
27 March 2005

Pairwise Sequence Comparison
Evaluation Tools

 Copyright (c) 2002-2005
Ed Green <ed@compbio.berkeley.edu>,

Gavin Price <gavin@compbio.berkeley.edu>,
Gavin Crooks <gec@threeplusone.com>,

Steven Brenner <brenner@compbio.berkeley.edu>
University of California, Berkeley

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

This is the MIT Open Source License
http://www.opensource.org/licenses/mit-license.html

Summary of Contents

I. Obtain

II. Install

III. Look

IV. Understand

V. Use (the impatient should start here)

VI. Complain

I. Obtain

The most recent version of this software can be obtained by visiting
http://compbio.berkeley.edu/people/ed

To make full use of this software, you will also need to get and install the
following perl modules. You can get these from http://www.cpan.org

1. Math::Random::MT
2. Math::Round
3. Statistics::Descriptive
4. Bioperl

To make the plots described in the examples, you will need to install gnuplot.
You can get that from http://www.gnuplot.info

You may also want to look at the plots. That will require a postscript viewer, like
ghostscript, gv, or ggv.

3

II. Install

This package was developed and used under Perl-5.6.1 and Perl-5.8.2 and
RedHat Linux 7.3 and RedHat Linux 9.0. I can't think of any reason why this
code wouldn't work in other environments, but make no claims that it will.

Installation is very straigtforward. Just do this:

gzip d psce.tar.gz
tar xvf psce.tar

Then, add the psce/bin/ directory to your PATH, so that you can call these
programs from the command line without having to specify the complete path.

The modules that these programs use are in the psce/pms/ subdirectory. You
will need to make sure that the modules are in your perl @INC when you run
these programs. One easy way to do that is to add the psce/pms/ directory to
your enviromental variable, PERL5LIB.

For example, if you unpacked this package in your home directory, /home/me/,
and your shell is tcsh, you could do this:

setenv PERL5LIB /home/me/psce/pms:$PERL5LIB

For added convenience, add the above line to your .tcshrc file.

That's it!

The shabang lines of these scripts is

#!/usr/bin/env perl

This is a pretty good way of calling perl in various environments, but you may
have a reason to change this. If so, go ahead.

Running any of the scripts without arguments describes their invocation syntax.

4

III. Look

This package contains many tools and example data for performing some of the
analyses described in

Green RE and Brenner SE, "Bootstrapping and
normalization for enhanced evaluations of pairwise
alignment methods", 2002, Proc IEEE.

and

Price GA, Crooks GA, Green RE, and Brenner SE,
"Statistical Evaluation of Pairwise Sequence Comparison
with the Bayesian Bootstrap" (in prep)

Programs in psce/bin/
More detailed usage information can be had by invoking any of these without
parameters.

astral_stats.pl
Gives some basic information about the size and superfamily content of an astral
database.

concertedBootStrap.pl
Takes as input one or more dbvdbsum.pl output files and generates a user-
defined number of Bayesian bootstrap replications.

cve_automator.pl
Runs cve_maker.pl multiple times to generate CVE data on the bootstrap
replicates generated from concertedBootStrap.pl

cve_maker.pl
Generates CVE data from a dbvdbsum.pl output file.

dbvdbsum.pl
Summarizes the results of a database versus database search.

diffDist.pl
Performs statistical tests of the difference between two Bayesian bootstrap
distributions.

e_finder.pl
Generates a list of the hits from a database versus database search above a
given errors per query rate.

5

EPQvScore.pl
Generates a comparison of the observed rate of false-positive generation and
the e-value statistical scores of a given pairwise comparison method. Used to
evaluate the statistical scoring routine of that paiwise comparison method.

maxCov.pl
Generates a list of coverages at a given error rate given a set of cve_maker.pl
output files.

seq_diff.pl
Displays the number of hits unique to one pairwise comparison method relative
to another pairwise comparison method. Requires the output of e_finder.pl.

sfSizeDist.pl
Generates a distribution of superfamily sizes within an input ASTRAL database.

sfSizePerf.pl
Generates data showing how well a given pairwise comparison method was able
to find the relations within superfamilies of increasing size.

splitAstralByFold.pl
Splits an ASTRAL database into two rougly equally sized databases. Useful for
creating a training database to train parameters and a test database to test
methods. This helps avoid over-fitting parameters to a particular dataset.

