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Abstract

In this thesis we study computational problems related to the analysis of protein 3D

folds and protein binding sites. Specifically, we deal with one of the fundamental

problems in the field of Structural Proteome research, the problem of common spatial

pattern detection in a set of protein structures, protein binding sites and protein-

protein interfaces.

From the algorithmic standpoint we deal with the problems of multiple common

point set detection under different metrics. We prove NP-Hardness results even for

the case of practically defined geometrical constraints on the input point sets. While

the generally defined problem and sub-problems of common point set detection are

hard to approximate, under the practical biological constraints we present polynomial

time approximation algorithms.

On the practical side, we present novel computational methods for multiple align-

ment of protein structures, structure based multiple sequence alignment, multiple

binding site and multiple protein-protein interface alignment. Due to the hardness

of the computational problems, we apply a combination of heuristic, approximation

and branch-and-bound techniques in order to achieve a trade-off between practical

efficiency and accuracy of the biological results.

The results of this thesis have been published in [107, 108, 105, 129, 110, 109, 111,

112, 118].
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Chapter 1

Introduction

The decision to initiate the Structural Genomics project, following the completion of

the first Human Genome draft, has demonstrated the crucial significance of the knowl-

edge of protein structures both for theoretical research and Computer Assisted Drug

Design. Through molecular structures and their complexes (protein-drug, protein-

protein, etc.) the scientific community aims to get an insight into protein function

and mis-function.

Proteins play major functional roles in the cells. Their diverse functionality ranges

from catalytic activity to structural and mechanical roles, e.g. skeleton formation,

transportation of various molecules, immune response, replication of the DNA, protein

biosynthesis and degradation, etc.

The major determinants of protein function are the primary amino acid content

and the geometry of the folded protein 3D structure. Protein 3D structure serves two

interrelated tasks. First, it has a pure mechanical role, i.e. protein size and shape

determine its mobility inside the cell, construction properties of larger protein-protein

complexes, e.g. long fibrils and virus scaffolds, flexibility, e.g. in muscle contraction,

etc. Protein 3D fold has a phenomenal stability against mutations. A substantial

number (more than 70%) of amino acids can be often mutated, while preserving the

overall structural fold. Amino acid mutations along the protein 3D fold stability

provide a basis for enhancement and extension of various protein functions. However,

mutation of even one key core residue may be fatal for the correct protein folding.
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2 CHAPTER 1. INTRODUCTION

Consequently, during the course of evolution the protein 3D fold is more preserved

than its primary sequence. Therefore, analysis of protein sequences alone is not

sufficient. Study of the protein structures provides a deeper insight into their function

and evolution.

A second, interrelated task of protein 3D structure is to provide a proper geo-

metrical configuration for its functional binding sites. Mutation of key residues at

protein binding site may change or destroy its function, even without altering the

overall fold. Protein binding site functions well as long as its side chains are able to

reach the required (for binding) 3D configuration. Indeed, binding sites with similar

function may be found in proteins with different 3D fold arrangements and conse-

quently with different overall primary amino acid sequence. Only the key residues at

the binding site have to maintain a similar biochemical and geometrical properties.

Therefore, the functionality of a protein molecule is a unison of its primary sequential

amino acid content and its folded 3D structure.

In this thesis, we study computational problems related to the analysis of protein

3D folds and protein binding sites. Specifically, we deal with one of the fundamental

problems in the field of Structural Proteome research, the problem of common spatial

pattern detection in a set of protein structures, protein binding sites and protein-

protein interfaces.

Detection of multiple protein structure alignments is important for reasons similar

to those of multiple protein sequence alignments. Conservation of a region in many

molecules bears higher significance as compared to its recurrence in only two. Multi-

ple structure alignment is essential for (1) detection of structural motifs common to

proteins that share the same function or binding property. This allows derivation of

residue conservation in analogous positions in 3D space, such as in protein cores or

in protein binding sites[81, 22, 10]; (2) protein classification[96, 29]; (3) evolutionary

relations between proteins, e.g. identification of a consensus (sub)structure which can

serve as a model of potential ancestor[45]; and (4) structure prediction[3]. Homology

modeling methods utilize multiple structure alignment to increase the accuracy of

hypothetical templates[47]. Therefore, study of the protein backbone alignment may

give answers related to the second task of the protein 3D configuration - presentation
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of proper geometrical configuration for protein functional binding sites. However, the

phenomena of similar functioning proteins with different 3D folds opens new chal-

lenges for structural analysis. One assumption is that proteins with similar function

have similar, in terms of geometry and biochemical properties, binding site patterns.

Consequently, identification of common binding patterns has applications for drug

design, e.g. design of improved or new inhibitors, recognition of possible side-effects,

etc. In general, methods for protein backbone alignment are not suitable to carry

out the task of protein binding site alignment. Therefore, novel methods have to be

developed.

Despite the computational difficulty of the multiple structure alignment problem,

we propose practically efficient methods for (1) multiple protein backbone alignment,

including structure derived multiple sequence alignment, (2) multiple protein binding

site alignment, and (3) multiple protein-protein interface alignment. In practice, the

proposed methods solve the required biological tasks.

The thesis is organized as follows:

Chapter 2: Largest Common Point Set Problem

We start from a theoretical study of the spatial pattern detection between a set of

structures. The problem of pattern detection between two structures answers the

following question. Given two point sets A and B, find a subset of A that is similar

(according to some similarity metric) to some subset of B. The optimization problem

is to maximize the cardinality of similar subsets. One common way to define the

similarity between two point sets is by the bottleneck metric[1, 37]. Similar sub-

sets are called ε-congruent if the maximal distance between the matched points is

not greater than ε. The optimization problem, called the Largest Common Point

Set (LCP) problem, involves finding a transformation, e.g. Euclidean motion, that

maximizes the size of two ε-congruent sub-sets. In the biological community, the LCP

problem (under different metrics) is also called the structure alignment problem. For

the bottleneck metric in 3D the LCP problem can be solved in O(n32.5) time[7], where

n = max(|A|, |B|). Obviously, such time complexity is not practical even for small

point sets. Therefore, more efficient methods are required.
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Numerous heuristic methods have been developed to solve the structure alignment

problem for a pair of protein structures (for more details see review by Eidhammer

at el.[38]). Many of these heuristic approaches apply problem domain knowledge to

improve the results as well as to speed up the computation times. Fast approximation

algorithms have also been introduced to solve the more general geometrical problem.

The approximation is given either to the similarity threshold or to the size of a

common pattern[48, 1, 18].

The problem to detect a common point set for a set of K structures is the natural

extension of the pairwise LCP problem. We denote this problem as the multiple LCP

problem, or shortly mLCP. Due to the high practical importance, several heuristic so-

lutions have been proposed[45, 3, 102, 124, 95, 76, 108, 31] even before the theoretical

study of computational aspects of the mLCP problem by Akutsu and Halldorson[2].

It has been shown that the mLCP problem is NP-Hard even in the one dimensional

space for the case of exact congruence (ε = 0), where the number of structures, K, is

a parameter[2]. However, the mLCP problem is further complicated by the fact that

in practice it is impossible to work with zero-congruence. In the case of ε > 0, the

pairwise LCP problem is polynomial[7], while for three structures its complexity has

been unknown. In this work we show that the mLCP problem in the case of ε > 0 is

NP-Hard even for three structures. The problem is hard even in 2D, while in 1D we

give a simple polynomial time algorithm.

