
Differences between isoforms of an alternatively 
spliced gene may be subtle or profound. For example, 
the human Bcl-x gene can be processed to generate 
several isoforms with markedly different activities. 
The Bcl-x(L) isoform inhibits apoptosis, whereas 
Bcl-x(S) can induce apoptosis[10]. Many other 
genes are alternatively spliced to produce isoforms 
whose differences are only in non-coding regions; 
indeed, a recent study of alternative isoforms in mice 

showed that 21% of splice variations do not affect 
coding potential[14, 15]. Because of the prevalence 
of alternative splicing, researchers would like to 
know the regulatory mechanisms that control it and 
the functional consequences of the isoforms that are 
produced. To these ends, several groups have classified 
and catagorized known alternative isoforms in terms of 
changes in gene structure between alternative isoforms 
or by the functional classes of the genes that are 
involved[4, 16]. The only general conclusion that can be 
drawn from these analyses, however, is that alternative 
splicing affects genes of nearly every functional class 
by modifying gene structure in every conceivable way, 
such as using mutually exclusive exons or alternative 
donor sites.

 
After mRNA processing, most transcripts 
are exported to the cytoplasm for translation 
into protein. Each mRNA transcript can 
serve as template for repeated translation into 
protein by ribosomes. The number of protein 
products produced by any single mRNA 
can vary widely. This number is a function 
of, among other things, the life span of the 

mRNA. In the cytoplasm, mRNAs gradually loose 
their poly-adenosine tails. Once this tail has been 
reduced to a threshold length, the mRNA is digested 
by exonucleases. Specific signal sequences, AREs for 
example[17], can affect the rate at which the poly-
adenosine tail is shortened. Some mRNAs, however, 
can be degraded almost immediately, by a process that 
is independent of poly-adenosine tail length. 
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Alternative splicing has been shown to affect more than one-third of all human genes. We 
have found that many alternative isoforms are apparent targets of nonsense-mediated 
mRNA decay (NMD), an mRNA surveillance system. The coupling of alternative splicing 
with NMD is intriguing and could provide a general means of regulating gene expression.
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Alternative splicing increases mRNA diversity
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Alternative splicing is the process whereby a single 
genetic locus can be transcribed and processed to 
generate multiple, distinct isoforms[1-3]. Recent 
reports have shown that more than one third of all 
human genes may be affected by alternative splicing[4-
9]. The presence, absence, abundance and activity of 
splicing factors can effect which regions of the pre-
mRNA will be included in the mature mRNA. How 
alternative splicing (or splicing in general) is regulated 
remains poorly understood.
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It has long been known that mRNAs carrying 
a premature termination codon are highly 
unstable[18-24]. A process known as nonsense-
mediated mRNA decay (NMD) recognizes 
these mRNAs and degrades them. Recently, the 
molecular details of this process have begun to be 
elucidated. During mRNA processing, a complex 
is deposited near sites of intron removal[25-30]. 
These exon-junction complexes are important 
both for facilitating export from the nucleus and 
for remembering gene structure[31]. That is, they 
mark the sites where the introns were spliced out. 
This relative positioning appears to be checked 
during the pioneering round of translation[32, 33]. 
The ribosome, as it traverses the mRNA, displaces 
any exon-junction complexes in its path. Upon 
arrival at the termination codon, release factors 
interact with any undisplaced exon-junction 
complexes[34]. This association triggers decapping 
of the transcript, followed by degradation[35]. 

In vertebrates, the location of the last exon-
junction complex relative to the termination codon 
usually determines whether the transcript will be 
subjected to NMD or not. If the termination codon 
is downstream of or within about 50 nucleotides of 
the final exon-junction complex then the transcript 
is translated normally. However, if the termination 
codon is further than about 50 nucleotides 
upstream of any exon-junction complexes, then 
the transcript is down regulated by NMD. 

There are several lines of evidence supporting this 
model. First, intron-less transcripts appear to be 
generally immune to NMD[36-38]. Second, tethering 
any of several components of the exon-junction 
complex downstream of a termination codon will 
cause the transcript to be degraded[35].  Finally, NMD 
is inhibited by cis-elements or chemical reagents that 
prevent efficient translation[23, 39]. 

This model of NMD has led to increased understanding 
of the formerly mystifying relationship between 
genotype and phenotype for many disease genes like 
dystrophin[40] and beta-globin[41, 42]. 

Analysis of the well characterized human genes in 
RefSeq reveals that the vast majority are not candidates 
for NMD[16, 49] . This is because their termination 
codons are on the last exon or within 50 nucleotides 
of it. This indicates that NMD is pervasive, as there 
appears to be selective pressure toward keeping the 
termination codon on the final exon. Start codons, on 
the other hand are commonly found downstream of the 
first intron.

