The quality of 
base pair predictions are increased by the addition of experimentally determined constraints. For 
example, the percentage of highly probable pairs (greater than or equal to 95%) for the Dog SRP 
RNA increases from only 9.9% to 57.0% by including experimentally determined constraints in the 
calculation [1].  

 
3 Summary.  
 
The partition function calculation presented here does not replace the method of RNA secondary 
structure prediction by free energy minimization, but provides adjunct information that can be used 
to infer confidence in predicted base pairs.  These data can be superimposed on predicted secondary 
structures using color annotation to quickly demonstrate high probability base pairs.     
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1   Introduction 
Annotation of biological molecules is one of the demanding tasks of a modern bioinformatics. 
Particularly, annotation through well-defined ontologies allowing data management and exchange 
between people and computers with minimal loss of information value. Gene OntologyTM (GO) [1] is 
one of widely used bio-ontologies to describe molecular function, biological process and cellular 
component of biological entities. GOA (GO Annotation) resources (http://www.geneontology.org/) 
provide protein annotation with GO terms performed by biological experts. Since this routine is 
expensive and time-consuming there is a need in automated assignment of GO term to proteins 
through extension of manual annotation. Currently, the extension of protein annotation is centered 
only on sequence homology with GO-annotated proteins [2]. However, many proteins with low 
sequence similarity possess a similar fold and related function [3]. In this work, we address the 
problem of extension of protein annotation with GO terms using homology in 3D structures.  

2   Materials and Methods 
Two major sources of data used during this study were as follows: (i) 3D protein structures from PDB 
[4]; (ii) GOA resource provided by the EBI [5] assigning GO terms to the protein chains from PDB. 
Structural alignments of protein chains all against all were calculated by CE algorithm [6]. To 
compare two chains four similarity parameters provided by the CE algorithm were used: 

1. Rmsd, root mean square deviation between two structurally aligned chains. 
2. Z-score, statistically founded score, it characterizes the significance of the alignment. 
3. Rnar, ratio of the number of aligned residues to the length of the shortest chain. 
4. Rseq, sequence identity calculated for the structurally aligned residues. 

For two protein chains A and B with all calculated values (Rmsd, Z-score, Rnar, Rseq) and given 
thresholds we define sequence-structural similarity criterion (SSC):  

SSCAB=(Rmsd<Rmsdthreshold ) ∧ (Z-score>Z-scorethreshold) ∧ (Rnar>Rnarthreshold)  ∧ (Rseq>Rseqthreshold)     (1) 
∧ - denotes logical AND. Chains were clustered using SSC when for every two chains i and j in the 
cluster SSCij  holds true. GO terms for the chains in a cluster with at least one chain with GO term(s) 
can be assigned based on their co-appearance in the same clusters (Fig. 1). The specificity of such 
assignment is defined as the ratio of the number of TP (true positive) chains i.e. chains with GO terms 
in so-called “positive clusters” (with non-contradictory annotations) to all chains with GO terms in all 
clusters. To take into account incompleteness of the initial GO annotation, we introduce three different 
ways to calculate specificity by providing different definitions of a “positive cluster”. The 
performance of extended annotation is also measured by the coverage which is defined as the ratio of 
newly annotated chains to all chains with no annotation, i.e. with no GO terms assignments in the EBI 
annotation.  

3. Results and Discussion 
34,698 protein chains (excluding theoretical models and short chains) were taken from the PDB. 
29,734 of them had GO annotations if from the EBI. 
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PDB ID 
(chain) 

Protein name (as in PDB) Specie  GO 
term

GO term definition  

1hjb (C,F) Runt-related transcription factor 1; 
residues 60-182.  

 

1io4 (C) Runt-related transcription factor 1; 
runt domain.  

 
Homo 

sapiens  

1hjc (A,D) Runt-related transcription factor 1; 
residues 60-182.  

 

1ean (A) Runt-related transcription factor 1; 
runt domain residues 46-185 

 

1eao (A,B) 
1eaq (A,B) 

Runt-related transcription factor 1; 
runt domain residues 36-185 

 
 

Mus 
musculus

 

 
 
 

3677
5524
5634
6355

 
 
 
(F) DNA binding 
(F) ATP binding 
(C) nucleus  
(P) regulation of transcription, 
DNA-dependent 

1e50 (A,C, 
E,G,Q,R)  

Core-binding factor alpha subunit; 
runt domain residues 50-183 

 

1cmo (A) Polyomavirus enhancer binding 
protein 2; runt domain.  

 

1co1 (A) Core binding factor alpha; runt 
domain.  

 

1ljm (A,B) Runx1 transcription factor; runt 
domain.  

 
 
 

Homo 
sapiens 

 

3700
7275
8151
3677
5524
5634
6355

(F) transcription factor activity 
(P) development 
(P) cell growth and/or maintenance 
(F) DNA binding 
(F) ATP binding 
(C) nucleus  
(P) regulation of transcription, 
DNA-dependent 

1h9d (A,C) Core-binding factor alpha 
subunit1; runt domain  

Homo 
sapiens 

 no GO terms 

Fig. 1. The example of a cluster. GO annotation are provided according to the EBI assignment. (P), 
biological process, (F), molecular function, (C), cellular component. GO terms common for all chains which 
have GO terms are shown in bold. Other three GO terms could be assigned as new added GO terms to 
chains in the upper gray box. Chains 1h9dA and 1h9dC could be newly annotated by if assigning them 
seven GO terms (white box). 

 
 
The performance of the approach extending GO annotation 

was studied with respect of different choices for the threshold 
values (in Eq. 1). Fig 2 demonstrates the performance for threshold 
values when the highest specificity-3 value (99.9%) could be 
achieved (coverage of 47.9%, Rseq ≥ 90%). This allows to extend 
annotation for 2,371 protein chains from the PDB [4] (amongst 
4,964 chains with no annotation) by assigning 13,519 new “GO 
term – protein chain” associations. Also, 3,962 new “GO term – 
chain” associations were added to the existing annotation of 1,449 
chains previously annotated by EBI [5]. See Fig.1 for the example.  

Fig. 2. Performance of the approach 
extending EBI GO annotation using 
pair-wise structural similarity for 
following threshold values of 
structural similarity parameters,
Rmsd ≤ 5.0Å, Z-score ≥ 3.8, Rnar ≥
70%.
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The effect of similarity definition and impact of “superfolds” 
(folds with multiple functions) are considered as well as 
comparison with SCOP for definition levels in protein hierarchy 
involved in our annotation process have been done.  

A number of chains with contradictory annotations were 
revealed. Some of them can be explained by incompleteness of GO 
annotation, some may be the case a miss-annotation and require 
further attention.  

The results of GO annotation of PDB protein chains are available at http://spdc.sdsc.edu/. 
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A Target Selection Informatics Resource for
Structural Genomics

Ana Rodrigues1,  Guy G. Dodson12,  Roderick  E. Hubbard13

Keywords: structural genomics, target selection, informatics resource

A large number of structural genomics programs have been established worldwide with the common
aim of large-scale, high-throughput protein structure determination.  Due to the considerable
challenges posed by the experimental methods of structural determination (primarily X-ray
crystallography and nuclear magnetic resonance spectroscopy), it is important to select and prioritize
candidate molecules that will maximize the information gained from each new structure.

We are currently developing an informatics resource capable of performing target selection through
the implementation of a number of sequence analysis protocols.  This framework aims to facilitate the
selection and prioritization of candidate proteins for structural determination, by enabling structural
biologists to select targets from their genomic sequences of interest, and according to their own
research needs.

The work is being developed on three distinct levels. The first focuses on the identification of the
kinds of annotations that can be devised for a nucleotide or protein sequence and the assessment of the
usefulness of such information for structural genomics. The second involves the establishment of an
informatics framework to support these calculations and data through a relational database. The third
concerns the refinement of the system and its application to real structural genomics programs.

Preliminary results, driven by the Structural Biology Laboratory’s participation in structural and
functional genomics projects (such as the EU funded Structural Proteomics IN Europe project, and the
Wellcome Trust funded MalariaVac consortium) indicate that the resource will prove useful in
performing target selection on a genomics scale [1 ,  2 ] .
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1 Structural Kinomics  
 
We describe bioinformatics tools and databases that facilitate global analysis of public and 
proprietary sequence/structure data on all human kinases (the “kinome” [1]). KinatorTM is a 
program that rapidly analyzes kinase sequences, while our database, RoKI™, stores a wealth of 
kinase-specific information for easy retrieval and mining. Alignator™ performs structure 
alignments of public and proprietary structures, highlights functionally important residues, and 
identifies residues that interact with natural ligands or inhibitors. These tools simplify selectivity 
analysis for kinome-based drug discovery.  

 

2 RoKITM  
 
The Repository of Kinase Information (RoKI™) is an intuitive web-based navigation system for 
rapid searching and browsing of information related to the sequence and structure of all known 
human kinases; it also serves as an interface to a comprehensive LIMS (Laboratory Information 
Management System), tracking experimental methods and results regarding cloning, protein 
purification, mass spectrometric analysis, biochemical assays, (co-)crystallization, and structure 
determination.  

 
RoKI can be accessed via keyword search (using gene names/descriptions, HUGO aliases, 
LocusLink IDs, PDB IDs, or LIMS identifiers) or browsing (both textual and graphical). A detailed 
analysis page is available for each kinase, including literature references, RefSeq data, Pfam 
domain identification, related 3D protein structures, and annotation of key residues, secondary 
structure elements, and subdomains. These annotations are mapped onto the 3D structure in a web-
based molecular graphics viewer, automatically identifying the activation loop, catalytic residues, 
hinge region, bound ligands, etc.  

 
Experimental data (using user-selected criteria such as cloning success, purification yields, crystal 
quality, number of structures, biochemical assay data) can be mapped onto the kinome tree, 
providing an instant snapshot of the latest results for every kinase. Kinase similarity can be 
compared graphically by choosing a sequence identity threshold (e.g., 90%, 70%, 50%); all kinases 
that share at least that level of similarity are linked together on the kinome tree.  

 

3 Kinator™  
 
Our program, Kinator™, identifies important structural and functional residues within kinase 
sequence(s). Kinator uses a Hidden Markov Model (HMM) to identify the catalytic domain and to 
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pinpoint critical residues. The program automatically distinguishes serine/threonine and tyrosine 
kinases and highlights the P-loop, ATP-binding site, catalytic loop, activation loop, hinge region, 
and gatekeeper residue, as well as the 12 subdomains defined by Hanks & Hunter [2]. It also labels 
all secondary structure elements according to their canonical nomenclature (e.g., “helix C”). It is 
simple to determine whether a kinase has a large insertion, unusual termini, or has variant residues 
that are likely to affect the function.  
 
Kinator can be used to perform comparisons of certain residues or regions within all kinases. For 
example, using these tools it is easy to tabulate the length of all activation loops, determine the 
identity of all gatekeeper residues, or calculate the sequence identity between a target and the ATP-
binding site residues of all other kinases. Furthermore, our interactive web-based structure 
alignment program, AlignatorTM, is able to superimpose multiple structures and highlight residues 
of functional interest.  

 
Figure 1 shows some of the views available from RoKI, Kinator, and Alignator.  
 

 
Figure 1: PDB structures (green squares) mapped onto the kinome tree [1] with 90% identity halos (red 

ovals) using RoKI™ (left), kinase sequence annotation using Kinator™ (middle), and Alignator output of ~30 
co-complex structures with Kinator-based color-coding (right). 
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The SWISS-MODEL Repository of annotated 
3-dimensional protein structure homology models 
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1 Introduction.  
 