In some applications, the Euclidean superposition between the input point sets

may be given as the input, i.e. point sets are fixed in space. Therefore, under

such conditions, the general mLCP problem is reduced to computing the largest

common pattern without optimizing the molecular placement in space. We denote

this problem as multiple similarity measure, or shortly mSim. There are several

practical applications for this problem:

(I) Pharmacophore Extension. A set of drug molecules (or other molecules) may

share an a-priori known common set of features which is responsible for the drug

function. Such a common set is also called a pharmacophore. Therefore, a multiple

superposition between the structures can be computed based on a given set of corre-

sponding points - a pharmacophore. Still, there is an important question - what are
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the additional corresponding (common) features that are shared between the set of

drug molecules. Another, relevant question - is there a subset of molecules that share

a larger pattern then the common pattern between all the input molecules? We call

this problem Family mLCP.

(II) Ligand Based Multiple Binding Site Alignment. Consider a set of protein-

ligand complexes, which consist of different proteins bound to the same ligand molecule.

A common superposition between protein binding sites can be computed according

to the common ligand molecule. Therefore, detection of a largest common protein

binding site pattern is reduced to the mSim problem (though, as we discuss in Section

5.3.4, in some cases such an approach may be inferior to solving the general mLCP

problem).

(III) Practical Approximation Algorithms. Another application of the mSim prob-

lem comes from the approximation algorithms used to solve the pairwise and multiple

LCP problem. Such practically efficient methods compute a polynomial set of pos-

sible Euclidean transformations. Hence, given a bounded set of transformations the

original mLCP problem is reduced to solving the number of the mSim problems.

For computational and practical reasons, we study two versions of the mLCP/mSim

problem. In the first version, we require that the bottleneck metric is satisfied between

all structure pairs. In the second version, we relax the similarity definition and require

that the bottleneck metric is satisfied only between a pivot and each other structure.

We call this version pmLCP/pmSim problem. The pmLCP/pmSim problem is com-

putationally simpler than mLCP/mSim. In addition, the pmLCP/pmSim definition

is more appealing for application in approximate alignment techniques, which are

used in practice. In Chapter (5), we propose a practical method for multiple protein

binding site alignment, using the pmLCP definition.

Tables 1.1 and 1.2 summarizes the new results presented in this work. Partial

results of this Chapter have been published in [111, 112].
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R1 R2

ε = 0

mSim/pmSim O(K · n · log(K · n))

mLCP/pmLCP NP-Hard[2]
O(nD·K)

ε > 0

ε-K-tuple O(K · n · log(K · n)) NP-Complete

mSim O(K · n · log(K · n)) NP-Hard (K≥3)
O(n1.5log(n))[37] (K=2)

pmSim O(K · n · log(K · n)) NP-Hard (K≥4)
O(n3)(K=3, solved by network flow)

mLCP O(K2n2K) NP-Hard (K≥3)
O(n32.5)[7] (K=2)

pmLCP O(K2n2K) NP-Hard (K≥4)
Poly(n) (K=3)

ε = 0

Family mSim/pSim NP-Hard
2KPoly(n)

Table 1.1: mLCP(pmLCP) - multiple Largest Common Point set problem (pmLCP
multiple LCP with pivot), both problems involve optimization on Euclidean trans-
formations. mSim/pmSim - multiple similarity measure of point sets which are fixed
in space; n - size of the largest point set; K - number of point sets. The unreferenced
results are new and presented in this thesis.
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Chapter 3: Multiple Protein Structure Alignment

Recognition of a structural core common to a set of protein structures serves as a basic

tool for the study of protein evolution and classification, analysis of similar structural

motifs and functional binding sites, and for homology modeling and threading. De-

spite the computational theoretical infeasibility of the general mLCP problem, we

present an efficient method, MultiProt, for the multiple protein structure alignment.

There are a number of practical requirements for a multiple protein structure

alignment method. It should be able to detect (1) partial solutions, i.e. common

domains or motifs which can be only parts of the proteins; (2) sequential and non-

topological alignments, i.e. those alignments that do and do not follow the natural

protein amino acid sequence order; and (3) alignments between a subset of molecules

that are more similar than the whole input set. The fourth requirement is efficiency,

i.e. low running times.

Our proposed method, MultiProt, was devised to support all the above require-

ments. Due to the NP-Hardness of the multiple alignment problem, discussed in

Chapter (2), the method utilizes several heuristics, which are based on the problem

domain knowledge.

The main idea of the MultiProt approach is its ability to efficiently compute a

large number of local non-gapped multiple structure alignments. Essentially, a local

multiple alignment is computed for each possible fragment of the input molecules.

Such local alignments serve as a basis for the extension to the larger partial multiple

alignments. In addition, in order to detect subset alignments, i.e. alignments com-

posed of different molecules, we score multiple alignments separately according to the

protein molecule composition. For example, a scoring of alignment between proteins

{a, b, c} does not effect a ranking of an alignments between proteins {a, b, d}.

We present case studies that demonstrate the ability of MultiProt to answer the

practical requirements given above. Despite the complex task, MultiProt is extremely

efficient and is suitable for simultaneous comparison of up to tens of proteins.

The results of this Chapter have been published in [107, 108, 105, 129, 109].
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Chapter 4: Structure-Derived Multiple Sequence Alignment

Sequence alignment methods may produce inaccurate alignments due to low sequence

identity. For proteins with solved 3D structure a structural superposition provides a

basis for a more robust assessment of evolutionary relationships between amino acids.

Yet, a structural 3D superposition does not uniquely define an alignment between

protein sequences. There can be several choices for sequence alignments that are

consistent with the structural superposition. Obviously, we would prefer an alignment

with less gaps that also places more similar amino acid types, according to some

substitution matrix, in the same column. Therefore, we face an optimization problem

which is similar to the multiple sequence alignment problem but has additional spatial

constraints.

We propose to perform a multiple sequence alignment that unifies structural in-

formation, derived from a multiple structure alignment, with amino acid substitution

matrices. Since a protein structure is generally more conserved than sequence, we

propose to perform an optimization of the multiple alignment, first, according to

structure and then according to amino acid types combined with 3D information.

Namely, we propose the following scheme: Given a set of protein structures, first,

perform a multiple structural alignment. Second, based on the multiple structure

superposition, perform a multiple sequence alignment optimizing our newly defined

sequence-structure unified scoring function. Therefore, the presented optimization

method, STACCATO, unifies sequence and structure information. The alignment

score is based on standard amino acid substitution probabilities combined with newly

computed 3D structure alignment probabilities. The advantage of our alignment

scheme is in its ability to produce more accurate multiple alignments.

The presented test cases include comparison with the HOMSTRAD[89] bench-

mark of multiple structure based sequence alignments. We argue that our approach

produces more accurate alignments. We present some applications of STACCATO,

which include analysis of loop motion in Tyrosine Kinase and improving the accuracy

of protein-protein docking methods.

The results of this Chapter have been published in [110, 109].
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Chapter 5: Recognition of Common Binding Patterns

Binding sites with similar physico-chemical and geometrical properties may perform

similar functions and bind similar binding partners. Such binding sites may be cre-

ated by evolutionarily unrelated proteins that share no overall sequence or fold sim-

ilarities. Their recognition has become especially acute with the growing number of

protein-ligand complex structures determined by the Structural Genomics project.