Nonsense-mediated mRNA decay is an mRNA
surveillance mechanism
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The Dystrophin Story
NMD leads to new understanding

of Muscular Dystrophy
Muscular dystrophy (MD) refers to a group of genetic disorders whose major symptom is muscle wasting. 
There are two major forms of MD, differing in severity and age of onset. In Duchenne muscular dystrophy, 
symptoms are noticeable in early childhood and quickly become debilitating. Becker muscular dystrophy, on 
the other hand, is of later onset and less severe. Both forms of MD are caused by mutations in the dystrophin 
gene, a large (2.6Mb) gene comprised of 97 exons. The dystrophin protein plays an important structural role 
as part of a large complex in muscle fiber membranes. When dystrophin is missing or non-functional, the 
entire complex is compromised, leading to degeneration of muscle tissue. When the ability to regenerate the 
muscle is exhausted, muscle wasting occurs. 

Once it was discovered that Duchenne MD and Becker MD were both forms of the same disease, researchers 
attempted to determine which regions of the dystrophin gene were most important by correlating genotype 
and phenotype. It was mystifying that several large deletions were present in patients with the mild, Becker, 
form, while smaller deletions were sometimes found in patients with Duchenne MD[1-3]. 

What seemed to be more important 
than the amount of coding sequence 
that was deleted was whether or 
not the offending mutation resulted 
in a frameshift or not. Researchers 
working on the mouse model of 
Duchenne MD, mdx mouse, found 
a similarly puzzling result: a C-
terminally truncated version of 
dystrophin was competent to rescue the MD phenotype in these mice[4]. In 1988, it was entirely unclear how 
to explain the apparent disconnect between genotype and phenotype. 

In light of NMD, these findings are comprehensible. Becker MD patients have a partially functional version 
of dystrophin that leads to less severe symptoms. Duchenne MD patients, however, have mutations that 
prevent any functional dystrophin production. Because of NMD, this includes mutations that introduce 

premature termination codons. 

Appreciation of the role of NMD in MD has 
led to improved diagnostics and promising 
new treatment strategies. For example, the 
drug gentamicin, which causes translational 

read-through of stop codons, has shown some effectiveness for restoring dystrophin expression in cultured 
cells from mdx-mice[5]. Human clinical trials are currently underway. 
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Duchenne Muscular Dystrophy:Research Approaches Toward a Cure (from Testlaboratorium Breitnau) 
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Alternative splicing can be coupled with NMD
to regulate gene expression
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Alternatively spliced genes may have some isoforms that 
are candidates for NMD and others that are translated 
normally. By coupling alternative splicing to NMD, a 
cell could functionally down regulate expression of 
that gene under desired conditions. In these cases, the 
protein coding sequence of the alternative isoform is 
not nearly as important as the fact that its structure will 
cause it to be degraded by NMD. There are, in fact, 
cases in which alternative splicing does not affect the 
coding region at all. It only affects whether the isoform 
will be down regulated by NMD. 

Regulation of this kind, which we term regulated 
unproductive splicing and translation (RUST), is 
mediated by the splice environment - the set of splicing 
factors present and active at a given time and place. 
Under certain conditions, one set of splice sites could 

be used that generate an isoform whose stop codon is 
on the last exon. This productive isoform would then be 
translated normally. Under different conditions or in a 
different cell, alternative splice sites could be used that 
introduce a premature termination codon, generating 
an unproductive isoform. This can be done by splicing 
in an alternative exon (as in the figure), causing a 
frameshift, or splicing out an intron downstream of the 
normal termination codon. This would shunt the gene 
from the normally translated pathway into the NMD 
pathway.

RUST is analogous to transcriptional regulation in that 
both cis-elements and trans-factors are involved. Under 
transcriptional regulation, transcription factors interact 
with the cis-control elements in the regulatory regions 
of target genes. The concentration, localization, and 



activity of transcription factors determine which 
genes will be transcribed into pre-mRNA. RUST 
acts during pre-mRNA processing, the next 
step in gene expression. As with transcriptional 
regulation, the concentration, localization, and 
activity of trans-factors determines which genes 
will generate functional end products. In this 
case, however, the trans-factors are splicing 
factors and the cis-elements are the splicing 
signals present within the pre-mRNAs. Several 
well characterized signaling pathways have 
been shown to alter the splice environment 
by activating splicing factors[50,51]. 
Furthermore, the cis-elements needed for 
RUST are well conserved in several known 
RUST genes [52, 53]. In some cases, these are even 
more conserved than the protein coding sequence. 

Although some alternative isoforms are described in 
RefSeq[43] and other databases, the majority are not. 
The most comprehensive data sources for alternative 
splicing are the EST databases, such as dbEST[44]. 
Several groups have shown that it is possible to cluster 
EST sequences with one another or with known gene 
sequence to learn which transcripts are alternatively 
spliced and what these alternative isoforms look like. 

With human genome sequence available, it is then 
possible to compare these alternative isoforms with 
their genomic regions to determine their underlying 

ESTs can be used to detect alternative splicing
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Recent studies by several independent research 
groups have uncovered genes whose expression 
appears to be influenced by RUST [13, 46, 47, 48]. 
One particularly interesting example is the splicing 
factor, SC35 [11-13], which autoregulates its own 
expression by coupling alternative splicing with NMD. 
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gene structures. This information can then be used to 
predict which isoforms of a given gene do not follow 
the 50 nucleotide rule and are therefore candidates for 
NMD. 