Three-dimensional protein structures are key to a detailed understanding of the molecular basis of 
protein function. Combining sequence information with 3D structure gives invaluable insights for 
the development of effective rational strategies for experiments such as site directed mutagenesis, 
studies of disease related mutations, or the structure based design of specific inhibitors. Techniques 
for experimental structure solution have made great progress in recent years. However, 
experimental structure determination is still a time-consuming process without guaranteed success. 
This is reflected by the fact that the number of structurally characterized proteins is about two 
orders of magnitude smaller than the number of known protein sequences in the UniProt  database 
[1], which holds more than one million entries. Thus, no experimental structural information is 
available for the vast majority of protein sequences. Therefore, theoretical methods for protein 
structure prediction aiming to bridge this structure knowledge gap have gained much interest in 
recent years. As shown during the biannual CASP experiments, homology modeling is the only 
computational approach, that can generate reliable three-dimensional models for a protein. 
 
2 Homology Modeling and SWISS-MODEL. 
 
 If a target protein shares significant amino acid sequence similarity to at least one experimentally 
solved three-dimensional structure (template), homology or comparative modeling can be applied 
to construct a three-dimensional model for the new protein. Homology modeling of protein 
structures consists of four steps: template selection, target-template alignment, model building, and 
model evaluation. The huge and constantly growing number of structurally uncharacterized protein 
sequences together with the increasing number of available template structures motivated the 
development of automated, stable and reliable modeling methods. Storing and organizing results of 
large-scale automated modeling in a database gives instant and queryable access to pre-computed 
and annotated comparative models through a model repository. This also helps to enrich other 
database projects with structural information, e.g. sequence knowledge bases like UniProt, or 
databases dedicated to specific organisms, protein families, or cellular functions. Here we describe 
the SWISS-MODEL Repository [2,3], a database of annotated three-dimensional protein models 
created by the SWISS-MODEL server pipeline [4,5].  
 
3 Accessing the Repository.  
 
The aim of the SWISS-MODEL Repository is to provide access to an up-to-date collection of 
annotated models generated by automated homology modelling, bridging the gap between sequence 
and structure databases. All models in the repository are publicly accessible via our interactive 

                                                 
1 Biozentrum & Swiss Institute of Bioinformatics, University Basel, CH 4056 Basel, Switzerland, 

Juergen.Kopp@unibas.ch, Torsten.Schwede@unibas.ch 

Dana Jermanis


Dana Jermanis
Structural and Functional Genomics 

Dana Jermanis
513

Dana Jermanis
L12.



website at http://swissmodel.expasy.org/repository. A graphical "model navigator" provides an 
overview of the models that have been generated for a selected sequence, allowing fast and easy 
navigation for the different regions in the protein, for which three-dimensional models are 
available. The "model info" section contains information about the template structure and target-
template sequence alignment on which the modelling has been based. The interactive display 
allows expanding detailed views of the target-template sequence alignment, the force field based 
assessment of the model, and the modelling log files. Model coordinates can be downloaded or 
displayed directly from within the web browser. Moreover, complete DeepView (Swiss-
PdbViewer) [4] modeling projects can be exported. These project files contain the final model 
superposed to the template structures, which allows to manually adjusting the alignment and re-
submitting to the SWISS-MODEL server for further model building. The repository can be queried 
for protein or gene name, Swiss-Prot accession codes, protein description key words, E.C. numbers, 
and organism names. The search interface allows combining all these different descriptors to 
complex queries, e.g. searching the repository for all models of a certain enzyme in several 
organisms.  

 
4 Repository content and update.  
 
The SWISS-MODEL Repository has been implemented using relational database technology. 
During the modeling process it communicates with the SWISS-MODEL server pipeline and keeps 
track of the workflow for individual target sequences. The models in the SWISS-MODEL 
Repository are computed by a modified version of the SWISS-MODEL server pipeline. The quality 
of each model is assessed using a partial Gromos96 force field implementation, and the empirical 
Anolea mean force potential in order to select reliable models to be entered into the database. 
Functional annotation is done by mapping InterPro [6] descriptors to individual models. 
 As of January 2004, the Swiss-Model repository contained 362,904 models for 324,571 
different UniProt sequence entries. The length of the models varies from 45 to 1,524 residues with 
an average model size of 205. The Repository is updated regularly to take into account new 
sequences, modifications of existing sequence entries, and new template structures released by the 
PDB [7] that might allow the construction of models for previously un-modeled proteins, or might 
provide a better template for already existing model entries. Also, fundamental changes and 
improvements of the modeling pipeline initiate a new update cycle.   
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Introduction.   
 

Since the advent of investigations into structural genomics, research has focused on correctly identifying 
domain boundaries, as well as domain similarities and differences in the context of their evolutionary 
relationships. As the science of structural genomics ramps up adding more and more information into the 
databanks, questions about the accuracy and completeness of our classification and annotation systems appear on 
the forefront of this research. A central question of paramount importance is how structural similarity relates to 
functional similarity. In this paper we begin to rigorously and quantitatively answer these questions by first 
exploring the consensus between the most common protein domain structure annotation databases CATH, SCOP 
and FSSP. Each of these databases explores the evolutionary relationships between protein domains using a 
combination of automatic and manual, structural and functional, continuous and discrete similarity measures. In 
order to thoroughly examine the issue of consensus, we build a generalized graph out of each of these databases 
and hierarchically cluster these graphs at interval thresholds. We then employ a distance measure to find regions 
of greatest overlap. Using this procedure we were able not only to enumerate the level of consensus between the 
different annotation systems, but also to define the graph-theoretical origins behind the annotation schema of 
Class, Family and Superfamily by observing that the same thresholds that define the best consensus regions 
between FSSP, SCOP and CATH correspond to distinct, non-random phase-transitions in the structure 
comparison graph itself. To investigate the correspondence in divergence between structure and function further, 
we introduce a measure of functional entropy that calculates divergence in function space. First, we use this 
measure to calculate the general correlation between structural homology and functional proximity. We extend 
this  analysis further by quantitatively calculating the average amount of functional information gained from our 
understanding of structural distance and the corollary inherent uncertainty that represents the theoretical limit of 
our ability to infer function from structural similarity. Finally we show how our measure of functional “entropy” 
translates into a more intuitive concept of functional annotation into similarity EC classes.  
Databases as graphs   
Through graph-morphing procedures for SCOP1, CATH2 and FSSP3 we end up with three weighted graphs, one 
for each database. The nodes in each graph are the protein domains and the edges are the relationships defined by 
distances or proximity from each database. We proceed to cluster these graphs at regular interval cutoffs. For 
example, for FSSP we build a graph at each threshold from Z=2 to 16 with step .5. In order to do this, we pick a 
cutoff and keep all edges that are larger than this cutoff4. 
Compare graphs. 

After TP, FP, TN and FN quantities have been defined, the distance measure between two graphs is merely a 
calculation of how many true positives the two graphs share with respect to false negatives and false positives. 
This measure is meant to calculate the level of agreement between the two graphs with respect to how many 
domain pairs they classify in the same cluster. Four Slices of the 3-D graph depicted in The cusps and maxima are 

easily discernable from these slices. 
At SCOP cutoff 1 Jaccard is actually 
smaller than the random control 
indicating that this level of 
annotation is probably not indicative 
of real evolutionary homology and 
may not indicate meaningful 
annotation. At SCOP Cutoff 2,3,4 
the Jaccard distance between FSSP 
and SCOP is many thousands 
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standard deviations away from random. At SCOP cutoff 2 (Fold level) the cusp occurs at Z=6, at SCOP cutoff 3 
(Superfamily level) the maximum occurs at Z = 9 and SCOP cutoff 4 (Family level) the maximum occurs at Z = 
10-11. 
Phase transitions  
 The size of the largest clusters in FSSP graph plotted against the similarity cutoff threshold at which the graph is 

clustered.  It is worth noting that the size of the largest cluster in the 
random graph is larger than the largest cluster in FSSP until the end of the 
phase transition at Z = 12. This is due to the power-law nature of the FSSP 
graph4.  The size of the first six largest clusters plotted together as 
percentage of their original size. The computation was done by ordering 
the sizes of the clusters at each cutoff and plotting the largest six. The 
largest six clusters account for vast majority of the domains that are not 
orphans (singletons). It is worth observing that all the phase transitions 
occur between Z=6 and Z=9. The behavior of the size of the largest cluster 
(Fig. 6) and its difference with random bears a striking resemblance to the 
maxima we just observed on the distance landscapes between the three 

databases (Figs. 3,4). We can see that there are two very pronounced phase transitions in the size of the largest 
cluster. The first is from FSSP Z=6 to Z= 9 and the second is from Z=10 to Z=14. These represent the starting and 
ending points where the largest cluster “suddenly” breaks up into much smaller clusters the largest of which is 
almost fifty percent of the “parent”. The size of the largest cluster in the random graph is always much larger than 
the size of the largest cluster in the real graph up until Z > 12. Because of this we will argue that the third and final 
non-random transition occurs at around Z = 11. The behavior of the other clusters closely mirrors that of the 
largest cluster thus showing that the phase transition is not just the function of the major superfolds but of the 
majority of the PDUG graph. It is interesting that the first three largest clusters transition at around Z=9 while the 
smaller three transition closer to Z = 6. 
Function Uncertainty  

a,b. The FFS5 gain per domain with 
respect to structural similarity threshold.  
FFS of each cluster is compared to that 
expected by random for a cluster that size 
and added to the gain at that threshold 
(Eqs 6, 7). The final FFS gain is 
normalized by the number of domains 
annotated in the graph. The majority of 
the functional information is gained from 
Z = 6 to Z = 11, before and after those 
thresholds the information content  

a.    b. 
obtained from structural comparison plateaus. Thus we can quantify the amount of function information gained by 
correctly annotating a domain to its Fold as .095 bit per domain while correctly identifying the Superfamily yields 
around .15 bits per domain of functional information.  The intrinsic uncertainty with which we can expect 
annotation of function at a given structural similarity. For example, at Z = 6 (Fold level) on average the domain 
function cannot be annotated to be more precise than 1.6 bits per level on the GO tree. Note that there are two 
plateaus where the FFS does not significantly change with respect to Z score: the first starting from Z = 5 to Z = 8 
and the other starting from Z =9 all the way to Z = 11 showing an intrinsic correlation between structure and 
function at the Fold and Superfamily Level of annotation. This once again confirms the theoretical origins of this 
annotation by showing the conservation of function at those levels of structural comparison.  
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1 Introduction.   
 
Improving the accuracy of alignment between a query sequence and a template protein of known 
structure remains a significant challenge in homology modeling [1]. Although maximal alignments 
perform sufficiently well to detect similarity relationships between proteins in database search 
applications, often the correct alignment from a structural standpoint deviates from the maximal 
alignment. A possible reason for this is that linear alignment schemes may not contain sufficient 
information to properly align a query sequence onto a template – tertiary information must be 
evaluated, for instance, by using physical energy terms to discriminate between native and non-
native alignments [2]. Such a strategy requires a method for sampling and generating suboptimal 
alignments – alignments which are not maximal. In recent years, “consensus methods”, which look 
at sequence alignments from programs written by many different laboratories, have been proposed 
as one solution to sampling alignments (e.g. [3]). However, such methods may not sample 
sufficiently and may miss the correct alignment if the alignment is “counterintuitive” to the 
alignment programs [4]. An alternative is near optimal alignment, which may be used to generate 
alignments whose scores are within a preset distance of the maximal [5]. However, the space of 
near optimal alignments is very large and often inconsequential differences in alignment will be 
reported [1]. Other variations of alignment sampling methods include iterative masking [6], [7] and 
parametric sampling [8]. However, these do not necessarily guarantee k-best solutions for any given 
set of sequences, and there is no unique set of parameters.  
 