Multiple alignment of binding sites that are known to have similar binding partners

allows recognition of the physico-chemical and geometrical patterns that are respon-

sible for the binding. These patterns may help to understand and predict molecular

recognition. Moreover, multiple alignment of binding sites allows analysis of the dis-

similarities of the binding sites which are important for the specificity of drug leads.

We present an efficient, practical, method, MultiBind, for identification of com-

mon protein binding patterns by solving the multiple structure alignment problem.

The problem we aim to solve is NP-Hard, therefore our goal is to find a trade-off

between practical efficiency and theoretical bounds of solution accuracy, while, most

importantly, validating the biological correctness of the results. We represent the

protein binding site as a set of 3D points that are assigned a set of physico-chemical

and geometrical properties important for protein-ligand interactions. The implemen-

tation of our method includes three major computational steps. The first one is a

generation of 3D transformations that align the molecular structures. Here we apply

the time efficient Geometric Hashing method[131, 130]. The advantage of this method

is that it enables to avoid processing of points that can not be matched under any

transformation. In other words, its time complexity is proportional to the number

of potentially matched points included in the defined set of transformations. The

second step is a search for a combination of 3D transformations that gives the highest

scoring common 3D core. For this step we provide an algorithm that guarantees to

find the optimal solution by applying an efficient filtering procedure which practi-

cally overcomes the exponential number of multiple combinations. The final step is

a computation of matching between points under multiple transformations, namely

solving the mSim problem. Here, we give a fast approximate solution with factor K.
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The overall scheme guarantees to approximate the ε-congruence as well as the car-

dinality of multiple alignment. We apply MultiBind to some well studied biological

examples such as estradiol, ATP/ANP and transition state analogues binding sites.

Our computational results agree with the available biological data.

The results of this Chapter have been published in [111, 112, 118].

Program Availability

All the developed methods are freely available for the biological community by web

server access (MultiProt) or by downloading the programs (Staccato, MultiBind,

MAPPIS):

• http://bioinfo3d.cs.tau.ac.il/MultiProt/

• http://bioinfo3d.cs.tau.ac.il/staccato/

• http://bioinfo3d.cs.tau.ac.il/MultiBind/

• http://bioinfo3d.cs.tau.ac.il/mappis/
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Chapter 2

Largest Common Point Set

Problem

2.1 Introduction

Below we review the progress made in Computational Geometry in studying the

pattern detection problem. We start with a description for the case of two structures

and continue to multiple structures. Our emphasis is only on subjects related to

molecular structures. First, we give a brief introduction to the computational problem

and in the next section we introduce the formal definitions and known computational

results.

The problem of pattern detection answers the following question. Given two point

sets A and B, find a subset of A that is similar to some subset of B. The optimization

problem of maximal similarity is to maximize the cardinality of similar subsets. One

common way to define the similarity between two point sets is by the bottleneck

metric[1, 37]. Similar sub-sets are called ε-congruent if the maximal distance between

the matched points is not greater than ε. The optimization problem, called the Largest

Common Point Set (LCP) problem, involves finding a transformation, e.g. Euclidean

motion, that maximizes the similarity between A and transformed B.

In this work we consider the similarity problem and the LCP problem under the

bottleneck metric only, if not specified otherwise. The similarity problem between

13
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two point sets is equivalent to solving the maximal matching in a bipartite graph,

where A and B define two partitions and edges are created between ε-close points.

Indeed, a matching in such a graph defines a one-to-one correspondence between point

pairs which are ε-close. A maximal bipartite matching can be solved in O(n2.5)[61],

where n = max(|A|, |B|). However, considering the geometrical properties of such

bipartite graphs the maximal matching can be solved in 2D in time O(n1.5log(n)) and

in 3D in time O(n
11
6

+δ), for any δ > 0[37]. Denote by dens(ε) a number of points

inside a sphere of radius ε, for any possible location in R3. Consider a practical case

where dens(ε) of A and B is a small constant (this is a valid assumption in case of

molecular structures and practically meaningful values of ε). Under these conditions

the maximal vertex degree in a bipartite graph is bounded by dens(ε), i.e. constant.

Then the number of edges is O(n), so the running time of the maximal bipartite

matching is only O(n1.5)i.

The optimal solution to the LCP problem in 3D can be computed in O(n32.5)

time[7]. Obviously, such time complexity is not practical even for small point sets.

Therefore, more efficient methods are required.

Approximation techniques can significantly reduce time complexity at the price of

solution accuracy. A simple alignment technique[64] constructs a finite set of trans-

formations by aligning each non-colinear triplet of points from the first structure

with each ε-congruent triplet from the second one. For each transformation we can

apply the maximal bipartite matching algorithm to compute a bijective mapping of

points that are within ε distance from each other. Such alignment technique guaran-

tees to find the LCP under 8ε-congruence of cardinality at least of the LCP under

ε-congruence. The time complexity is O(n8.5). This technique was first developed for

the Hausdorff distance[48] and later applied for the bottleneck distance [1]. Instead of

approximating ε-congruence the same technique can be applied to approximate the

LCP size[18]. Interestingly, an optimal algorithm for solving the LCP problem for a

group of transformations limited to rotations only, can improve the approximation

factor of the LCP problem for general Euclidean transformations from 8ε to 2ε, while

iWe will use the constant dens(ε) assumption below to develop fast approximation schemes for
the general LCP problem between K point sets.
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preserving the complexity of O(n8.5)[18]. However, an implementation of such a tech-

nique is more complicated and the constant factors of the time complexity become

larger.

Extension of the problem to detect a common point set between a set of K struc-

tures (from now on the term point set and structure will be used alternatively) has

many important applications for the analysis of protein and drug molecules. How-

ever, even in the one dimensional space for the case of exact congruence (ε = 0)

the problem is NP-Hard and it is hard to approximate within the factor of n1−δ, for

any δ > 0, where n is the size of the smallest structure[2]. The problem is further

complicated by the fact that in practice it is impossible to work with zero-congruence.

Therefore, we face another combinatorial sub-problem. Namely, given a set of super-

imposed structures, compute the largest common ε-congruent sub-set. We will call

this problem ε-K-partite matching (in 2D or in 3D). While for two structures (K = 2)

it can be solved by bipartite matching, for K > 2 structures it can be solved by K-

partite matching. However, this problem is known to be NP-Hard even for K = 3

in graphs and hyper graphs[43, 55]. Here, we show that the ε-3-partite matching

problem even in 2D is NP-Hard. As a result, we show that the common point set

problem for ε > 0 is NP-Hard even for three structures. When K is a free parameter,

even the most basic primitive of the ε-K-partite matching problem, i.e. detection

of at least one ε-K-tuple, is NP-Hard. However, the geometrical properties of the

studied problems allow development of polynomial-time approximation schemes (i.e.

the problems adopt PTAS), while the general graph optimization problems are hard

to approximate.

2.2 Preliminaries and Definitions

Below we list some of the notations which we alternatively use throughout the thesis:
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Structure Point set. We assume that a point set is unordered if

not specified otherwise.

K Number of input point sets.

n Number of points in one point set. We assume that the

input point sets are roughly of the same size, i.e. O(n).