Modules in psce/pms/
More detailed information about each of these can be had using perldoc.

BBNorm.pm
Contains methods for doing the Bayesian bootstrap.

DBVDB.pm
Parses dbvdbsum.pl output and makes the data available through its methods.

FamNorm.pm
An module that takes an ASTRAL database as input and analyzes the
superfamily level relations within it.

6

IV. Understand

Below is a general flow-chart of the steps in evaluating pairwise sequence
comparison methods:

1. Get to know your datasets.

2. Do the database versus database search with whatever method, matrix,
parameter set, etc. that you want to evaluate.
You're on your own for this part. The only requirements are that all sequences
in the database be used, individually, as query to search the database and that
each of these queries generates a discrete output file. Also, these output files
must be accessible by recursively descending down from a single subdirectory,
i.e., they can't be all over the place. The easiest way to do this is just write them
all to a single directory.

3. Run dbvdbsum.pl.
This program summarizes the results of your database versus database search.
For an example of its output, check out psce/ex/blast.sum

In short, it looks at the ASTRAL database you used and figures how many hits
you should find. Then it goes through all your output files and writes a single line
per hit. Each of these lines has the query sequence id, the id of the sequence
that was hit, the e-value of the hit, a number between 0 and 3 indicating the level
of SCOP relatedness between these two sequences, and then the weighting
factors for normalization. The file formats supported for parsing are currently
pretty limited, but it's easy enough to add more. Just add another entry to the %
FORMATS at the beginning, then in processThisResult(), add another elsif
clause for whatever output format your method writes and parse it accordingly.
Alternatively, you can write your own code for generating this file. Its format is
simple and the module, FamNorm.pm, will help you generate the information in
the header lines.

4. Run cve_maker.pl and plot the ouput.
This program generates the CVE data. It also reports each false positive hit.

5. Bootstrap the output using concertedBootstrap.pl.
Perform both a Bayesian and standard bootstrap.

6. Make CVE files for each bootstrap file with cve_automator.pl.

7. Analyze the bootstrap distributions.

7

V. Use

NOTE: To generate the plots described in this section, you'll need gnuplot
(http://www.gnuplot.info/). If you don't have gnuplot, go get it.

This section describes, by example, the analyses you can do with these tools.
This purpose of this document is to show you how to use this software, not to
explain why you would want to. If you would like an answer to that question, see

http://compbio.berkeley.edu/people/ed/SeqCompEval

Before we begin the tutorial, notice that I've included all of the output files that
are generated by this tutorial. One way to use this tutorial is to just look at the
commands and the output that is generated by each without actually executing
the command. Or, you can follow along and type in the commands. Be aware,
though, that if something goes wrong, you may over-write the given output with
something else. No big deal, just something to think about.

To start, go to the psce/db/ subdirectory and look for a file called
astral1.6140.fa. This file comes from the ASTRAL database of
sequences (http://astral.berkeley.edu).
This means that these sequences derive from solved structures and have been
classified in SCOP (http://scop.mrc-lmb.cam.ac.uk/scop/).

What does all that mean? It means that the evolutionary relationships between
all these sequences are known. If you take a look at this file, you'll see the first
sequence, d1dlwa_, is followed by the SCOP classification string a.1.1.1. This
string tells us that d1dlwa_ has been classified thusly:

class: (a) All alpha proteins
fold: (1) globin-like
superfamily: (1) globin-like
family: (1) truncated hemoglobin

The classification represented by this string lets us relate d1dlwa_ to all the
other domain sequences in this database.