True k-best algorithms have historically been avoided for their computational expense [4] but in the 
advent of increasing computer power it is possible to revisit these. In addition, it is possible to 
supply detailed limits over what regions of a protein should be sampled thoroughly by suboptimal 
alignment; for instance, it may be desired to concentrate on how secondary structure elements 
should be aligned between query and template. Here we present a method for generating limited k-
best suboptimal alignments, which allows us to sample suboptimal alignments deeply in regions of 
interest and hence more meaningfully for homology modeling. We build models for these 
alignments and seek to determine whether we can find closer-to-native alignments in our pool of 
suboptimal alignments. 
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Application of a Two-stage Method to Identify Protein-
Protein Interface Residues 

 
Changhui Yan1,2,5*, Vasant Honavar1,2,4,5  and Drena Dobbs1,3,4,5  

 
Keywords: protein-protein interaction, SVM, Bayesian method, interaction sites 
 
 
Virtually all cellular processes depend on precisely orchestrated interactions between proteins. 
Genome-wide proteomics studies are providing large sets of potentially interacting proteins. However, 
experimental elucidation of the molecular details of these interactions by examining protein 
complexes using X-ray and NMR methods lags far behind. Therefore, methods for computational 
prediction of protein interaction sites are becoming increasingly important. Here we present a 
sequence-based method for predicting which surface residues of a protein participate in protein-
protein interactions. In the first stage, a support vector machine (SVM) classifier is trained to predict 
whether or not a surface residue is an interface residue using as input the identities of 9 amino acids 
(the target amino acid plus 4 amino acids on each side). In the second stage, a Bayesian classifier is 
trained to predict whether or not a surface residue is an interface residue based on the class labels 
(interface or non-interface residue) of its 8 neighbor residues (4 on each side). In the testing phase, the 
outputs of SVM classifier are used as inputs to Bayesian classifier to make new predictions. Our 
results show that the two-stage method presented here outperforms previously published sequence-
based methods. We have applied the two-stage method to predict interface residues on CAPRI 
(Critical Assessment of PRedicted Interactions) targets. The success of the predictions is validated by 
examining the predictions in the context of the 3-dimensional structures of protein complexes.   
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High-Throughput 3D Homology Detection via NMR
Resonance Assignment

Christopher James Langmead∗ Bruce Randall Donald†‡,§,¶,‖

January 15, 2004
Abstract

One goal of the structural genomics initiative is the identification of new protein folds. Sequence-
based structural homology prediction methods are an important means for prioritizing unknown pro-
teins for structure determination. However, an important challenge remains: two highly dissimilar se-
quences can have similar folds — how can we detect this rapidly, in the context of structural genomics?
High-throughput NMR experiments, coupled with novel algorithms for data analysis, can address this
challenge. We report an automated procedure, calledHD, for detecting 3D structural homologies from
sparse,unassignedprotein NMR data. Our method identifies 3D models in a protein structural database
whose geometries best fit the unassigned experimental NMR data.HD does not use, and is thus not
limited by sequence homology. The method can also be used to confirm or refute structural predictions
made by other techniques such as protein threading or homology modelling. The algorithm runs in
O(pn5/2 log (cn) + p log p) time, wherep is the number of proteins in the database,n is the number of
residues in the target protein andc is the maximum edge weight in an integer-weighted bipartite graph.
Our experiments on real NMR data from 3 different proteins against a database of 4,500 representa-
tive folds demonstrate that the method identifies closely related protein folds, including sub-domains of
larger proteins, with as little as 10-30% sequence homology between the target protein (or sub-domain)
and the computed model. In particular, we report no false-negatives or false-positives despite significant
percentages of missing experimental data.

∗Carnegie Mellon Department of Computer Science
†Dartmouth Computer Science Department, Hanover, NH 03755, USA.
‡Dartmouth Chemistry Department, Hanover, NH 03755, USA.
§Dartmouth Biological Sciences Department, Hanover, NH 03755, USA.
¶Dartmouth Center for Structural Biology and Computational Chemistry, Hanover, NH 03755, USA.
‖Corresponding author: 6211 Sudikoff Laboratory, Dartmouth Computer Science Department, Hanover, NH

03755, USA. Phone: 603-646-3173. Fax: 603-646-1672. Email:brd@cs.dartmouth.edu
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Evidence for a subpopulation of conserved
alternative splicing events under selection pressure

for protein reading frame preservation

Alissa Resch1, Yi Xing1, Alexander Alekseyenko1, Barmak Modrek1,
Christopher Lee1

Keywords: comparative genomics, evolution, alternative splicing, exon, bioinformatics

Recently there has been much interest in assessing the role of alternative
splicing in evolution.  We have sought to measure functional selection
pressure on alternatively spliced single exon skips, by calculating the
fraction that are an exact multiple of three nucleotides in length and
therefore preserve protein reading-frame in both the exon-inclusion and
exon-skip splice forms.  The frame-preservation ratio (defined as the number
of exons that are an exact multiple of three in length, divided by the number
of exons that are not) was slightly above random for both constitutive exons
and alternatively spliced exons as a whole in human and mouse.  However,
orthologous exons that were observed to be alternatively spliced in the EST
data from two or more organisms showed a substantially increased bias to be
frame-preserving.  This effect held true only for exons within the protein
coding region, and not the untranslated region.  In five animal genomes
(human, mouse, rat, zebrafish, Drosophila), we observed an association
between these conserved alternative splicing events and increased selection
pressure for frame-preservation.  Surprisingly, this effect became stronger as
a function of decreasing exon inclusion level: for alternatively spliced exons
that were included in a majority of the gene’s transcripts, the frame-
preservation bias was no higher than that of constitutive exons, whereas for
alternatively spliced exons that were included in only a minority of the
gene’s transcripts, the frame-preservation bias increased nearly twenty-fold.
These data indicate that a subpopulation of modern alternative splicing
events was present in the common ancestors of these genomes, and was
under functional selection pressure to preserve protein reading frame.
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VGWYX3Z\[K]+^`_Sa<bdcfehgSiYjMkDlfmDcfk�n1kocqpsrDtMrumokDgSiMpMn+buv�rxwubdjMkywdjBbdmStBz|{&}�~&mDrucf�SiMmyb

� �M�|�K�3���\���/�H�d�|���

z�c�ehg1iYjMkDlfmDcfk�n1kDc�psr|��z�{�}&�Rn�bdm%��n1kobdg1��gSlfmDkDjBl�mor�wd�Mn+w��Ml�nDv���jMiKpBn1��mDiFw5n+lsbdg1l�mor<cfi���n1iFv�eMcfg1l�g1�Scfk�n+l
�BbdgFkomDrurumDr<n1iKp�wd�MmocfbRrxwubdjBkowdjBbdm�c�rRmDrurumoiYwdc�n+ls��g1bRwd�MmDc�bReBc�g1lfgS�Scfk�n+lM��jBiMkowdcfg1iO� � �BcfrR¡�g1bd¢cfr ��gFkDjBrum�p�gSi
wd�Mm%psmDrucf�Si�g+�Hz|{&}8rxwub5n1iMpBrRwd�Kn�w<cfr��Bbdm�pscfkowdm�p\wdg&��gSl�p�wdgn��Scf£?moi¤rumDkDg1iKpMn�buv�rxwubdjBkowdjBbdm1tYn1kDkog1b5pBcfiB�
wdg#nGrxw5n+iKpBn+b5pTwd�Bmobd��gYpsvsiKn+��cfk���gYpBmol�rujBky��n1r�wd�Kn�w\g+��¥¦n+wd�Bmo¡%r�mow\n1l��¨§ ©�ª>�G� �Mcfr�Bbdg1eMlfmD�«cfr
bdmDlfmD£1n1iFw�ehmDkDn1jMrum\c�w�¡%c�lfl ��n+kDcflfcfw5n�wdm¤wd�Mm\ky�Mn+b5n1kywdmobdcf¬�n+wdcfgSi¨g1� eBcfgSlfgS�1c�kDn1l�z�{�}�r&eFv¦wd�BmDc�b���jBiMkowdcfgSi
n1iMp�wd�Mm�pBmDrucf�SiGg1�RiMmy¡�bdcfehg1¬ovs��mDr�wd�Kn+w%kDn1i¦ehm�jBrum�p¦n1r�wd�Bmob5n1�hmDjswdcfkn1�SmoiYwdr�§ �ª®��� �Mmobdmn�bdmn1lfrug
n1�B�Mlfcfk�n+wdcfg1iMr%cfi�iMn1iMg1eMcfg1wdmoky�BiMgSlfg1�1v¯cfi�wd�Mm|kDgSiFwdmo°Yw�g+�`eBjMcfl�pBcfiM��rumDl���±Pn1rurumo��eMlfcfiM��rxwubdjMkowdjsbdmDr���bdg1�
ru��n1lfl3z|{&}���g1lfmDkDjMlfmDr§ ²Sª®�

³ iMm�rugSlfjBwdcfgSiTwdgGwd�Mm¤z�{�}´rumDkDg1iKpBn+buv�rxwubdjMkowdjsbdm�pBmDrucf�1i��Bbdg1eMlfmD�µcfr�Bbdg�£Yc�pBm�p�eYv·¶|g1��n1k5¢?mob
mow|n1l���§ ¸+ª®tMwd�Bm�cf���MlfmD��mDiFw5n�wdc�g1i�g+�`¡%�Mcfk5�¦cfr%c�iBkDlfjKpsm�p�cfiGwd�Bm�¹&cfmDiBiKn\z�{�}»ºsmDkogSiKpBn+buvGºYwubdjBkowdjBbdm
¼ n1k5¢1n1�Sm1��}½��g+bdm�bdmokDmDiFw�rxwdgFk5�Kn1rxwdcfk|l�gFkDn1l3rum�n+bdk5�Gn+lf�Sg1bdc�wd�B�¦tFwd�Mm�z|{&}¾~�mDrucf�SiBmob�g1�`}|iMpsbdgSiBmDrukDj
mow|n1l���§�¿Dª3ru�Mg�¡%r|n�ehmowuwdmob��hmobu��g1bd��n1iBkDmS�

� �Mm&�MjBbd�hg1rum�g1�/wd�Mcfr ¡ g+bd¢�cfr wdg¤jBiKpBmybdrxw5n1iKp�ehmowuwdmob�wd�Bm&��n+kowdg1bdr�wd�Mn+w%��n1¢Sm&z�{�}½rxwubdjMkowdjsbdmDr
�Kn�b5p�wdgTpsmDrucf�Si3�	ºsjBky��jBiKpsmobdrxw5n1iMpBcfiM�·�Bbdg�£Yc�pBmDr�wd�Mm¯eKn+ruc�r\��g1b¤c����sbdg�£scfiB�¦wd�Mm¯�hmobu��g+bd��n1iMkom�g+�
z�{�}À~�mDrucf�SiBmob�n1iKpÁ��g1b¯k5�Kn�b5n1kowdmobdcfrucfiM��c�wdr�lfcf��cfw5n�wdcfgSiMrD�½Â¨m¦¡%c�lfl&pBmDrukobdcfehm·n¨��gYpsc�ÃKk�n�wdc�g1iÄg+�
wd�Mmz�{�}Å~�moruc��1iMmob|wd�Kn�w�cf���Bbdg�£?mDr%wd�Mm�hmobu��g1bd��n+iMkDm\g1�Rwd�Mm\n1lf�Sg+bdc�wd�M�¦�&ÆMjBbuwd�Bmobd��g1bdmStKcfw&cfr&iMg+w
¢YiMg�¡%i·¡%�Mmowd�Bmob�wd�Mmybdm�cfr�n��hg1l�vBiBgS��c�n1l`wdcf��m�n1lf�Sg+bdcfwd�B�Ç��g+bz|{&}ÈrumDkDgSiMpMn�buv·rxwubdjMkowdjsbdm¤pBmoruc��1iO�
� �Mmybdmo��g+bdmStYwdg��?n1cfi¯cfiMrucf�S�Fwdr�cfiFwdg�wd�Mm%�sb5n1kowdcfk�n+lhkDgS���Bl�my°Bc�wPv�g+�3wd�Bm%�BbdgSeBlfmD�¦t?¡ m��BbdmorumDiFw n�ruk�n+lfc�iB�
n1iMn1l�vsrucfr\wdg·cfis£SmDrxwdcf�?n+wdm�wd�Mm��Mn+b5pBiBmDrur�g1�%wd�Mm��Bbdg1eMlfmD�ÉgSi�b5n+iKpsgS�Êz|{&}ËrxwubdjMkowdjsbdmDr�jMrucfiM�¦wd�Bm
cf���Bbdg�£?m�p�z�{�}½~�mDrucf�SiBmob��

Ì ÍÈÎ5Ï%�%�3�d�HÐ�ÑÒ�

� �Mm#z�{�}Ó~�mDrucf�SiBmob�c�r¯n¨rxwdgFk5�Kn+rxwdcfkTlfgFk�n+l&rum�n�bdky�È�>ºsÔ`ºM���sbdgFkDm�psjBbdm¦wd�Kn�w¯jMrumDr¯n¨�Bc�myb5n+bdk5�Mcfk�n1l
pBmokDgS���hg1rucfwdcfg1iÁg+�%wd�Mm��Scf£?mDi�rxwubdjBkowdjBbdm·§�¿Dª®�T}ÕrxwubdjMkowdjsbdm�c�r\ru�Mlfc�w¤cfiFwdg¦wÖ¡�g�rujBeMrxwubdjBkowdjBbdmDrwd�Kn�w
pBg�iBg1w&kDgSiFw5n1cfi#�\jMl�wdcfl�gFg1�MrD�|{&g+wdc�komwd�Mn+w&cfw|cfr&iBmDkDmDrurdn�buv¦wdg�kDgSiBiMmDkow�wd�Mm�wP¡ g���bdmDm�mDiMpBr�kobdm�n+wdmDp
eFvTwd�Bm�ru�Mlfc�w�rujBky�Twd�Kn+w�ehg+wd��bdmDrujMl�wdcfiM�#rujBeMrxwubdjMkywdjBbdmDr�Kn�£?m�my°Mn+kowdl�v¨wP¡ g¦��bdmom¯moiKpBrD�¦�/g#kobdm�n�wdm
rxwubdjMkywdjBb5n1lRehg1jMiKpBn+buv·kDg1iKpscfwdcfg1iMr�n+w�wd�Bm¤ru�Mlfc�w��hgScfiFwdr�wd�Kn+w�n�bdm¤rucf��cflqn�bwdg�wd�Mg1rum¤g1��wd�Mm¤g+bdc��1cfiKn1l
rxwubdjMkywdjBbdmSt`wd�Bcfr\kDg1iMiBmDkowdcfgSi�cfr\n1k5�McfmD£?m�pTeYvT��mobd�1c�iB�¦wd�Mm¤�qbdmDm�mDiKpsr�¡%c�wd��wd�Mg1rum�g1��n¦rxw5n+wdcfk¯k�n1�
rxwubdjMkywdjBbdmSt1¡%�Mcfky��c�r�n&ru��n+lflM�Kn+c�bd�Mcfi�lfgFgS��g+�Hrucf¬Dm���gSjsb���ÃK£?m �Mn1c�bdm�pHtS��g1jBb<jMiB�Kn1c�bdm�p\n1iMp\ÃK£?m��Kn1c�bdm�p
eKn+rumDr5�y×`��jBbuwd�Mmybd��g1bdmSt3wÖ¡�gGjMiB�Kn+cfbdmDpTeKn+rumDrn+bdm�n1pMpsm�p·wdg�wd�Mm\wP¡ gGbdmo��n1cfiMcfiM����bdmom�mDiKpsr�g1��m�n+ky�
rujMeBrxwubdjMkowdjsbdm�c�� c�w�kDgSiFw5n1cfiBr|n\eMjMlf�1mpBc�bdmDkowdl�vGn+��wdmyb�wd�Bm�ÃMbdrxw%eMn1rum��Kn+c�b��

Â�m%��g1jMiMp�wd�Mn+w wd�Bmobdm&n�bdm�rugS��m�rxwubdjMkywdjBbdmDr�psc�Ø�kDjMl�w wdg\pBmoruc��1iGeFv�jBruc�iB��wd�Bcfr�n1�B�Bbdg?n+ky�3��� �Mcfr
cfr wd�Mm�k�n+rumStS��g1b<mo°Bn1���MlfmSt+��g+b�rxwubdjBkowdjBbdmor c�i\¡%�Mcfky�\wÖ¡ g&l�gFg1�Mr�n+bdm%rumD�Mn+b5n�wdm�p�eFv\n&£?mobuvru�Bg1buw�rxwdmD�¦�
Ù�jsw\c�w\cfr\�hg1ruruc�eBlfm¯wdg#cf���Bbdg�£?m\wd�Mm��hmobu��g+bd��n1iBkDm�g1�%wd�Mm�n+lf�Sg1bdc�wd�B��eFvTc�iFwubdgYpsjMkDcfiM�¦n#psvsiKn+��c�k
k�n+�¦rxwubdjMkowdjsbdm�n1iMp¦psvsiMn1��cfk�pBn1iM�1lfc�iB��mDiKpsr%c�i�g1b5psmob|wdg�kobdm�n+wdm�rxwubdjBkowdjBb5n+lOehg1jMiMpMn+buv¯kDg1iKpscfwdcfg1iMr
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Data Mining Atomic Motions from Computer 
Simulations of Nucleic Acids: A Wavelet Study of the 
Differential Bending of d[GA4T4C]n and d[GT4A4C]n 

 
Elijah Gregory1, Thomas E. Cheatham, III2 and  Julio C. Facelli3 

 
Keywords: Wavelet Transform, DNA, Molecular Dynamics, A-tract bending 
 

1 Introduction.  
 
The precise structural effect and role of A-tracts in DNA bending at the molecular level is not fully 
understood [2] and [3].   Anomalous runtimes in gel experiments suggest that DNA is bent by 
~17-21º per A-tract in the direction of the minor groove at the center of the A-tract stretches, but do 
not provide molecular details.  Various experimental techniques, ranging from crystallography to 
NMR and Raman spectroscopy have probed the nature of A-tract bending; however significant 
controversy regarding the molecular picture is still evident.  Our goal has been to apply advanced 
atomistic simulation methods and novel analysis methods to provide better microscopic insight.  
One of these methods is wavelet analysis.  Wavelet analysis is a well proven tool to extract regular 
patterns in time series [1]  that may provide the desired information on the microscopic behavior of 
DNA without the biases associated with the manual analysis of extensive molecular dynamic 
simulations.  In this poster we present our first attempt to use wavelet transforms to extract 
motional patterns in DNA simulations of phased A-tract DNA sequences.  Contrary to the 
interpretation of the mobility experiments which suggest that A4T4 repeats move faster than T4A4 
repeats due to enhanced bending in the former, our results suggest that the T4A4 repeats move 
slower due to enhanced interaction with the gel matrix. 
 
2 Simulations. 
 
A series of five sets of ~40 ns-lengths molecular dynamics (MD) simulations were 
performed on two models of phased A-tract DNA sequences in various salt environments 
using the AMBER suite of simulation programs.  The sequences studied were 
d[CGA4T4CGA4T4CG]2 (A4T4) and d[CGT4A4CGT4A4CG]2 (T4A4) in explicit TIP3P 
solvent with varying salt concentrations (~200 mM) and identities (NaCl vs. KCl with 
Mg2+) using the Cornell et. al force field, more recent variants, and varied ion parameters.  
All simulations utilized the particle mesh Ewald method in truncated octahedral unit cells 
for proper treatment of the long ranged electrostatic interactions and conservative model 
building (based on fiber B-DNA models of Arnott) and equilibration procedures.  
Preliminary results on one of these sets of simulations is discussed in our previous work 
[2].  In each of these simulations, contrary to what has been seen in earlier simulation work, we do 
not observe stronger bending in the A4T4 repeat compared to the T4A4 repeat. The wavelet analysis 
was done using the wavelet toolbox of MATLAB version 6.  In the analysis we used Morlet 
wavelets with scales ranging from 1 to 511, calculating every other scale.  A pass band center 
frequency of 0.8519 Hz was used in the calculation of the frequencies [1]. 
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3 Results and Discussion. 
 
Figure 1 shows the spectral power of the wavelet analysis of the simulations of the T4A4 and A4T4 
sequences. From the figure it is apparent that T4A4 is significantly more dynamic than A4T4 on the 
nanosecond time scale.  In particular, the strong resonances at ~2.7 10+11 and 2.2 10+9 Hz suggest that 
T4A4 has significant mobility at these frequencies. This suggests an alternate interpretation of the 
anomalous mobilities due to enhanced mobility of T4A4 rather than greater bending of A4T4.  Our 
results indicate that T4A4, on average, is less bent than A4T4, but T4A4 undergoes faster bending 
oscillations.  These fast oscillations effectively increase the area that the DNA fragment presents to 
the gel and can explain why the T4A4 presents anomalous larger retention times in gels. 
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Figure 1: Comparison of the spectral power as function of wavelet 
pseudo frequency for the T4A4 and A4T4 simulations. 
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The Alternative Splicing Gallery (ASG) – Visualizing
Gene Structure and Alternative Splicing

Jeremy Leipzig1, Steffen Heber1

Keywords: splicing graph, alternative splicing, EST assembly

1 Introduction.

Alternative splicing is a major link between the estimated 30,000 genes and the myriad of proteins
found in humans [1]. Existing ab initio gene prediction programs only infer information about one
or a small number of most likely transcripts.  The majority of evidence for alternative splicing and
gene structure originates from the analysis of large collections of full-length mRNAs and expressed
sequences tags (ESTs).

Conventionally, this transcript data is clustered into gene-specific sets and stored in gene indices.
Due to the fragmentary nature and inconsistent quality of ESTs, biologists often assemble them into
consensus sequences before using them for further analyses. In the presence of alternative splicing,
this practice might yield a large number of consensus sequences and analyzing them in a case-by-
case fashion is often very inefficient and error-prone.

We use a different approach and integrate all transcripts derived from a gene into a single splicing
graph. Each transcript corresponds to a path in the graph, and alternative splicing is displayed by
bifurcations. Loosely speaking, splicing graphs are built by ‘projecting’ transcribed sequences onto
their genomic templates and ‘overlaying’ these projections [2]. Our approach integrates the
information of all (even divergent) transcripts of a gene into a single, uniquely defined data
structure, rather than handling them separately. This representation preserves the relationships
between different splicing variants and allows us to systematically investigate all possible putative
transcripts.