Transformation Euclidean rigid motion (rotation + translation).

Multiple structure

alignment Common point set detection.

1D 2D 3D R1 R2 R3.

dens(ε) Point density. Upper bound on the number of points inside

a circle/sphere of radius ε. The upper bound is taken over

all possible circle/sphere locations.

In this work we use the bottleneck metric to measure the similarity between point

sets[1, 37]. The bottleneck distance between equally sized point sets S1 and S2 is less

than ε if there exists a bijective mapping m : S2 → S1 such that for each point s ∈ S2,

d(m(s), s) ≤ ε, where d(., .) is the Euclidean metric. Two point sets S1 and S2 are ε

similar if there exists an Euclidean transformation such that the bottleneck distance

between S1 and T (S2) is less than ε. For simplicity of other notations, which will

be introduced shortly, we use slightly different definitions of distance and similarity,

which are equivalent to the bottleneck distance and a similarity under the bottleneck

metric. First, we define how we measure closeness and congruence between two point

sets:

Definition 2.1. ε-closeness. Two equally sized point sets S1 = {a1, ..., an} and

S1 = {a1, ..., an} are ε-close if d(ai, bi) ≤ ε for each i = 1, ..., n, where d(., .) is the
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Euclidean metric.

Definition 2.2. ε-congruence. Two equally sized point sets S1 = {a1, ..., an} and

S1 = {a1, ..., an} are ε-congruent if there exists an Euclidean transformation T such

that S1 and T (S2) are ε-close.

Next, we define optimization problems that search maximal size subsets that are

ε-close or ε-congruent.

Problem 1. Similarity Measure between 2 Sets. Given ε > 0, and two point sets

S1 and S2, find equally sized ordered subsets S ′
i ⊆ Si (i=1,2) of maximal cardinality

such that S ′
1 and S ′

2 are ε-close.

Problem 2. Largest Common Point Set (LCP) between 2 Sets. Given ε > 0, and two

point sets S1 and S2, find equally sized ordered subsets S ′
i ⊆ Si (i=1,2) of maximal

cardinality such that S ′
1 and S ′

2 are ε-congruent.

The defined similarity measure problem is equivalent to solving the maximal

matching in a bipartite graph, where S1 and S2 define two partitions and edges

are created between ε-close points. A matching in such a graph defines a one-to-one

correspondence between point pairs which are ε-close, i.e. it defines an order of ε-

close subsets. An optimal solution can be computed in O(n
11
6

+δ), for any δ > 0[37].

The LCP problem is complicated by an additional free parameter - the Euclidean

transformation, still it can be exactly solved in O(n32.5) time[7].

The idea behind the methods that solve exactly the LCP problem, can be best

explained in case of Euclidean transformations limited to translations only. Let us

define a space of all relevant translations that bring the points of S2 into ε proximity

of points from S1. Let Tij = {t : |(t + qj) − pi| ≤ ε}, pi ∈ S1 and qj ∈ S2. Tij is a

ball of radius ε centered at (pi − qj) and it defines all translations that bring point

qj to ε proximity of pi. Consider an arrangement, A, defined on {Tij}, i = 1, ..., |S1|
and j = 1, ..., |S2|. A cell, c, of this arrangement is the intersection of some {Tikjk

}.
Any translation from c defines exactly the same bipartite graph of ε close points,

consequently, any translation from c gives the same answer to the LCP problem.

Therefore, it is enough to consider only one representative translation from each cell
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of A({Tij}), and for each representative translation we solve the similarity measure

problem, i.e. the maximal bipartite matching. The number of cells in A is O(n4) in 2D

and O(n6) in 3D. For the Euclidean transformations the idea is essentially the same,

though computing an arrangement in higher dimensions becomes more complicated.

To conclude, while the LCP optimization problem involves an unbounded number of

possible transformations, only a polynomial number induce combinatorially different

instances of the LCP problem.

In this work we extend the similarity measure and the LCP problem to multi-

ple sets and we call it the mSim and mLCP problem. We also define the multiple

Sim/LCP problem with respect to a pivot structure and we call it the pmSim/pmLCP

problem.

Problem 3. (mSim). Similarity Measure between K Sets. Given ε > 0, and K

point sets Si, i = 1, ..., K, find equally sized ordered subsets S ′
i ⊆ Si (i = 1, ..., K) of

maximal cardinality such that each pair (S ′
i, S ′

j) is ε-close (i 6= j, i, j = 1, ..., K).

Problem 4. (pmSim). Similarity Measure between K Sets with a Pivot Set. Given

ε > 0, a pivot set S1 and K − 1 point sets Si, i = 2, ..., K, find equally sized ordered

subsets S ′
i ⊆ Si (i = 1, ..., K) of maximal cardinality such that each pair (S ′

1, S ′
i) is

ε-close (i = 2, ..., K).

For two point sets the similarity measure problem is solvable by the maximal

bipartite matching algorithm. Similarly, the multiple similarity requires solving the

K-partite-matching problem in a K-partite graph defined on 3D structures, where

edges between the nodes from different partitions (structures) are created if and only

if the distance between the nodes is not greater than ε. Below we extensively use the

notion of K-partite graph and K-partite-matching, therefore, let us give an equivalent

definition to the mSim/pmSim problems using graph theoretic notations:

Definition 2.3. (ε-K-partite graph). Given ε > 0 and K point sets Si, i =

1, ..., K, an ε-K-partite graph G(S1, ..., SK) = (V, E) is defined as V = ∪K
i=1Si and

E = {(p, q) : p ∈ Si, q ∈ Sj, i 6= j, d(p, q) ≤ ε}. A matching in an ε-K-partite graph is

a set of disjoint K-tuples {(pt1 , ..., ptK ) : pti ∈ Si, ptj ∈ Sj, (pti , ptj) ∈ E}.
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Definition 2.4. (ε-K-partite-pivot graph). Given ε > 0 and K point sets Si,

i = 1, ..., K, of which S1 is the pivot, an ε-K-partite-pivot graph G(S1, ..., SK) = (V, E)

is defined as V = ∪K
i=1Si and E = {(p, q) : p ∈ S1, q ∈ Sj, j > 1, d(p, q) ≤ ε}. A

matching of an ε-K-partite-pivot graph is a set of disjoint K-tuples {(pt1 , ..., ptK ) :

pt1 ∈ S1, ptj ∈ Sj, (pt1 , ptj) ∈ E}.

In general graphs the K-partite-matching problem is NP-Hard even for three

sets[43, 55]. Below, we show that it is still NP-Hard even for ε-K-partite and ε-

K-partite-pivot graphs.

In case that K, the number of input structures, is a free parameter, we have

another sub-problem of detecting at least one K-tuple of points which are pairwise

ε-close:

Problem 5. (ε-K-tuple). Given ε > 0, and K point sets Si, i = 1, ..., K, answer

whether there exists a K-tuple (p1, ..., pK), pi ∈ Si, i = 1, ..., K, such that ∀i, j |pi −
pj| ≤ ε.

The ε-K-tuple problem appears as a basic part of the general optimization, ε-K-

partite matching problem. For the case of ε-K-partite-pivot matching, detection of

at least one ε-congruent K-tuple is trivially solved, by verifying that for each pivot

point whether there is at least one ε-close point from each other structure.