This database, astral1.6140.fa comes from version 1.61 of the ASTRAL
database, filtered at 40% id. You could go to astral.berkeley.edu and download
these sequences yourself, but I've already done it for you. The database was
further processed with the seg program to remove low-complexity regions.
Specifically, seg was called like this:
seg w 12 t 1.8 e 2.0 xT

Don't worry if you don't have the seg program. I've included the output of this

8

filtering: astral1.6140.s.fa.
Now, let's split that database into two non-overlapping databases with the
program splitAstralByFold.pl

$ splitAstralByFold.pl d astral1.6140.s.fa

This creates two non-overlapping databases, with the .A and .B suffixes. This is
a good thing to do if you want to train some sequence comparison method on
one database and then test it on another database to avoid over-fitting
parameters. I did it for this example so we can work with smaller files.

Now, let's have a look at the two smaller databases we've created:
astral1.6340.s.fa.A and astral1.6340.s.fa.B

Run the program astral_stats.pl on each one:
$../bin/astral_stats.pl d astral1.6140.s.fa
For the astral database: astral1.6140.s.fa
There were 4774 sequences.
There were 4310 sequences in superfamilies with
 more than one member
There were 1109 superfamilies.
There were 98722 superfamily level relations

$../bin/astral_stats.pl d astral1.6140.s.fa.A
For the astral database: astral1.6140.s.fa.A
There were 2592 sequences.
There were 2356 sequences in superfamilies with
 more than one member
There were 581 superfamilies.
There were 48864 superfamily level relations

$../bin/astral_stats.pl d astral1.6140.s.fa.B
For the astral database: astral1.6140.s.fa.B
There were 2182 sequences.
There were 1954 sequences in superfamilies with
 more than one member
There were 528 superfamilies.
There were 49858 superfamily level relations

This gives us some general information about each database.

Now, let's look at the distribution of superfamily sizes within the
astral1.6140.s.fa.A database using the sfSizeDist.pl program. Go
to the psce/ex/ subdirectory and run sfSizeDist.pl like this:
$../bin/sfSizeDist.pl a ../db/astral1.6140.s.fa.A >
sfSizeDist/sfSizeDist.dat

9

This makes a data file with the distribution of superfamily sizes. I've written a
gnuplot script that makes a nice graphical output of this data. If you have
gnuplot installed, run the script like this:
$ gnuplot sfSizeDist/sfSizeDist.gs

This makes a nice plot, sfSizeDist/sfSizeDist.eps. Take a look at it with
your favorite postscript viewer and see how most superfamilies have very few
sequences in them. Also, notice that the most populous superfamily size is one.
For our purposes, this is fairly important. The sequences in superfamilies of size
one have no evolutionary relationship to any other sequence in this database.
Therefore, the hits returned when we search the database with these sequences
can only be false positives. They are, in a sense, decoys.

Now that we're familiar with our databases, let's do some evaluation of pairwse
sequence comparison methods. In the psce/ex/ directory there are two
subdirectories blastpgp2.2.4_astral1.6140.s.fa.A and
ssearch3.4t22_astral1.6140.s.fa.A that contain pairwise sequence
comparison results that we'll evaluate.
These are the output files that were generated when I searched the astral
1.6340.s.fa.A database against itself, using blastpgp, version 2.2.4 and
ssearch version 3.4t22. That is, each of the 2782 sequences in that database
was used as a query to search the same database using these two different
programs. I should also point out that blastpgp was run with default options,
whereas ssearch was run using a substitution matrix and gap parameters that I
have previously found to be optimal. So this comparison could be described as
asking how well we can detect remote homologs using optimized Smith-
Waterman versus using blast off-the-shelf.

Each of these directories contains 2782 files, one per database search. These
files serve as the input for the subsequent analyses. For your own analyses, you
will be on your own for generating these. The requirements for these input sets
are:

1. There must be an output file for each sequence in the database,
even if there were no significant hits.

2. The output filename must begin with the 7 character ASTRAL
identifier of the query sequence.

3. All the output files must be accessible by recursively searching
down from a single subdirectory.

These example sets suit all these requirements. So, they are suitable input for
dbvdbsum.pl, which summarizes the results of a database versus database
search.