5

Alternative splicing frequently generates NMD-candidate isoforms
To determine the extent to which alternative splicing 
generates NMD-candidate isoforms, we aligned RefSeq 
sequences to the human genome[45] to determine 
their gene structures. To the coding region of these 
alignments, we then aligned EST sequences to reveal 
patterns of alternative splicing. If the EST sequences 
showed a different splicing pattern than the RefSeq 
sequence, it was taken as evidence for an alternatively 
spliced isoform.

Many filters were applied to ensure reliability. For 
example, we disregarded cases of intron retention as 
these are indistinguishable from incompletely processed 
transcripts, a common EST database contaminant. We 
also restricted alignments to the coding regions of the 
RefSeq sequences to ensure alignments of the highest 
quality possible. Because the RefSeq isoforms are 
annotated with start and stop codon positions, it was 
then possible to determine which isoforms obeyed the 
50 nucleotide NMD rule.

http://compbio.berkeley.edu/people/ed/rust/SC35.html
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The SC35 Story
SC35 is autoregulated by RUST
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SC35 is an RRM-containing SR protein that plays a 
role in alternative splicing. It was shown recently that 
SC35 can autoregulate its own expression. This is 
accomplished via a feedback loop that connects the level 
of SC35 protein to the productive splicing of the SC35 
transcript.

Increased concentrations of SC35 protein change the 
splice pattern of the SC35 transcript. The SC35 protein 
binds to its own pre-mRNA, uncovering splice sites 
downstream of the termination codon. All isoforms 
of SC35 share the same open reading frame and, 
therefore, encode the same protein. However, when 
these alternative splice sites in the 3’ untranslated region 
are used, the normal termination codon becomes a 
premature termination codon based on the 50 nucleotide 
rule. NMD then degrades the transcript, down-regulating 
the expression of SC35. In this way, SC35 appears to 
auto-regulate its own production, by RUST.

Sureau A, Gattoni R, Dooghe Y, Stevenin J, Soret J. 
SC35 autoregulates its expression by promoting splicing events that destabilize its mRNAs. 
EMBO J. 2001 Apr 2;20(7):1785-96. 

Fu XD, Maniatis T. 
Isolation of a complementary DNA that encodes the mammalian splicing factor SC35. 
Science. 1992 Apr 24;256(5056):535-8.
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We found that about one third of all alternative 
splicing events generate NMD candidate isoforms. 
Furthermore, about one third of all genes for which 
there is alternative splicing EST data generate at 
least one NMD candidate isoform. These numbers 
suggest that coupling of alternative splicing and NMD 
may be widespread. Because our analysis did not 
consider alternative splicing outside of coding regions 
and because destabilized transcripts may be under-
represented in EST databases, it could be the case that 
this phenomenon is even more pervasive than our data 
suggest.

Our finding that alternative splicing generates a 
large number of transcripts that may be destined to 
be degraded by NMD can be interpreted in several 
ways. It is possible that EST data, in sum, is of such 
poor quality that it can not be reliably used for studies 
such as this one. If this is the case, then the value of 
EST sequencing projects is called into question, as we 
found that even the alternative isoforms represented 
by multiple ESTs generated a large number of NMD-
candidates. We discount this conclusion based on the 
findings of hundreds of independent researchers: EST 
sequences, when properly screened, can be a reliable 
resource of expressed gene sequence. 
Another possible conclusion is that the process of 
splicing is not nearly as precise as one might imagine. 
Perhaps the process of finding and splicing small exons 
in a sea of large introns is so difficult that the splicing 
machinery is very error prone. If this is the case, then 
the splicing process may rely on the presence of the 
NMD pathway to dispose of incompletely or incorrectly 
spliced products to an extent not previously appreciated. 
We cannot presently rule out this possibility. Therefore, 
it is imperative that researchers who use the EST 
databases as a source of gene sequence must consider 
which isoforms are NMD candidates. We feel that this 
is especially prudent advice, as genes are commonly 
cloned as intronless cDNAs, immune to NMD, prior to 
further characterization. 

It is also possible, and likely, that there are still gaps 
in our understanding of the NMD pathway. There are 
a handful of genes that generate isoforms that should 
be NMD substrate, based on the 50 nucleotide rule, 
that appear to be immune to NMD (the male-specific 
isoform of sex-lethal in drosophila, for example). Also, 
there are specific signal sequences that appear to be 
functionally equivalent to exon-junction complexes in 
triggering NMD. It is likely that there are caveats to the 
50 nucleotide rule that, once discovered, can be used to 
refine our list of NMD-candidate isoforms. 
A final, intriguing possibility is that the regulated 
coupling of alternative splicing and NMD represents 
a general mode of controlling gene expression. This 
interpretation is attractive in that it depends only on 
systems, NMD and alternative splicing, that are known 
to be pervasive. In the RUST process, splicing factors 
play a role analogous to transcription factors in that they 
regulate which genes are expressed. In addition to being 
attractive just for its ease of use, RUST would allow for 
a degree of temporal control of very large genes that 
take a long time to transcribe, that is unachievable 
with transcription factors. Several instance of RUST 
have already been discovered, like the splicing factors 
SC35[13] and AUF1[46].

Discussion
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