Now, let us define the multiple LCP problems that include the optimization on

Euclidean transformations.

Problem 6. (mLCP). Largest Common Point Set between K Sets. Given ε >

0, and K point sets Si, i = 1, ..., K, find transformations Ti (i = 2, ..., K) and

equally sized ordered subsets S ′
i ⊆ Si (i = 1, ..., K) of maximal cardinality such that

each pair (Ti(S
′
i), Tj(S

′
j)) is ε-close (i 6= j, i, j = 1, ..., K), where T1 is the identity

transformation.ii

iiNotice that it is possible to use an alternative definition that looks for K subsets that are
ε-congruent. Assume that the following pairs (A,B) (B,C) (A,C) are ε-congruent with their corre-
sponding transformations TAB , TBC and TAC that satisfy their ε-closeness. However, TAB(B) and
TAC(C) are not necessarily ε-close. Therefore the two definitions are different. In this work we
consider only the first definition.
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Problem 7. (pmLCP). Largest Common Point Set between K Sets with a Pivot Set.

Given ε > 0, a pivot set S1 and K− 1 point sets Si, i = 2, ..., K, find transformations

Ti (i = 2, ..., K) and equally sized ordered subsets S ′
i ⊆ Si (i = 1, ..., K) of maximal

cardinality such that each pair (S ′
1, Ti(S

′
i)) is ε-close (i = 2, ..., K).

In case that K is a free parameter, not surprisingly, the mLCP and pmLCP prob-

lems are NP-Hard, even in the one dimensional space for the case of exact congruence,

i.e. ε = 0 [2].

Before we give the complexity analysis of the multiple similarity measure and

multiple common point set problems, we discuss the approximation algorithms for

the LCP problem between two point sets.

2.2.1 LCP δ-(γ-additive)-approximation

Here we define approximation versions to the all optimization problems defined above,

i.e. similarity measure and largest common point set problems.

Definition 2.5. δ-(γ-additive)-approximation, δ ≥ 1, γ ≥ 0. If there exists a

solution of size L with error ε, then a δ-(γ-additive)-approximation algorithm guar-

antees to return in polynomial time a solution of size at least 1
δ
·L with error at most

(ε + γ).

We use the same definition for two point set as well as for multiple set versions of

the problem.

Polynomial time γ-additive-approximation to the problem of LCP between two

point sets is based on a simple alignment technique and works as follows. For each

non-colinear triplet of points from S1 and for each almost-congruent triplet from S2

construct a 3D transformation that aligns the second triplet with the first one (it

is enough to consider only pairs of triangles with maximal triangle side difference

≤ 2ε). Apply this transformation to S2 and construct a bipartite graph where the

vertices are the points of S1 and of transformed S2, and edges are created between

points with distance not greater than ε + γ. Apply a maximal bipartite matching

algorithm[37] to compute the largest set of aligned points. The algorithm works in
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O(n3 · n3 · n2) = O(n8). For this method the approximation ratio depends on the

alignment rule for the construction of a 3D transformation based on two triplets of

points (p1, p2, p3) and (q1, q2, q3). To define the alignment rule we need to define ap-

propriate local reference frames and their alignment.

Local Reference Frame, LRF (p1, p2, p3): Define a local right hand coordinate system

s.t.: p1 = (0, 0, 0), (p2 − p1)/|(p2 − p1)| = (1, 0, 0), (p2 − p1) × (p3 − p1)/|(p2 − p1) ×
(p3 − p1)| = (0, 0, 1).

Alignment Rule: Define a transformation T ′ that superimposes LRF (q1, q2, q3) onto

LRF (p1, p2, p3), i.e. p1 = T ′(q1), (p2−p1)/|p2−p1| = (T ′(q2)−T ′(q1))/|T ′(q2)−T ′(q1)|
and sign((p2 − p1)× (p3 − p1)) = sign((T ′(q2)− T ′(q1)× (T ′(q3)− T ′(q1)))

This alignment rule gives a 7·ε-additive-approximation to the LCP problem [48, 1].

Instead of considering one transformation for each triangle pair, we can construct a

larger set of transformations that approximate better an optimal transformation. The

following simple method unifies several ideas for the solutions of the LCP problem in

2D. The first idea is based on an exact solution to LCP in case of rotations around

some fixed point in 2D[18]. The second idea is based on the γ-additive-approximation,

for any γ > 0, in case of Euclidean transformations[56]. Here we extend it to 3D.

Construct a 3D grid, G1, around point p1 with side length O(γ) (for the sake of

clear description we neglect small constant factors). Consider only the grid points

that are ε + γ close to p1. The number of grid points of G1 is O(( ε
γ
)3). Then, for

each grid point g1 ∈ G1 consider a sphere, S|q1−q2|(g1), of radius |q1 − q2| centered at

g1. Construct a 2D grid, G2(g1), that covers the part of sphere S|q1−q2|(g1) that is

inside the sphere Sε+γ(p2). The distance between the grid points of G2 is O(γ). The

number of grid points of G2(g1) is O(( ε
γ
)2). For each g1 ∈ G1 and each g2 ∈ G2(g1)

create a transformation that aligns q1 with g1 and q2 with g2. The total number of

combinations of grid point pairs is O(( ε
γ
)5). One degree of freedom is left unspecified,

i.e. rotation around the axis (q1, q2). To solve this, we use the optimal method similar

to the one used for a rotation in 2D[18]. Arbitrarily select some vector perpendicular
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to (q1, q2) to indicate a reference point (i.e. zero angle) for rotations around (q1, q2).

For each pair (s1, s2), s1 ∈ S1 and s2 ∈ S2, compute a pair of angles [θ1, θ2], such that

when rotating s2 around (q1, q2) point s2 enters the sphere Sε+γ(s1) at angle θ1 and

exists the sphere at angle θ2. The arrangement of all such pairs on a 1D fragment

[0, 2π] defines all relevant rotational angles. The number of points in this rotational

arrangement is O(n2). Therefore it is enough to consider only O(n2) rotation angles

to solve the LCP problem. Instead of applying the maximal bipartite matching from

scratch for each rotation angle, notice the following fact. Each time we move from

one cell of the arrangement to it’s neighbor cell, only one edge in the bipartite graph

is changed. In such a case, updating the maximal matching is equivalent to finding

one augmenting path, which costs O(n · log(n))[37]. Therefore solving the LCP for

rotations around (g1, g2) takes O(n3log(n)), which is composed of (1) O(n2log(n))

computing angle events and sorting them, (2) O(n2) for finding the initial bipartite

matching at the zero angle, (3) updating the bipartite matching O(n2) times, when

each time costs O(n · log(n)).

Theorem 2.6. In 3D the γ-additive-approximation to the LCP problem between two

point sets can be computed, for any γ > 0, in time O(( ε
γ
)5n7log(n)).

Notice, that the exact as well as the approximate algorithms use an approach

that decompose the LCP problem to (i) computing a polynomial number of relevant

transformations and (ii) given a superposition solving the similarity measure problem.

2.3 ε-K-tuple Problem

In one dimensional space the ε-K-tuple problem can be efficiently solved by finding

the maximal number of ε-K-tuples, i.e. solving the optimization problem of 1D-ε-K-

partite matching (see Section 2.4.1). However, in 2D the problem is NP-Complete.