10

You run dbvdbsum.pl on the files in these directory, like so:

$../bin/dbvdbsum.pl q ../db/astral1.6140.s.fa.A r bz2
d blastpgp2.2.4_astral1.6140.s.fa.A/ a 1 f B >
sum/blast.sum

$../bin/dbvdbsum.pl q ../db/astral1.6140.s.fa.A r bz2
d ssearch3.4t22_astral1.6140.s.fa.A/ a 1 f F >
sum/ssearch.sum

This takes about 10 minutes on my machine. This program, dbvdbsum.pl,
reports on all the hits in all the results files in the directory specified by the -d
flag. If you set the -a flag to a true value, then it also checks to make sure there
is an output file for each sequence in the database and gives information on the
level of SCOP relatedness of each hit, which is what we want. Take a look at
the output files, psce/ex/sum/blastp.sum and
psce/ex/sum/ssearch.sum
These files have a header region with some information about how it was run
and how many relations there are to be found. After this, they have many lines
describing all the hits found.

We can look at these output files to see if there are particular hits that we may
be interested in. Even better, though, we can run cve_maker.pl using these
files as input to generate coverage versus errors per query (CVE) data.

Run cve_maker.pl on these files, like so:
$../bin/cve_maker.pl i sum/blast.sum o cve/blast.sum.dat
v 1 > fp/blast.fp
$../bin/cve_maker.pl i sum/ssearch.sum o
cve/ssearch.sum.dat v 1 > fp/ssearch.fp

Each invocation of cve_maker.pl generates two files. One of these has the
CVE data, the other has a list of the false positives. Take a look at
psce/ex/fp/blast.fp

This file has the false positives that blast found, in order, from most significant to
least significant. That is, it's a list of the sequences that blast says are similar,
but SCOP tells us are not related.

The file has four columns of data:
query_id hit_id e-value relatedness
where relatedness is either 0 (differenct SCOP class)
or 1 (same class, different fold).

We can use these data to see how good the stastical scores (e-values) are for

11

these programs. We can plot the number of errors (false positives) at increasing
e-values using the false-positives data, using the EPQvScore.pl program. Run
it on the blast and ssearch data, like this:

$../bin/EPQvScore.pl a ../db/astral1.6140.s.fa.A f
fp/blast.fp > EPQvScore/epqvscblast.dat

$../bin/EPQvScore.pl a ../db/astral1.6140.s.fa.A f
fp/ssearch.fp > EPQvScore/epqvscssearch.dat

$ gnuplot EPQvScore/epqvsc.gs

The resulting plot shows that ssearch does a very good job of estimating
significance. Across the range of e-values shown, there were about the same
number of false-positives as ssearch predicted there would be. The blast
program, on the other hand, tends to under estimate significance; it generates
fewer false positives at all error ranges than it believes it's generating.

Now, let's look at the CVE data. Take a look at
psce/ex/cve/blast.sum.dat
It has the sets of CVE data that you can use with gnuplot to make a nice CVE
plot. Each line in this file contains the x and y coordinates of a single datapoint
on the CVE plots. Datasets are separated by two blank lines -- gnuplot style.
The first dataset is the unnormalized CVE data. The second is linearly
normalized and the third is quadratically normalized.

Great. Now, let's make some CVE plots. I've written a script for gnuplot that will
plot the CVE data we just generated. Take a look at, psce/ex/cve/cve.gs
then, run it like this:
$ gnuplot cve/cve.gs

This makes another postscript file, psce/ex/cve/CVE.eps
Take a look at it.

See how much more coverage optimized ssearch generates compared with off-
the-shelf blast? To see exactly how much more coverage, at a given error rate,
use the program maxCov.pl, like so:
$../bin/maxCov.pl i cve/ r dat
Unnormalized:
ssearch.sum.dat => 0.096267
blast.sum.dat => 0.079711
Linearly normalized:
ssearch.sum.dat => 0.235397
blast.sum.dat => 0.195182
Quadratically normalized:

12

ssearch.sum.dat => 0.367154
blast.sum.dat => 0.307481

Also, notice that for both blast and ssearch, coverage increases if the results are
normalized. That is, if we down-weight the results from larger superfamilies, the
amount of coverage increases. This tells us that the relations in larger
superfamilies are more difficult to detect. Next, we'll look at that phenomenon
directly.