2 Material and Methods.

We built splicing graphs for all known human ENSEMBL genes based on transcript information
derived from ENSEMBL, RefSeq, UniGene, and TIGR human EST databases. We analyzed these
graphs for alternative splicing events (Table 1) and developed the Alternative Splicing Gallery
(ASG), a web-based visualization tool (http://statgen.ncsu.edu/asg, Figure 1, [3]). ASG allows users
to display splicing graphs, to interactively assemble transcripts, and to access their sequences. We
constructed for each gene (except for 89 genes having more than 5000 assemblies each) an
exhaustive precomputed catalog of putative transcripts – in total more than 1.2 million sequences.
We found that about 65% of the investigated genes show evidence for alternative splicing, and in
5% of the cases, a single gene might produce over 100 transcripts.
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Figure 1: Visualization of the splicing graph of the human CBFB gene with Ensembl gene identifier
ENSG00000067955 together with aligned input transcripts, representative transcript reconstructions, and gene
annotation. Some of the transcripts show a small deletion in exon 6 (vertex 7) which is not bordered by splice

sites and therefore not included in the splicing graph.

total number percent of genes number of genes
cassette exons 13466 34.3 7590

alternative 5’ splice sites 4169 16.2 3583
alternative 3’ splice sites 4319 16.0 3533

retained introns 12777 31.0 6856
Table 1:  Tabulation of simple alternative splicing events and number of genes where they are found.
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Type II topoisomerases (Topo II) are essential enzymes common to all organisms. Their cellular 
functions include maintaining the levels of chromosome supercoiling and ensuring proper 
segregation at cell division. Topo II performs strand passage on its substrate DNA. This action has 
been well characterized at the molecular level [2]. Topo II binds a dsDNA segment called the G-
segment, it introduces a double strand break on the G-segment allowing the passage of another 
DNA fragment called the T-segment. The break is resealed, and both T and G segments are 
released. When acting on knotted DNA molecules TopoII is known to unknot DNA below 
thermodynamic equilibrium [3]. That is, the steady-state fraction of knotted molecules produced by 
topoII is much lower that that obtained by random cyclization of linear DNA (which depends only 
on the conformations adopted by DNA in solution)[3]. Different biophysical models have been 
proposed to explain this phenomenon [4][5][6]. 
  
Here we address the question of whether the crossings acted on by topoII are selected at random or 
not (illustrated in Figure 1). Our study is based on Mote-Carlo computer simulations of DNA 
unknotting.   

 
 

Figure 1: The figure shows two possible strand-passage events on a 7-crossing twist knot K. The pathway on 
the left indicates one strand-passage at the location “1” taking the 7-crossing K to the unknot in one step. The 
pathway on the right converts K into a 5-crossing knot by performing strand-passage at the location “2”, thus 

three of these events are required to reach the unknot. 
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We model the action of topo II as a finite state Markov chain in which each state is a knot type 
(with crossing number less than 8) and whose transition probabilities are estimated by Monte-Carlo 
computer simulations of random strand-passage on knotted molecules of fixed length.  DNA 
molecules are modeled as a polygonal chain in the simple cubic lattice and their state space is 
sampled using the BFACF algorithm [1]. Strand passage simulations are performed symbolically at 
the Dowker-code level (an integer-entry vector whereby each entry is assigned to a crossing on a 
fixed knot projection). To each knot K corresponds an infinite family of Dowker-codes Dk with 
n,n+1,n+2,.. entries where n is the crossing number for K. However to each embedding of the knot 
K, with fixed length L, corresponds a finite subfamily DK,L and a probability distribution PK,L that 
assigns a probability to each Dowker code. We use BFACF to generate the pair (DK,L, PK,L) as a 
function of K and L. Given (DK,L, PK,L), we simulate random strand passage on K. We compute the 
transition probabilities of the Markov chain by repeating the strand-passage simulation until 
convergence is achieved. 
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Analysis of Shotgun Sequence Data from Microbial
Ecosystems
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Until recently, we had no idea whether the ocean contained 10 or 10     species of phage.
In an attempt to rectify this situation, two of us (MB and FR) shotgun sequenced a sample
of DNA extracted from only the viruses present in a 200 liter sample of seawater. Since
we could only sequence a small fraction of what was there (about 1000 fragments of length
approximately 663 bp long), we did not expect any contigs, i.e. any significant part of our
sampled sequences to occur more than once. Much to our surprise, we found several overlaps.
Thus began the collaboration which led to the present work [1].
Our tolerance for deciding that two fragments are portions of the same genome was to
have 98% identity over at least 20 bps. With this criterion, the contig spectrum of the
sample was [1021,17, 2], i.e. there were 1021 fragments that did not overlap with any others,
17 pairs of fragments that overlapped and two groups of three fragments that overlapped
to make three contiguous pieces. Our modeling of the population structure began with the
numbers of contigs expected from sampling one genome n times.
For one genome, predicting the contig spectrum is just the classic Lander-Waterman
problem [2] which gives the following probability that a randomly selected fragment participates
in a q contig

wq = qpq -� 1 (1 —� p)2 (1)

where p is the probability of an overlapwhere

p = 1 —                     —�e� -nx/L = 1 � e -� 0 . 01286n . (2)

Here x = 663 - 20 = 643 is the distance between starting points of sequenced fragments
required for no observed overlap and L = 50000 is the length of the genome. The formula
follows by noting that randomly sampled points on a line are exponentially separated [3] and
a q contig requires q - 1 overlapping fragments surrounded by 2 not overlapping fragments.
The resulting expected number of samples participating in q contigs is nw .
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Our next step was to combine this with simple parametrized models of the rank-abundance
relationship for the population. Assuming that our population consists of n  copies of genome
i, we can infer that the expected number of q contigs for the population is

cq =
M�

i =1

n i wqi (3)

where M is the number of distinct genotypes in the population. Comparing these predictions
with the observed contig spectrum C  enabled us to fit parametrized models of the rank-abundance
relationship. For example, for a power law model

n i = a/b i , 1 £ i £ M, (4)

we were able to find maximum (quasi) likelihood values of a, b, and M. For the fit, the contig
spectrum was taken to be C   = [1021, 34, 6, 0, 0, 0]. Padding with additional zeros for the
higher contigs seemed to have negligible effect.

The quasi likelihood function L was taken to be

log(L ) =
6�

q=1

(cq Cq )2

2� 2
c q

(5)

where the variances � 2
c q were estimated using binomial variances

� 2
c q =

M�

i =1

n i wqi (1 wqi ). (6)

Note that this amounts to minimizing a variance weighted sum squared error, and corresponds
to a quasi-likelihood that is the product of normal distributions. Using the crude
model above, we were able to say with reasonable confidence that the number of distinct
phage genotypes was on the order of only a few thousand. In follow up modeling efforts
we were able calculate the mean and variance of the distribution of q contig values exactly,
but the much more complicated calculations [4] yield almost identical results on a variety of
samples [5, 6].
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A Full-length HIV-1 Integrase: Molecular Modeling
and Molecular Dynamics Simulations
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1 Introduction.

HIV-1 integrase (IN), a 288 amino acid residues protein, is an enzyme catalyzing an integration of
viral DNA into host chromosome. The integration process consists of three steps namely 3’-
processing, strand transfer and integration. [1] IN can also catalyze a disintegration reaction, which is
a reversal of the integration, in vitro. Proteolysis studies show that the IN composes of three domains,
central region (core domain) and two terminal ends (N-terminal and C-terminal domains). [2] The
core region only is sufficient for the disintegration but all three regions are required for integration
process. [3] Consequently, the overall structure composing these three domains provides a potentially
powerful target for rational drug design inhibiting at this process. However, such the structure has not
been experimentally solved yet. The structures of each individual domain were experimentally
elucidated by X-ray crystallography or NMR techniques. [4] There are two crystal structures of two-
domain fragment. The first structure is N-terminal domain connected to core domain. [5] The second
one is a structure of C-terminal domain connected to core domain. [6] In this study, we present a
model of full-length IN. The model structure was built base on two crystal structures of two-domain
fragment. A molecular dynamics (MD) simulation was applied to the model structure of full-length IN
with the aims to obtain the reasonable full-length structure of the enzyme and explore its dynamical
behavior.

2 Computational details.

A. Molecular Modeling

The two crystal structures of two-domain fragment were taken from the Protein Data Bank, 1K6Y and
1EX4. The missing residues (sequence-only) region, which are 47-55 and 140-148 for 1K6Y and 142-
145 for 1EX4, were modeled using the Insight II. The complete two-domain fragment structures were
then superimposed onto each other using the core part as a reference point by the SPDBV program.
The peptide linkage between residues was created and refined using Insight II. An ionization state of
the Asp, Glu, Arg, Lys and His residues were taken into consideration, as well as the positive and
negative charges at N-terminal residue, Phe1, and C-terminal residue, Asp270.

B. MD simulation

All modeled parts were relaxed in order to eliminate bad atomic contacts. The structure was then
solvated in a rectangular box consisting of 12435 explicit water molecules with a dimension of 103.07
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x 64.74 x 77.68 ล 3. The whole system was energy-minimized using 100 steps of steepest descent and
then follows by conjugate gradient for 9900 steps. The system was thermalized for 100 ps and  was
equilibrated for 1 ns. The long-range interaction was treated by a cut off value of 10 ล . The MD
simulation was carried out at 300 K. The external coupling bath with coupling constant of 0.2 ps was
employed. A 2-fs time step was applied with SHAKE. Data containing a set of coordinates of enzyme
structure and water molecules was collected every 100 ps. The energy calculations, as well as MD
simulation and analysis of MD trajectory were explored using the Amber 7.

3 Results.

The stability of the system as well as our model structure was examined by monitoring the
thermodynamics properties; energies and temperature. The mean temperature for the system was
299.85 ฑ  1.28 K. The main chain fluctuation with respect to the equilibrium structure was shown in
Fig. 1. The root-mean-squared deviation (RMSD) for backbone atoms over the MD trajectory was in
the range of 1-4 ล . Among the three domains, the C-terminal domain has highest flexibility thus
providing the main contribution to the RMSD of all domains.
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Figure 1: RMSD over the 2-ns MD trajectory.
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1 Introduction.  
 
Biopathway databases have been developed, such as KEGG [1] and EcoCyc [2], that compile 
interaction structures of biopathways together with biological annotations. However, these 
biopathways are not directly editable and simulatable on a personalized environment. Thus, we are 
developing an application called BioPathway Executer (BPE) [3] that reconstructs these two major 
biopathway databases to XML formats of modeling and simulation platforms. BPE is developed 
with JAVA and has a database of executable biopathways that integrates some parts of biopathway 
information, KEGG and BioCyc, and other databases, e.g. MIPS and BRENDA. Currently, BPE 
employs the XML format (GONML) of a Hybrid Functional Petri net (HFPN) for the output. The 
features of HFPN are: (i) biopathways that contain discrete and continuous processes can be 
modeled, (ii) all biopathways that are modeled with ordinary differential equations (ODEs) can be 
remodeled, (iii) biopathways can be modeled while keeping human readability. Other XML formats 
of biopathways, SBML [4] and CellML [5] can be described as subsets of GONML. Thus, BPE can 
bridge major biopathway databases and major modeling and simulating softwares. 
 

 

2 Results and Discussion.  
 
To demonstrate the effectiveness/usability of BPE, two examples are created and simulated on 
Genomic Object Net [6] which is based on the HFPN architecture [7,8,9]. Fig. 1(a) is a snapshot of 
the executable large-scale metabolic pathway with 2D plotting graphs and animations by BPE. The 
map compiles thirty maps that are categorized into carbohydrate metabolism in KEGG. The 
executable map contains more than 10000 HFPN components. Many substrates and products exist 
on the map but not displayed, because they are also removed in original KEGG map for human 
readability. Fig. 1(b) is an executable metabolic pathway with gene regulatory networks. The 
biopathway consists of right and left boxed parts. The right part is a metabolic pathway created by 
BPE. The pathway consists of two KEGG maps: glycolysis/gluconeogenesis and galactose 
metabolism. The left part is the gene regulatory network of lac operon that is modeled by a user. 
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These examples show that BPE is a useful tool for integrating biopathway databases for large-scale 
modeling and simulation. 