Theorem 2.7. The ε-K-tuple problem in 2D is NP-Complete.

Proof. The problem is in NP, since verification that some K-tuple is ε-K-tuple can

be done efficiently. We make a reduction from the 3-SAT problem. First, we briefly
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sketch the reduction from 3-SAT to the Clique problem (for more details see [43]),

and then we explain the necessary changes for the 3-SAT to ε-K-tuple reduction.

An instance of the 3-SAT problem includes a set of variables U = {u1, u2, ..., un}
and a set of clauses C = {c1, c2, ..., cm}. Each clause contains three literals of variables

U . A graph G = (V, E) is constructed as follows. For each variable ui ∈ U create two

vertices vU
ui

and vU
ūi

. For each clause cj = (aj, bj, cj) create three vertices vC
aj

, vC
bj

and

vC
cj

. Therefore in total, there are 2n + 3m vertices in graph G. The edges are created

as follows:

E = {(vU
ui

, vU
uj

) : i 6= j}

∪ {(vU
ūi

, vU
ūj

) : i 6= j}

∪ {(vU
ui

, vU
ūj

) : i 6= j}

∪ {(vC
ai

, vC
bj

) : i 6= j}

∪ {(vU
ai

, vC
bj

) : ai 6= bj},

i.e. the created graph G is a complementiii of a graph Ḡ with edges created

between (i) vU
ui

and vU
ūi

; (ii) vertices from the same clause cj and (iii) variable vU and

its corresponding literals from the clauses vC . Therefore, C is satisfiable if and only if

G has a clique of size n + m. Such a clique will contain exactly one vertex from each

{vU
ui

, vU
ūi
} and exactly one vertex from each {vC

aj
, vC

bj
, vC

cj
}. The unselected vertices of

type vU correspond to the truth assignment in C. Alternatively, C is satisfiable if

and only if the graph Ḡ has a vertex cover of size n + 2m[43], when selected vertices

of type vU correspond to the truth assignment.

Now, our aim is to transform the graph G to a 2D-ε-K-partite type graph, so that

the original edges are preserved. First, we group the vertices into partitions. Each

variable and its complement, {vU
ui

, vU
ūi
}, create a partition. Each clause {vC

aj
, vC

bj
, vC

cj
}

create a partition. Therefore in total, there are K = n + m partitions. Notice,

according to the definition of ε-K-partite graph, no edges are created between the

iiiWe consider the complement graph Ḡ since, originally, it is used in the reduction of 3-SAT into
the Node Cover problem. Then, the Node Cover is reduced into the Clique problem[43].
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(a) (b)

(c)

Figure 2.1: Reduction from 3-SAT to ε-K-tuple. (a) Construction of an ε-K-partite
graph. The vertices are positioned on a circle with diameter ε + δ, δ > 0. The pairs
{(vU

ai
, vC

bj
) : ai = bj} are placed diametrically opposite. If a variable appears in several

clauses, the equal literals are assigned the same coordinate. (b) The circle diameter
is set to ε + δ, ao = bo = co = (ε + δ)/2 and bc = ε. Given θ and ε we compute the
desired δ from the cosine rule, i.e. ε2 = (ε + δ)2(1− cos(π − θ))/2. (c) Example of a
geometrical construction.
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vertices from the same partition, even if the vertices are ε-close.

The geometrical construction is depicted in Figure 2.1. The vertices are positioned

on a circle with diameter ε + δ, δ > 0. The pairs {(vU
ai

, vC
bj

) : ai = bj} are placed

diametrically opposite. If a variable appears in several clauses, the equal literals are

assigned the same coordinate. Therefore, since the circle diameter is greater than ε,

there are no edges between the variables and its occurrences in the clauses, exactly

as in the original graph G.

Specifically, we assign the coordinates to the vertices as follows. We uniformly

map vertices {vU} into the circle arc [0, π/2], i.e. vertex vU
ui

is mapped at angle

(2i−2)θ and vertex vU
ūi

is mapped at angle (2i−1)θ. Then, the corresponding literals

are mapped at the diametrically opposite side. Our aim is to select θ and δ so that

only the diametrically opposite point pairs are located at distance greater than ε and

each other pair is located at distance less or equal to ε. The following assignment

satisfies such requirements:

δ = ε(

√
2

1− sin(θ)
− 1),

θ =
π/2

2n− 1
.

Therefore, this geometrical construction, along with the vertex partition, preserves

the original edges of the graph G. Consequently, the 3-SAT instance C is satisfiable if

and only if the constructed 2D-ε-K-partite graph has an ε-K-tuple. Such a ε-K-tuple

corresponds to a clique of size n + m in the original graph G.

Computing exactly an ε-K-tuple is hard, therefore we are interested in looking

for polynomial time algorithms that compute approximate solutions. The ε-K-tuple

problem can be considered as a constrained case of a more general problem - largest

clique detection. If we are able to compute the largest clique then we are able to solve

the ε-K-tuple problem as well. The largest clique is hard to approximate, essentially

it cannot be approximated within the factor of n1−δ, for any δ > 0 [54]. In the above

reduction, the problem may look simpler, since each vertex is connected to almost any
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other vertex. However, for the above reduction we can use an NP-Complete variant of

the 3-SAT problem where each variable is restricted to appear at most three times and

each literal at most twice. Hence, in the above reduction the maximal vertex degree

in graph Ḡ is three. Even considering such constraints the maximum independent

set in degree 3 graphs is APX-Complete[15]. Instead of approximating the size of an

ε-K-tuple, we define another approximation criterion, which will allow us to devise a

polynomial time approximation scheme.

Definition 2.8. ε-K-tuple γ-additive-approximation. If there exists an ε-K-

tuple, then a γ-additive-approximation algorithm guarantees to return in polynomial

time an (ε + γ)-K-tuple.

An algorithm that achieves an ε-additive-approximation is based on a simple fact

that a maximal distance between any two points in a circle/sphere of radius r is

at most 2r. Therefore, it is enough to detect a circle/sphere of radius ε that en-

closes K points from different point sets. If such enclosing circle/sphere exists, then,

the detected K-tuple is a 2ε-K-tuple. Obviously, if an ε-K-tuple exists, then the

algorithm detects at least one 2ε-K-tuple. The algorithm works as follows. Con-

struct a circle/sphere of radius ε around each point. Compute an arrangement of

these circles/spheres. A cell of this arrangement contains an intersection of some

circles/spheres. If some cell contains an intersection of K circles/spheres each coming

from a different point set, then a 2ε-K-tuple is detected. Construction and traver-

sal of an arrangement of circles (spheres) takes O(K2n2) (O(K2n2λ6(K · n)), where

λ6(K · n) is nearly O(K · n)) time [52] and this is the running time of the algorithm.

The ε-additive-approximation can be improved by noticing that a smaller cir-

cle/sphere can be used such that it guarantees to enclose any ε-K-tuple. The max-

imal enclosing circle/sphere is achieved in case when some three/four points from a

ε-K-tuple are located at distance ε one from each other, i.e. they form an equilateral

triangle / tetrahedron (for details see Appendix 2.8). Therefore, the diameter of a

circle/sphere that encloses an equilateral triangle / tetrahedron with side lengths ε is
2√
3
ε and

√
6

2
ε correspondingly.