Let's see how easy or difficult is was for blast to find superfamily level relations in
superfamilies of increasing size. The script sfSizePerf.pl does this. Run it
like this:
$../bin/sfSizePerf.pl a ../db/astral1.6140.s.fa.A s
sum/blast.sum > sfSizePerf/sfSizePerfblast.dat

Again, the output file, psce/ex/sfSizePerf/sfSizePerfblast.dat, is
suitable as a datafile for gnuplot. If we look at this file, we see the first section
lists all superfamilies, by size, with the number of correctly identified relations,
incorrectly identified relations, and the number that were undetermined.
Undetermined means that the two sequences involved were in the same fold,
but not the same superfamily. The next section has the total coverage for
superfamiles of each size. This is the data we'll plot. To view these data
graphically, run gnuplot with the provided script:

$ gnuplot sfSizePerf/sfSizePerf.gs

Taking a look at the output file,
psce/ex/sfSizePerf/sfSizePerfblast.eps, you can see that there is a
general negative correlation between superfamily size and ability to detect
pairwise relations. That is, the pairwise relations in large superfamilies are more
difficult to detect than those in smaller superfamilies. Why? I don't know. You
may also notice that there are several superfamily sizes that are not in line with
the general trend. Size 22, for example, has superfamilies whose relations are
relatively easy to detect. Looking at the input file,
psce/ex/sfSizePerf/sfSizePerfblast.dat, we see that there is a
single superfamily of that size: d.144.1, which is the PK-like superfamily. Why
are the sequences in this superfamily relatively easy to detect? Again, I don't
know.

We can look at the CVE plots and see that ssearch is finding more remote
homologs than blast. We can use maxCov.pl to see how much more coverage
at a given error-rate. But how do we know if the difference is significant? One
way to determine this is to bootstrap the results. This gives us a measure of the
variance of each result. We can then do a statistical test to see if the difference

13

in coverage at a given error rate is significant.

We'll use the dbvdbsum.pl output files to generate bootstrapped data sets with
concertedBootStrap.pl. This program, which replaces the bootStrap.pl
program from previous versions of this software, bootstraps the results of a
database versus database search. It does this by randomly assigning weights to
each sequence in that database and then making a dbvdbsum.pl style output
file of the results. This Bayesian bootstrap technique replaces the previously
described standard bootstrap technique, which did simple random sampling with
replacement of sequences in the database. The standard bootstrap was
described in the manuscript, "Bootstrapping and normalization for enhanced
pairwise sequence comparison." As mentioned there, there is an unfortunate
bias in bootstrapping this way: some smaller superfamiles, by chance, do not get
sampled at all. Because of the aforementioned tendency for the easier to detect
relations to occur in smaller superfamilies, this creates a bias in the standard
bootstrap method. The effect of this bias can be seen by comparing the mean of
the bootstrapped coverage distribution with the coverage of the original data.
The bootstrapped mean is less because some of the easier relations fall out. To
address this, we implemented the Bayesian bootstrap. Because all sequences
are present in the Bayesian bootstrap (just with different weights) there is no
such bias. See Price et al. for a more thorough description of this.

Efron, the Father of the Bootstrap, gives a rule of thumb of 200 bootstrap
replicates to get a reliable distribution. For the sake of keeping this tutorial down
to a managable size, however, I am only going to run 10 for each database
versus database search. If you run this yourself and do 200 replicates, beware
that it generates A LOT of output. Run concertedBootStrap.pl like this:
$../bin/concertedBootStrap.pl a ../db/astral1.61
40.s.fa.A n 10 s 35 sum/blast.sum sum/ssearch.sum

This will generate ten dbvdbsum.pl style files in the same directory as the
original dbvdbsum.pl file. They will have the same name as the original and
the suffix .sum.bbs.X, where X is the bootstrap replicate number. Take a look
at one and you'll see that it's identical in format to a standard dbvdbsum.pl
output file.

Next we'll use cve_automator.pl to make CVE files for each bootstrap file.
Again, a new output cve data file is made for each bootstrap replicate. So, if you
have done a lot of these, you're going to get a lot more data here.
cve_automator.pl just runs cve_maker.pl multiple times so the user
doesn't have to run it for each bootstrap file.