 
 

    
 

(a)      (b) 
 

Figure 1: (a) KEGG 2nd metabolic pathway map recreated with the BPE. (b) A BPE generated metabolic 
pathway with gene regulatory networks. 
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Monte-Carlo Simulation of Metabolic Fluxes: 
Implications for Making Informative Experimental 
Measurements and Evaluating Systemic Impact of 

Enzymopathies 
 

Jan Schellenberger1, Nathan D. Price2, Bernhard O. Palsson3 
 
Keywords: metabolic network, constraint-based modeling, erythrocyte 
 
Abstract 
 

 Genome-scale models provide a concise representation of available data about a
biological process and can provide predictions of cellular behaviors which are difficult to observe.
Constraint-based modeling is an approach that constrains cellular behavior through the imposition
of physico-chemical laws, resulting in a solution space in which a cell’s behavior must lie. 
Uniform random sampling of this constrained solution space allows for the unbiased appraisal of
the implications of the imposed physico-chemical constraints upon the reconstructed metabolic
network.  The in silico sampling procedure was applied to the steady state flux space of the human
red blood cell metabolic network under simulated physiologic conditions yielded the following key 
results: 1) probability distributions for all metabolic fluxes were computed for all fluxes and
showed a wide variety of shapes that could not have been inferred without computation; 2)
correlation coefficients were calculated between all fluxes, determining the level of independence
between any two fluxes, and identifying highly correlated reaction sets; and 3) the system-wide 
effects of the change in one (or a few) variables  (i.e. a simulated enzymopathy or setting a flux 
range based on measurements of physiological considerations) were computed, showing that not
only do the ranges allowed to various fluxes change, but also their probability distributions and the
correlations between metabolic fluxes.  Taken together, this in silico sampling procedure provides a 
maturing of the constraint-based approach to modeling by allowing for the unbiased and detailed
assessment of the impact of the applied constraints on the reconstructed network. 
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Figure 1. Algorithm for boxing in 
solution space with parallelepiped and 
generating uniform random samples.  
A simple flux split was used as an 
example to demonstrate how the in 
silico sampling procure works (A).  
The two dimensional null space is 
constrained by the Vmax planes 
corresponding to the three reactions in 
the network (B).  Once the null space 
is capped off by the reaction Vmax
values, combinations choosing two of 
the three sets of parallel constraints 
leads to forming three potential 
parallelepipeds (C).  The smallest of 
these parallelepipeds is chosen and 
uniform random points within the 
parallelepiped are generated (D) 
based on uniform weightings on the 
basis vectors defining the 
parallelepiped (shown as black 
arrows).  Points within the solution 
space are kept and those that fall out 
of the solution space are discarded.  
The fraction of the points generated 
inside the parallelepiped that fall 
within the solution space is called the 
“hit fraction.”   The hit fraction 
multiplied by the volume of the 
parallelepiped yields the volume of the 
solution space.
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Figure 2: Probability flux 
distributions for human red 
blood cell.

The red blood cell model 
with maximum flux 
constraints was sampled 
using the in silico
algorithm.  The histograms 
next to each reaction 
represents the number of 
solutions satisfying the 
constraint conditions at 
each flux value.  This gives 
information about the 
solution space’s sensitivity 
to each constraint. 
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1 Background  
 

Tremendous advances in molecular biology, both in understanding and developing of high 
throughput data acquisition techniques such as mass spectrometry, provide ample support for studying 
complex biological control networks [2, 3].  Even with recent substantial advances in data 
management, genomics, and robotics, the discovery of new pharmaceutical agents has not accelerated 
over the last few years.  Although the drug industry may approach a saturation point for single 
targeted drugs, simple drug treatments that effectively target a control network still hold a great deal 
of promise[4].  Mathematical simulations of these complex networks provide researchers a means of 
linking the biochemistry of a reaction pathway to not only the resulting healthy phenotype but also to 
the dysfunctional disease state[5-7].  While still in its early years, the principles of Systems Biology 
could have profound effects leading to more hypothesis-driven research in drug discovery [8] and 
other medical treatments. 

Sphingolipids perform a wide variety of biological functions:  formation of specialized 
structures, participation in cell-cell and cell-substratum interactions, modulation of the behavior of 
cellular proteins and receptors, and signal transduction both as extracellular agonists and intracellular 
mediators.  They are synthesized de novo via a common sphingoid base backbone (sphinganine) that 
is modified to produce ceramides and more complex phospho- and glycosphingolipids, some of which 
are covalently attached to proteins[1].  The many known functions with complex undetermined 
consequences make sphingolipid pathways an excellent choice to study with new modeling techniques 
such as system approaches. 

 
2 System Development  
 

The goal of this research is to develop system approach for biology discovery. Specifically, we 
want to quantitatively characterize the sphingolipid metabolism pathway in order to understand their 
roles in normal physiological processes and investigate possible treatment options for a variety of 
diseases including cancer.  As shown in Figure 1, first, the latest proposed sphingolipid metabolism 
pathways are carefully examined and evaluated to insure adequate experimental design. The focus 
then shifts to developing optimized mass spectrometry protocols to obtain accurate measurements of 
the sphingolipid composition of cultured cells at distinct time points.  After the data is collected, the 
experimental results are stored in a database and are managed by DBMS. The governing system 
equations are formed, and the parameters are identified through a series of regression sequences. Then 
a time-based dynamical simulation is created. The simulation offers powerful insight into the 
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mysterious nature of the biological pathway and initiates an iterative process, in which new 
hypotheses can be quickly formulated and then validated at the bench.   
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Because of the size and complexity of this pathway, 3-D visualization tools are designed and 
implemented to enhance understanding of the biological process and to reformulate hypotheses.  

 

3 Future Work  
 

This system was initially built with a series of nonlinear forward flux equations as the 
mathematical model governing each reaction.  Then the biological relevance and accuracy of the 
predictive equations were improved by including well-documented factors such as enzyme 
dependence and the reversible nature of reactions.  Ultimately, the goal is to extend the integrated 
experimental and modeling methodologies illustrated in sphingolipid metabolism study to other 
complex biological process studies such as signal transduction or gene regulation.  Another feature of 
our research is that the 3-D information representation enables the users to orchestrate the 
simulated pathway in real time.       
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1 Introduction.   
 
DNA microarrays, among the most rapidly growing tools for genome analysis, are introducing a 
paradigmatic change in biology by shifting experimental approaches from single gene studies to 
genome-level analyses. Increasingly accessible microarray platforms allow the rapid generation of 
large expression datasets. One of the key challenges of microarray studies is to derive biological 
insights from the unprecedented quantities of data on gene-expression patterns. Partitioning genes into 
closely related groups has become an element of practically all analyses of microarray data [1]. A 
number of computer algorithms have been developed for this task. Although these algorithms have 
demonstrated their usefulness for gene clustering, some basic problems remain. We modified the 
Bond Energy Algorithm (BEA), which is widely accepted in psychology and database design but is 
virtually unknown in bioinformatics, to cluster genes by functional keyword associations. The results 
showed that BEA outperformed k-means clustering by correctly assigning 25 of 26 genes in a test set 
of four known gene groups. To evaluate the effectiveness of BEA for clustering genes identified by 
microarray profiles, 44 yeast genes that are differentially expressed during the cell cycle and have 
been widely studied in the literature were used as a second test set. Again, BEA performed better than 
k-means. BEA is simple to implement and provides a powerful approach to clustering genes or to any 
clustering problem where starting matrices are available from experimental observations.  
 

 
2 Methods.  
 
We used statistical methods to extract keywords from MEDLINE citations, based on the work of 
Andrade and Valencia [2].  This method estimates the significance of words by comparing the 
frequency of words in a given gene-related set (Query Set) of abstracts with their frequency in a 
background set of abstracts. We modified the original method by using a different background set, a 
different stemming algorithm (Porter’s stemmer), and a customized stop list. The output of the 
keyword selection for all genes in each Test Set is represented as a sparse keyword (rows) x gene 
(columns) matrix with cells containing z-scores; the z-score value was set to zero if the value was less 
than a specified threshold. The sparse matrix was then converted to a gene x gene matrix with the 
cells containing the sum of products of z-scores for shared keywords. Larger values reflect stronger 
and more extensive keyword associations between gene-gene pairs. The Bond Energy Algorithm 
(BEA) takes a symmetric matrix as input, permutes its rows and columns, and generates a sorted 
matrix, which is then partitioned to form a clustered matrix with well-defined boundaries between 
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clusters[3]. 
 
We compared the quality of clusters produced by BEA and k-means clustering algorithms by 
measuring the quality of the resulting clusters using established metrics (purity, entropy, and mutual 
information). 
 
3 Results.  
 
To determine whether keyword associations could be used to group genes appropriately, we first 
clustered 26 genes with both BEA and k-means. The 26 genes belong to four well-defined functional 
groups consisting of ten glutamate receptor subunits, seven enzymes in catecholamine metabolism, 
five cytoskeletal proteins and four enzymes in tyrosine and phenylalanine synthesis. The gene names 
are listed in Table 1. The BEA clustering algorithm, with z-score threshold = 10, correctly assigned 25 
of 26 genes to the appropriate cluster based on the strength of keyword associations.  Tyrosine 
transaminase was the only outlier. While BEA produced clusters very similar to the original functional 
classes, those produced by k-means did not reproduce the functional groups in Table 1. 

 
Glutamate receptor channels 

 
1. GluR1 
2. GluR2 
3. GluR3 
4. GluR4 
5. GluR6  

6. KA1  
7. KA2  
8. NMDA-R1 
9. NMDA-R2A 
10. NMDA-R2B 

Cytoskeletal proteins 
1. Actin 
2. Alpha-tubulin  
3. Beta-tubulin  
4. Alpha-spectrin  
5. Dynein 

 

Catecholamine synthetic enzymes 
1. Tyrosine hydroxylase 
2. DOPA decarboxylase 
3. Dopamine beta-hydroxylase 
4. Phenethanolamine N-methyltransferase 
5. Monoamine oxidase A 
6. Monoamine oxidase B 
7. Catechol-O-methyltransferase 

Enzymes in tyrosine and phenylalanine 
synthesis 

1. Chorismate mutase 
2. Prephenate dehydratase 
3. Prephenate dehydrogenase 
4. Tyrosine transaminase 

 
Table 1: Gene sets manually clustered based on functional similarity. 

 
Second, to determine whether our test mining/gene clustering approach could be used to group genes 
identified in microarray experiments, we clustered 44 yeast genes taken from [4] via [1], using BEA 
and k-means. Again, BEA outperformed k-means.  
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1 Introduction.   
 
With the advances of human genome research and various sequencing projects, large volume of sequence data and their 
annotations have been generated.  Recent progress of proteomics will generate even larger amount of data.  To better 
extract biological signals from these data will require a new generation of software tools that can (1) integrate different 
tools from different data sources, and (2) allow users to visualize the final results.  One such tool is genome browser, 
which allows users to view genomic data at a level higher than pure nucleic acids.  There are already some good genome 
browsers available, such as UCSC genome browser [1] and Ensemble [2], both have rich datasets and viewing tools, and 
can graphically display various annotations.  However, it is also difficult for users to integrate new tools. Also, most of 
the information displayed are mostly pre-computed and static, even though they are updated very quickly, some users 
may need real-time data.   

In this paper, we will present the design and implementation of a web-based integration tool set, GeneBench, 
which uses model-view-controller (MVC) design pattern and can embed laboratory flow concepts implicitly.  The 
tools in GeneBench are loosely coupled and thus it will be easier to add new tools. 