Theorem 2.9. In 2D the 0.16 · ε-additive-approximation to the ε-K-tuple problem
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can be computed in 2D in time O(K2n2). In 3D the 0.225 · ε-additive-approximation

to the ε-K-tuple problem can be computed in time O(K2n2λ6(K ·n)), where λ6(K ·n)

is nearly O(K · n).

Next, we show that the ε-K-tuple problem adopts PTAS (there is a polynomial

γ-additive-approximation algorithm for any γ > 0), and the approximation algorithm

is fixed-parameter tractable (FPT), i.e. polynomial in both n and K.

Theorem 2.10. The γ-additive-approximation to the ε-K-tuple problem can be com-

puted, for any γ > 0, in 2D in time O(n ·min[2(ε/γ)2 , K(ε/γ)2K ] · ((ε/γ)2 + K)), and

in 3D in time O(n ·min[2(ε/γ)3 , K(ε/γ)3K ] · ((ε/γ)3 + K)).

Proof. For each point s ∈ S1 perform the following steps. Consider only the points

located in the circle of radius ε around the point s. From the first partition consider

only s. Transform the selected points so that s is at the origin.

For the case of 2D, construct a grid with side length γ/
√

2, such that the grid

vertices have coordinates (i · γ/
√

2, j · γ/
√

2), i, j ∈ {−dε
√

2/γe, ..., 0, ..., dε
√

2/γe}.
Map each input point to the nearest grid vertex. Each point position is changed

by at most γ/2. Consider each possible combination of the grid vertices. There

are O(2(ε/γ)2) combinations. For each combination verify whether each grid vertex

pair is within ε + γ distance and whether the grid vertices have at least one point

from each partition Si, i = 1...K. If yes, then return an (ε + γ)-K-tuple. Given a

combination of grid vertices, the verification time is O((ε/γ)4 + (ε/γ)2K). However,

since the vertex combinations can be constructed iteratively, so that only one vertex is

changed between each combination, then the verification time is only O((ε/γ)2 +K).

Clearly, if an ε-K-tuple exists, then the algorithm detects at least one (ε+γ)-K-tuple.

In case that K is small relative to (ε/γ)2, then it is enough to verify only the

combinations of K or less grid vertices, since each grid vertex should contribute

at least one point to a (ε + γ)-K-tuple. Therefore, the number of combinations is

min(O(2(ε/γ)2), O(K(ε/γ)2K)).

In 3D, we construct a grid with side length γ/
√

1 +
√

2. The number of vertices

is O((ε/γ)3). The rest is the same as in the case of 2D.
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2.4 ε-K-partite Matching

Here, we prove that the problems of ε-K-partite and ε-K-partite-pivot maximal car-

dinality matching are NP-Hard, even when K is a small constant. For the case of

3D-ε-3-partite graphs, we give an explicit geometrical construction of the reduction.

Next, we show an even stronger result that the problems of 2D-ε-3-partite and 2D-

ε-4-partite-pivot maximal cardinality matching are NP-Hard even in 2D. However

an explicit geometrical construction becomes more complicated, therefore we provide

only a schematic proof. Before we proceed to the 2D/3D cases, we consider the 1D

case, which turns out to have a polynomial time complexity for any K.

2.4.1 1D-ε-K-partite-(pivot) Matching

Figure 2.2: (a) a and b are overlapping K-tuples. Black points can be any color besides
red. Since a has selected a red point with a coordinate larger than a red point from b,
then these K-tuples are not sequential. The points that contradict sequentiality can
only be located in the overlapping region. Therefore these points can be exchanged
between a and b while not invalidating the ε proximity constraint. (b) K-tuple r has
the largest coordinates in all its colors. If K-tuples a and b are sequential and belong
to the maximal matching then a point x of red color cannot be selected by r and by
b at the same time (though it can be selected by r and by a).

To simplify the notations, when referring to a K-tuple we will assume that all its

points satisfy the ε proximity constraint. Each partition can be associated with a

different color. When referring to two points with the same color we mean that they

belong to the same partition. We make the following observation:

Definition 2.11. A matching M = {(pt1 , ..., ptK )} is called sequential if for each pair

of K-tuples (pt1 , ..., ptK ) ∈ M and (ps1 , ..., psK
) ∈ M either ∀j ptj ≤ psj

or ∀j ptj ≥ psj
.
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Lemma 2.12. For any matching there exists a sequential matching of the same size.

Proof. Consider any two K-tuples that contradict the sequential constraint. The

contradiction can occur only in the overlapping region (a region of a K-tuple is defined

between its leftmost and rightmost points, see Figure 2.2(a)). Since the overlapping

region belongs to both K-tuples it fulfills the ε proximity constraint for both K-tuples.

Thus, we can exchange between the points from the overlapping regions, satisfying

the sequential constraint. In this way we may satisfy the sequential constraint for

any given K-tuple pair. However, satisfying the K-tuples a and b, and then b and c

may result that a and b are again unsatisfied. Therefore, it is left to show that this

exchange process for all K-tuple pairs will stop. Consider a K-tuple, which contains

the rightmost point. After performing all exchanges of this K-tuple with others, all of

its K points will have the largest coordinate. In the same manner repeat the process

for the rest of the K-tuples.

Lemma 2.13. Let r be the K-tuple such that its points have the largest coordinate.

For any maximal matching M there exists a matching of the same size, which includes

r.

Proof. According to Lemma 2.12 we assume that M is sequential. At least one of the

points of r is selected by M , otherwise M is not maximal. Assume that K-tuples a, b

from M share some points with r, and the coordinates of the corresponding points of

a are larger than of b (see Figure 2.2(b)). We will show that r can share points with

at most one K-tuple, namely a, thus exchanging a with r proves the lemma. Consider

the red point x from the K-tuple r (see Figure 2.2(b)). Assume to the contrary that

x is selected by b. Since K-tuple a is to the right of b, then a should select some red

point which has larger coordinate than x. Thus, it contradicts that r has selected a

red point with the largest coordinate. Therefore, no two K-tuples from a maximal

sequential matching can share points with r.

According to Lemma 2.12 and Lemma 2.13 we can use the following simple algo-

rithm to compute the largest matching. Iteratively select the rightmost K-tuple until

no selection is possible. We will maintain pointers to the rightmost unselected point
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of each sorted set Si, i = 1, ..., K (sorting takes O(K · n · log(K · n))). At each step

we consider K unselected points, one from each set. To answer whether these points

are within ε distance we need to know the rightmost and the leftmost point, therefore

we maintain a heap data structure, such that inserting a new point costs O(log(K))

and querying the rightmost and the leftmost points costs O(1). If the K points are

within ε distance, we select them, and move the pointers in each set Si to the next,

left point. Otherwise, we discard the rightmost point (among the current K points)

and move the pointer in the corresponding set to next point. Each such step will cost

O(log(K)) to update the heap. Therefore, during the whole course of the algorithm

for each point we perform O(log(K)) operations.

The above lemmas are also valid for the 1D-ε-K-partite-pivot matching. The itera-

tive algorithm is similar to the previous one. Instead of verifying the distance between

the leftmost and rightmost point for the current iterating K points, (p1, ..., pK), we

check the distance to the current pivot point p1. In case that the leftmost, non pivot,

point from (p1, ..., pK) is at a distance larger than ε from p1 and is located to the

left of p1 we discard p1 and select the next, left pivot point. Otherwise, we consider

the rightmost non pivot point pi from (p1, ..., pK). If its distance to the pivot is not

greater than ε, then select the current K-tuple and consider next K points to the left.