Invoke cve_automator.pl thusly:
$../bin/cve_automator.pl i blast.sum n 10 d sum/ c cve/

14

$../bin/cve_automator.pl i ssearch.sum n 10 d sum/ c
cve/

The output files can be seen in the psce/ex/cve subdirecoty. They are
identical (format-wise) to the file generated earlier by cve_maker.pl.

Now let's plot the whole mess with the custom gnuplot script provided.
gnuplot bootstrap.gnuscript
$ gnuplot cve/bootstrap.gs

Take a look at the output plot, cve/bbs.eps. It shows the CVE lines generated
by the original data plus all CVE data from the bootstrap replicates. The
bootstrap distribution falls in a fairly narrow band around the orignal CVE lines.
These distributions can now be used to statistically compare these two methods.

Use diffDist.pl to compare the bootstrap distributions from two bootstrap
distributions. This program goes through all the bootstrap CVE (.bbs.X.dat)
files for two bootstrap distributions and does some statistical tests. The goal of
these tests is to determine if the distributions are significantly different. The
details of this method can be found in the manuscripts mentioned above. In
brief, 95% confidence intervals are generated, by several methods. If the value
0 is within the confidence interval, then you can not reject the null hypothesis
that these two distributions are actually the same. Run diffDist.pl like this:
$../bin/diffDist.pl i ssearch.sum I cve/ j blast.sum J
cve/ e 0.01 g dd.gs b 10 s .dat h 0.025
Expected value for coverage difference at 0.01 EPQ is
0.0417932
Standard error for coverage difference at 0.01 EPQ is
0.0039175565740792
Original value of CVE line at 0.01 EPQ is 0.040215

Data min/max: [0.03713 , 0.048241]
Parameterized confidence interval: [0.0341147891148048 ,
0.0494716108851952]
CI walking from mean: [0.03713 , 0.048241]
CI walking from CVE line: [, 0.047794]
CI walking in from max/min data: [0.03713 , 0.048241]

You can see that by none of the 95% confidence interval generating methods is
the value 0 in the confidence interval. Therefore, we can reject the null
hypothesis and conclude that these are two separate distributions. In other
words, at 0.01 errors per query, optimized ssearch finds a statistically significant
greater fraction of remote homologs than does off-the-shelf blast. You can plot
the histogram of coverage differences at 0.01 errors per query, in dd.dat by
calling gnuplot on the gnuplot script dd.gs.

15

Now, let's look at one final way to compare the results of these two pairwise
search methods. Let's extract e-values, hits, and false positives at a particular
error rate for both and compare the results. Run e_finder.pl like this:
$ e_finder.pl i sum/blast.sum v l h e 0.01 >
e_finder/blast.ef
$ e_finder.pl i sum/ssearch.sum v l h e 0.01 >
e_finder/ssearch.ef

This makes two files that have each discrete E-Value at each error per query
rate, up to 0.01, and all the hits and false positives at that e-value.

The false positives can be saved by replacing the -h flag with the -v flag. To list
only the unique hits in each set, use seq_diff.pl.
$ seq_diff.pl i e_finder/blast.ef j e_finder/ssearch.ef

With a little UNIX magic, you can easily count the number of unique hits from
each file:
$ seq_diff.pl i e_finder/blast.ef j e_finder/ssearch.ef |
grep blast | wc l
 102
$ seq_diff.pl i e_finder/blast.ef j e_finder/ssearch.ef |
grep ssearch | wc l
 911

This shows us that the blast dbvdbsum file contains 102 hits not contained in the
ssearch file and the ssearch file contains 911 unique hits.
One final note: Some of these tools require that their input filenames have
certain features. If you stick closely to the examples described above, you
should not run into problems with this.

16

VI. Complain

You can contact me at ed@compbio.berkeley.edu or
edgreen@ugaalum.uga.edu

You can contact Gavin (the author of the Bayesian bootstrap stuff) at
gavin@compbio.berkeley.edu. He's a nasty little troll, though, so don't be
surprised if his response consists only of 'RTFM.'

There is no manual.

I'm very interested in results generated by these or related tools or suggestions
for improvement or new features.

17