 
2 Results and Discussion. 
 
At present, the central piece of GeneBench is a simple genome browser.  In Figure 1, a snapshot is shown.  Most of 
the selections for datasets or processing are displayed, in tree like, at the left hand side.  For example, a user can either 
choose a human chromosome or open up the chromosome selection display of mouse or rat to select the desired 
chromosome.  At the center, the number of genes in each region is displayed.  The size of the regions may be 
adjusted by zooming in or out.  One can click on the number to view the identity and location of each gene, as shown 
in the bottom right.  If a gene is selected, its detailed information will be shown.  The lower part shows the introns 
and exons location of a selected gene.  The user can then select any combination of introns and exons, each can be in 
either direction, to compose a transcript.  The synthetic protein can then be submitted to selected protein databases for 
domain predictions or other processing.  At the upper part, the results of domain predictions from different database 
are shown.  

A user can also trigger BLAST or other programs to search selected databases.  For example, a user may invoke 
BLAST to search the whole genome of human or other organisms for genes in the same family.  The results may be 
displayed graphically [3].  Although now only BLAST is supported, other programs may be added in the future. 

 
3 Implementation.  
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Figure 1: A display of the genome browser. 
 

The system is now running under Tomcat 4.1 and is implemented using the Struts framework [3], which supports 
MVC design pattern for web applications.  All programs are written in JSP and java.  A small portion of programs 
is adopted from BioJava, e.g., computation of GCContent of the gene.  The genomic datasets and annotations are 
from UCSC Genome Bioinformatics.  The genome sequences are Human Apr2003, mouse Oct2003, and rat 
Jun2003.  Since UCSC has a quite rich datasets and annotations, we hope to incorporate more of them in the future.  
The system can be accessed via http://saturn.ice.cycu.edu.tw:8080/genome/index.jsp . 
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1 Introduction
Homologous chromomes pairing is an important event during meiosis, which is followed
by recombination and proper segregation. How the search for the partner chromosomes is
attained has long been a crucial question in cell biology. During meiotic prophase, telomeres
form a cluster beneath nuclear envelope with a polarized chromosome arrangement. The
arrangement is highly conserved among eukaryotes, and often referred to as “bouquet” [1].
In addition, in fission yeast Schizosaccharomyces pombe, a telomere-led dynamic nuclear
oscillation is observed [2]. Various mutant analyses demonstrated that inhibition of the
bouquet or the nuclear movement shows marked reduction of recombination frequency. The
results indicate that both the bouquet and the nuclear movement facilitate pairing, yet
their direct contributions is not resolved. In this study, therefore, we examined the direct
contributions and mechanisms of the bouquet and nuclear oscillation by making series of
computer simulations.

2 Results
A chromosomes is modeled as a set of beads connected by springs (Fig. 1A). The model
consists of a set of Langevin equations, each of which represents the dynamics of a bead on
the chromosome. Each bead on the string corresponds to a pairing site on a chromosome in
our model.

Based on the model, parameter values were initially estimated. The values related
to the springs were estimated using image data in which chromosomes are visualized by
histone-GFP. The values related to random motion were estimated using image data of
thiabendazole-treated chromosomes in which ade3/lys1 loci were stained. Other values
were estimated from references.

In order to test the validity of the model, we simulated the pairing process. We measured
the time until when all pairing sites on chromosomes undergo pairing, which we call “pairing
time.” As the results, the mean pairing time was 83 min, which was within the observed
time of nuclear movement to continue in vivo (146 min).

To determine the roles of the bouquet and nuclear oscillation against pairing, we simu-
lated the pairing process under three conditions (Fig. 2A–C): (i) with neither bouquet nor
nuclear oscillation; (ii) with bouquet but no nuclear oscillation; and (iii) with both bouquet
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Figure 1: Chromosome model and simulations of pairing process. A. Schematic view
of the chromosome model. B. Snapshots of simulations under condition of telomere
clustering.

and nuclear oscillation. The time needed for all the pairing sites to attain pairing is defined
as “the pairing time”, and is used as a criterion to measure pairing performance. As ex-
pected, we found that the pairing time with condition (ii) was 77% shorter than that with
condition (i), and the pairing time with (iii) was 94% shorter than that with condition (i)
(Fig. 2D). Furthermore, the variation of the pairing time was reduced in both cases. These
results indicate that the bouquet directly shortens the pairing time and also reduces its
scatter, which is further augmented by nuclear oscillation.
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Figure 2: Simulated pairing time under various conditions. A-C. Ratio of paired sites
as a function of time. The superimposed 10 tracks are illustrated under 3 conditions.
D. Mean pairing time and its variance. The error bars represent standard deviations.

Further analyses suggest that the bouquet formation contributes to pairing by (a) spa-
tially constraining the chromosomes in the proximity, and (b) disposing the chromosomes in
a way that all pairing loci lie within closed-end regions. The nuclear oscillation contributes
to pairing probably by aiding the spatial constraint of the chromosomes.

3 Concluding Remarks
In this study, we have examined direct roles and mechanisms of the bouquet and nuclear oscil-
lation upon pairing by computer simulations. In conjunction with cytological and molecular
biology approach, our approach will make a significant contribution to our understanding of
chromosome dynamics.
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1 Introduction.  
 

The human genome encodes 30.000 to 40.000 genes whose expression in space and time reflects the 
ontogenesis of man. To describe the complexity of life by systems biology approaches, novel tools 
have to be developed to visualize and to simulate biological processes within a cell, a tissue or a 
complete organism. To feed virtual models with real data high throughput systems are required which 
allow data acquisition and data integration at the levels of RNA (transcriptomics), proteins 
(proteomics), and metabolites (metabolomics). As part of our initiative si-RNA approaches are 
currently performed to monitor perturbations in time and space. 
 
2 Materials and Methods.  
 
We have established and used a standardized, reproducible culture system for primary hepatocytes 
that may serve as a suitable human model system in systems biology. A broad variety of parameters 
was determined to analyze functional maintenance of human hepatocytes and cellular viability. 
Hepatocellular function was assessed by evaluation of glucose balance, ammonia uptake, and the 
synthesis and secretion of urea and albumin. Lactate dehydrogenase, glutamate pyruvate transaminase 
and glutamate oxalacetate transaminase activities in the culture medium were determined to define 
cellular integrity. For control purposes we followed up on 1.) glycolysis, as a well documented 
"housekeeping" pathway, and analyzed the RNA expression patterns of glycolytic enzymes, 2.) a 
variety of genes known to be expressed specifically in hepatocytes that are indicators for 
hepatocellular function and 3.) a set of genes reflecting proteins involved in signal transduction and 
liver regeneration. Hepatocyte growth factor (HGF) and epidermal growth factor (EGF) were then 
used to modulate cellular gene expression patterns since both growth factors have pleiotropic effects 
and are involved in regulating a variety of cellular pathways. Changes in RNA and protein expression 
patterns were determined by Affymetrix microarrays and two-dimensional gel electrophoresis. Data 
obtained by this means are stored and analysed in our ProteoBase data bank system. 

 
3 Results.  
 
Hepatocyte cultures preserved cellular integrity and maintained stabile hepatocellular functions from 
day 4 to day 10, thus giving us a broad time window to study the effects of exogenously applied 
modulators as well as siRNA. In general, all hepatocyte cultures examined so far were characterized 
by well preserved RNA expression patterns in the pathways chosen as internal controls (glycolysis, 
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signal transduction, membrane receptors, secretory proteins). In most instances, these expression 
patterns remained unchanged in the presence of growth factors. However, HGF and/or EGF 
modulated the expression of a variety of proteins involved in growth, differentiation and motility of 
hepatocytes, thereby confirming the suitability of this culture system as valuable tool in systems 
biology. In addition, even though only a limited number of different donors was available in our 
study, we noticed strong donor-dependent differences in the expression of a number of genes, some of 
them being considered as important players in maintenance of a hepatocytic phenotype. 
 
4  Discussion. 

 
Our initial analyses were performed to confirm the usefulness of primary human hepatocytes in 
studying the physiology of liver functions in vitro. Studying the RNA expression patterns of iso-
enzymes we had to realize that enzymatic activities present in human cells most likely have to be 
assigned to different RNA species that are shown by Affymetrix microarray analysis to be 
expressed concomitantly. This observation demonstrates the complexity of regulatory pathways 
that has to be taken into account once metabolic pathways are going to be modelled and simulated – 
a prerequisite in computational biology. 
  
5  Summary. 

 
The data obtained in this study clearly demonstrate the feasibility of the established human 
hepatocyte culture system as a suitable tool in systems biology. The study also underlines the 
importance and value of high-through-put platform technologies and a laboratory data management 
system that allow data acquisition and data integration at transcriptome, proteome and metabolome 
level. This holds especially in the context of a human systems where inter-individual differences 
itself may modulate the outcome of any given experiment. 
 
6  References and bibliography. 
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1 Introduction. 
 
The Gene Ontology (GO) [1] offers a comprehensive and standardized way to describe a protein's biological role.  
Proteins are annotated with GO terms based on direct or indirect experimental evidence.  Term assignments are 
also inferred from homology and literature mining.  Regardless of the type of evidence used, GO assignments are 
manually curated or electronic.  Unfortunately, manual curation cannot keep pace with the data, available from 
publications and various large experimental datasets. Automated literature-based annotation methods have been 
developed in order to speed up the annotation.  However, they only apply to proteins that have been experimentally 
investigated or have close homologs with sufficient and consistent annotation.  One of the homology-based 
electronic methods for GO annotation is provided by the InterPro database. The InterPro2GO/PFAM2GO [2, 3] 
associates individual protein domains with GO terms and thus can be used to annotate less studied proteins.  
However, protein classification via a single functional domain demands stringency to avoid large number of false 
positives.  This work broadens the basic approach.   
 
2 Materials and Methods. 
 
We model proteins via their entire functional domain content (PFAM domains [4]) and train individual decision 
tree classifiers [5] for each GO term using protein assignments.  In a conservative manner, we use lack of 
assignments of proteins to a term, in combination with other evidence, to generate different kinds of negative 
examples.  We train individual OC1 [5] decision tree classifiers for each GO term using this training set both in 
oblique and in axis-parallel mode. 
 
As a benchmark we compare our results to those generated using a reference list generated by the InterPro 
database.  InterPro2GO associates the protein domains with GO terms [2, 6].  InterPro2GO is the only available 
approach that uses domain information to predict GO terms. InterPro2GO uses a simple association rule: a protein 
domain is associated with a GO term if all proteins associated with the term have that domain. We have used the 
InterPro2GO list to assess the performance of our method by annotating proteins in our testset with GO terms via 
InterPro2GO’s mapping of domains to terms.  Only the InterPro mappings which had corresponding PFAM 
annotations were applied, to properly compare this approach to our technique, which utilized PFAMs. 
 
3 Results. 
 
We demonstrate that our approach is sensitive, specific and precise, as well as fairly robust to sparse data.  We 
have found that our method is more sensitive when compared to the InterPro2GO performance and suffers only 
some precision decrease. In comparison to the InterPro2GO we have improved the sensitivity by 22%, 27% and 
50% for Molecular Function, Biological Process and Cellular GO terms respectively.  
 
Given the relatively small training set, some GO terms will have quite a small number of positive examples. The 
average number of positives is much smaller for the leaf terms (= 4) than the parent terms (= 67), where leaves are 
the nodes in the GO graph that do not have any children. To check how the small number of positives affects the 
performance we have calculated the averaged over the GO terms in the two categories the Precision, Sensitivity 
and Specificity. The average performance for leaves was: Precision = 93.8 ± 21.0, Sensitivity=88.6±25.3, 
Specificity=99.99 ± 0.07. The average performance for parents is: Precision = 88.0 ± 24.0, Sensitivity = 81.7 ± 
25.3, Specificity = 99.6 ± 4.1.  These results show that the performance of the classifier is not affected by a small 
number of positive examples. In fact the leaf terms have on average better performance as we can expect from the 
more detailed level of description given by the leaf terms. Results of our initial investigation show that the 
Decision Tree training approach is a valid and effective method for assigning GO ontology terms to proteins based 
on the domain composition. 
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InterPro2GO Decision Tree 

prec = 91.5 ± 1.8 prec = 82.9 ± 1.3 

sens = 42.6 ± 0.7 sens = 69.1 ± 1.1 

Biological Process spec = 99.9 ± 0.2 spec = 99.9 ± 0.1 

prec = 99.8 ± 3.4 prec = 85.0 ± 1.8 

sens = 34.8 ± 1.0 sens = 84.9 ± 1.8 

Cellular Component spec = 99.9 ± 0.4 spec = 99.8 ± 0.2 

prec = 98.9 ± 2.0 prec = 82.6 ± 1.3 

sens = 58.4 ± 1.0 sens = 81.0 ± 1.3 

Molecular Function sepc = 99.9 ± 0.2 spec = 99.9 ± 0.1 
Table I. Comparison of the performance of the Interpro2Go and Decision Tree approach. All SwissProt proteins from human, 
mouse and yeast annotated in GO are our training set. All SwissProt proteins from D. Melanogaster and C.Elegans constitute the 
test set. 
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Abstract 

Microarray has become a vital tool in functional genomics, providing a high-throughput 
means of genome-wide analyses. Capturing both the data and metadata that is required 
for the interpretation of such analyses is a crucial requirement for today’s biologists. 
Adding in some additional requirements makes writing such a tool an interesting 
challenge. A LIMS is being developing for the Microarray Core Facility Center of 
Delaware Biotechnology Institute. The LIMS was designed to automate the management 
of the Center, easy the use of the facility, store the information of the samples, 
experiments, processes and accounting, and archive the raw image data and the result text 
data. The LIMS uses Oracle 9 DBMS and also has the capability to work with MySQL 
and Postgres DBMS. Object-oriented programming approach with Java is used to build 
the applications and Java Servlet/JSP technology is employed to develop the interface. 
Thus, it achieves high performance, high security and easy deployability. Although it was 
originally designed for the DBI Microarray Center, it is easy to be adapted for any other 
similar microarray facility. 

Introduction 

Microarray technology is having a significant impact on functional genomics research by 
allowing scientists to measure the expression level of thousands of genes simultaneously. 
Due to the complexity of gene expression data, much detailed information besides results 
needs be recorded during the entire laboratory experiments so that the results can be 
appropriately interpreted and compared [1]. Because of the high-throughput nature, a 
central microarray facility needs a Laboratory Information Management System (LIMS) 
for tracking the operation of its instruments, the processes and the experiments. 

LIMS is a system that tracks, manages and stores information associated with a 
laboratory, such as customers, samples, parameters, results, operators, passwords, etc. 
Over the past two decades, LIMS has become the workhorse of the laboratory, 
encompassing laboratory work-flow combined with user input, data collection, 
instrument integration, data analysis, user notification, and delivery of information and 
reporting. The broadly accepted microarray data standard called MIAME requiring much 
detailed information of the study plus security-sensitive accounting information post a 
challenge for development of such laboratory information management system. 
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In this project, the author used the Microarray Core Facility Center at Delaware 
Biotechnology Institute (DBI) as an example and has been developing an integrated 
LIMS for the Center. This project includes three phases: 1. track and record the work-
flow, facilitate the management and easy the access of the voluminous data; 2. integrate 
the management of the inventory; 3. incorporate with analysis software. This reports the 
result of the first phase. 

Architecture 

The LIMS was designed to facilitate the organization, storage, archive and retrieval of 
microarray experiment-associated information and data within a secure environment and 
for ease-of-use and flexibility. The system provides a clear management based on 
accession rights and user roles. All the access to the system is solely through web 
browsers. The laboratory manager (operator) creates a client account and assigns a 
password to the client upon his/her request. Users will receive defined privileges for the 
access of the system. The system will inform the client of the account information by 
sending his/her an email and asks the client to initialize personal and billing information 
in the system. The client can update the information anytime later once the account is 
created by the operator. The client can also check the sample status. The operator will 
process the samples and input experimental conditions. The system will assign the chip 
ID and the coordinates. The operator can update all the experiment-related information 
and also generate reports of clients, samples, experiments, usage and so on anytime. The 
system will automatically record the billing information including the balance according 
to the protocols (Affy GeneChip and customized array), the experimental procedure and 
the operator’s inputs. Once the experiment is done, the raw image files and text files will 
be copied to the data server and the system will inform the cashier of that by sending a 
billing statement. Once the balance is received, the cashier can unclock the client account 
so that the client now can download the results. By default, client accounts are locked if 
there is any balance remained so that the clients will not be able to view and download 
the results. But the cashier has the privilege to intervene that. The system administrator 
has all the privilege to do anything with the system. 

Implementation 

The LIMS is based on a relational database and has the capability to work with Oracle, 
MySQL and Postgres. The database of this example is Oracle 9i in the SUN Solaris 9 OS 
environment. The data processing applications and all the interface are implemented in 
Java according to Java Servlet/JSP technology. 
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A property-based model for lung cancer diagnosis

Alma Barranco-Mendoza1, Deryck R. Persaud2, Verónica Dahl3

Keywords: cancer diagnosis, biomarkers, molecular targets, logic programming, constraint handling
rules, concept formation.

1 Introduction.

To this day, lung cancer remains the leading cause of cancer death for both sexes: almost one-
third of cancer deaths among men and almost one-quarter among women. [1] Survival rates for
lung cancer are low. It is suggested that only about 15% of patients are diagnosed at the early
stages. The average 5-year survival rate for patients that are diagnosed early is 48% compared to
15% for those who were diagnosed at the later stages. [2] It is well known that the survival rates
can be improved by the early detection of pre-invasive lesions, which are believed to be the
possible precursors of malignant tumours. Although new technology is allowing numerous early
lesions to be detected, it is becoming clear that only a small percentage of these will actually
progress to cancer. Currently a lot of work is being done on the image analysis field, however, at
the early development stages of the lesion, the information that can be obtained from lung imaging
analysis (X-ray, CAT scans, MRI, PET scans, etc.) is quite limited. To completely understand the
evolution of normal epithelium into invasive neoplasia would require the understanding of the
genetic relationship of the cells in a pre-invasive neoplastic lesion during the development into
invasive cancer. In recent years, biological research has been done in the area of cancer genetics
that has shown that cancer results from an accumulation of key mutations in expanding clones
originating from tissue-specific stem cells. [3] The recent availability of the human genome
sequence, and the development of high throughput genomic technologies and methods for isolating
selected cell populations have started to give us the opportunities for understanding how human
cancers develop. This information will drastically improve cancer diagnosis and treatment through
the discovery of disease-specific molecular targets. As well, recent research has also been focusing
on the detection of biomarkers obtained from serum and sputum proteomic analysis [4].
Unfortunately, there is not much work done in terms of computational tools to assist in the analysis
of all the genetic and molecular information in addition to the radiological, serum and sputum data
that could determine with better accuracy whether an early lesion would progress into cancer or
not. As well, for a system to be more valuable it should be able to provide some kind of diagnosis
even if given incomplete patient information, as not all tests can or will be done on said patient.
Our research intends to address this with the development of a multidisciplinary property-based
model for early lung cancer diagnosis.

2 Concept Formation Rules

Concept Formation Rules (CFR) [5] is a directly executable new cognitive model of knowledge
construction inspired in constructivist theory as well as in recent natural language processing
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methodologies. This system accommodates user definition of properties between concepts as well as
user commands to relax their enforcement; accepts concept formation from concepts that violate
principles that have been declared as relaxable, and produces a list of satisfied properties and a list of
violated properties as a side effect of the normal operation of the rules.
We have used CFR to implement our model for lung cancer diagnosis. As part of the input concepts it
accepts the patient’s age, smoking history, malignancy history, radiological, serum and sputum data.
The knowledge store includes the properties that should be evaluated for each input data element as
well as the relations amongst them. The diagnosis is given as a probability of cancer that is calculated
as a function of the concepts used in the analysis. As well, the diagnosis will list those diagnostic
properties that were satisfied and those that were not.  For example:

const(Prob),age(x,A),history(x,smoker,T),serum_data(x,marker_type,in_range)<=>
marker(x,marker_type,in_range,P,B),acceptable(marker(x,marker_type,in_range, P),B),

probability(P,Prob,x, B) acceptable(probability(P,Prob,x),B)| possible_lung_cancer(yes,Prob,x).

relax(marker(x,marker_type,in_range,P,B)).

This rule evaluates for a patient x if a specific biomarker, marker_type, found in serum data is within a
certain value range for a patient with an age of A who is a type T smoker (T depends on the number
of cigarettes or cigars smoked daily). If true, then the diagnosis of possible lung cancer is going to be
true with a probability increase of P (where P is a function of the patient’s age, health history, and this
particular biomarker presence).  But if we relax the requirement of the presence of the biomarker, then
the system can evaluate patient records that do not have this particular information and report in the
diagnosis listing that this information was not included in the record, which could be valuable
information as recommended follow-up tests for that particular patient.
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Motif Preservation in Biochemical Pathways
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1 Introduction.

Large biochemical networks are usually derived and analyzed by focusing on the properties
of their sub-networks, which are often functionally important for the system. In doing so,
the implicit assumption is that these smaller networks can then be put together in a modular
fashion, treating each module as a black box, and that the properties are scale-independent
and still hold for the whole system.

It has been recently proposed [3] that subgraphs in biochemical networks which oc-
cur more often than expected could be elementary functional building blocks. Such over-
represented subgraphs, or network motifs, represent systematic properties of networks. Here
we ask the above question restricted to network motifs: we sought to compare the inci-
dence of over-represented subgraphs in individual pathways to that of an organism’s whole
biochemical network.

2 Data and Methods.

We retrieved all forty-eight available biochemical pathways for E. coli from the KEGG
database [2]. These pathways are models for common biochemical functions and are studied
as separate modular entities. They range in size from 6 to 38 nodes. Connected together
they comprise a network of 503 nodes. We looked for 3 and 4 node motifs in both the
individual pathways and their merge, using the software used by Milo et al. [3].

3 Results and Discussion.

Figure 1 shows for the five most over-represented 3-motifs (in the individual pathways).
The figure also shows the number of pathways (out of 48) in which each subgraph was a
statistically significant motif. The motifs that scored highest in the merged network are
marked with a star, and their corresponding z-scores (in the composite network) are shown
below them.

The strongest motifs do in fact correspond to the motifs found in the composite pathway.
The results above make the case that separating the E. coli network into pathways does not
change the network motifs detected, a result that is both intuitive and desirable.

In the future, we intend to test a randomly modularized set of pathways in order to asses
if the systemic properties are preserved better within functional units (pathways) or are in-
dependent of both function and scale. Additionally, we are studying different organisms and
different types of networks looking to establish scale invariance of functional sub-networks
as an evolutionary imperative across biological systems.

∗Corresponding author. E-mail: saul@cs.ucdavis.edu

1Department of Computer Science, 2063 Kemper Hall, University of California, Davis, 1 Shields
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Figure 1: The number of trials out of 48 that each motif scored in the top 20% of subgraphs.
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