Otherwise, select next pi and repeat the process. This way we spend time propor-

tional to the total number of points multiplied by O(log(K)) to maintain the leftmost

and the rightmost point.

Theorem 2.14. The maximal 1D-ε-K-partite/1D-ε-K-partite-pivot matching can be

computed in O(K · n · log(K · n)) time.

2.4.2 3D-ε-K-partite Matching

Theorem 2.15. The perfect 3D-ε-3-partite matching problem is NP-Complete.

Proof. First, we briefly present a reduction from 3-SAT to 3-partite matching in

general graphs (for more details see [43]), and then extend it to the instances of

3D-ε-K-partite graphs.
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Figure 2.3: Schematic representation of the component Ti[43]. Any perfect matching
will have to include either all gray triangles, and thus setting ui to true, or all white
triangles, and thus setting ui to false.

Figure 2.4: (a) z ∈ S1, x ∈ S2 and y ∈ S3. The distance between each pair of points
is ε. (b) Long-distance-edge gadget. Original triplet (x,y,z) can be elongated to any
distance by adding additional triplets at ε distance. The construction preserves the
matching choices of the original triplet. (c) Simplified long-distance-edge gadget. The
nodes of partitions S2 and S3 can be assigned the same Euclidean coordinate. This
can be done only for nodes from the components C and G.

An instance of the 3-SAT problem includes a set of variables U = {u1, u2, ..., un}
and a set of clauses C = {c1, c2, ..., cm}. Each clause contains three literals of variables

U . The goal of the reduction is to construct three disjoint sets S1, S2 and S3 of equal

cardinality, and a set of edges M ⊆ S1 × S2 × S3 such that M contains a perfect

matching if and only if C is satisfiable.

Three classes of edges are created, T - “truth setting and fan-out”, C - “satisfaction

testing” and G - “garbage collection”. The components of T are constructed for each

variable ui. Denote ui[j] to be a variable ui in clause j.
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Figure 2.5: (a) Split gadget. It guarantees that a pair (s2, s3) or (g2, g3) will select
exactly one node u. One such selection is depicted. The pair (s2[j], s3[j]) selects ui[j]
while the nodes ut[j] and up[j] should be selected by someone else. (b) Join gadget.
It guarantees that a node u[j] can be selected by at most one pair of type (s2, s3) or
(g2, g3).

T t
i = {(ūi[j], ai[j], bi[j]) : 1 ≤ j ≤ m}

T f
i = {(ui[j], ai[j + 1], bi[j]) : 1 ≤ j ≤ m− 1} ∪ {(ui[m], ai[1], bi[m])}

ūi[j], ui[j] ∈ S1, ai[j] ∈ S2, bi[j] ∈ S3

The component T forces a matching to choose between setting ui true and setting

ui false. Any perfect matching will have to include either all triplets from T t
i or all

triplets from T f
i , see Figure 2.3. Next, for each clause cj a component Cj aims to

select a truth setting for one of its three literals:
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Cj = {(ui[j], s2[j], s3[j]) : ui ∈ cj} ∪ {(ūi[j], s2[j], s3[j]) : ūi ∈ cj},

s2[j] ∈ S2, s3[j] ∈ S3.

Thus, only one triplet can be contained in any matching assigning the clause cj

to true setting.

Finally, the “garbage collection” component aims to compensate the unequal num-

ber of nodes created so far in S1 and in the other two partitions S2 and S3:

G = {(ui[j], g2[k], g3[k]), (ūi[j], g2[k], g3[k]) :

1 ≤ k ≤ m(n− 1), 1 ≤ i ≤ n, 1 ≤ j ≤ m},

g2[j] ∈ S2, g3[j] ∈ S3.

To summarize, the edges are defined as: T = ∪n
i=1(T

t
i ∪ T f

i ), C = ∪m
j=1Cj, M =

T ∪ C ∪ G. This completes the reduction from 3-SAT to 3-partite matching. Next,

we adapt the above reduction for 3D-ε-3-partite type graphs.

Notice that the constructed graph M does not belong to the 3D-ε-3-partite type

of graphs. Only the component T can be drawn in 2D to satisfy this property, i.e.

only the point triplets from T can be placed within ε distance one from each other

(see Figure 2.3)iv. The problem is that the nodes of type s2, s3 and g2, g3 can not be

placed in 3D so that their distance from the different nodes of type ui is not greater

than ε. To resolve this problem we introduce the long-distance-edge gadget. The

basic principle is illustrated in Figure 2.4. The edge (x, y, z) can be elongated to any

distance preserving the property for matching.

The second gadget aims to split edges going from nodes of type s2, s3 (g2, g3). As-

sume we have three edges (ui[j], s2[j], s3[j]), (ut[j], s2[j], s3[j]) and (up[j], s2[j], s3[j]).

Figure 2.5(a) illustrates how these three edges can be constructed. Triangles illustrate

ivIn the 3-SAT to 3-partite matching reduction, the definition of a hypergraph edge as a triplet of
points (a,b,c) is equivalent to three edges (a,b), (a,c) and (b,c) in a regular graph.
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Figure 2.6: Component Ti is extended with additional nodes. The original nodes ūi

and ui are placed on line (x, 0, 0). Figures (a) and (b) represent the only two choices
for matching. The original rule of truth assignment for ūi and ui nodes is preserved.
(c) New node name assignments.



2.4. ε-K-PARTITE MATCHING 35

Figure 2.7: (a) The components Ti are placed in the plane (x, y, 0). The long-distance-
edges L connect nodes ūi and ui with the components Cj and Gk. (b) The components
Cj and Gk are placed in parallel planes which are perpendicular to the plane (x, y, 0).
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possible matching. This gadget guarantees that any perfect matching will select only

one node u[j] with combination of nodes from this gadget. However, there are many

long-distance-edges coming to nodes of type u[j] and there is a need to join them.

The split gadget is not suitable for this task, therefore we introduce a join gadget (see

Figure 2.5(b)). The join gadget guarantees that any perfect matching will connect a

node u[j] to only one pair of type s2, s3 (g2, g3). A direction of triangles (towards a

node of type S1) uniquely identifies a selection path.

To complete the construction we need to show how to place in 3D all the long-

distance-edges and connections between them. The idea is to place the component

T in the plane (x, y, 0), components Cj and Gk on planes that are perpendicular to

the plane (x, y, 0). The planes of Cj and Gk are parallel. The long-distance-edges are

constructed between the components like water pipes. Below we give details of a 3D

coordinate assignment for each component.

The component T as depicted in Figure 2.3 is not convenient for a coordinate

assignment. We transform it into a new structure as shown in Figure 2.6. Now,

all the nodes that represent variables ui[j] are located on the 1D line (x, 0, 0). The

Ti components are composed from the same set of points that are shifted with the

following vector: Shift(i) = ((i− 1)(2m + 2)ε, 0, 0).

The component Ti, 1 ≤ i ≤ n, is constructed from the following points (below, all

the nodes denoted by u/a/b belong respectively to S1/S2/S3):



2.4. ε-K-PARTITE MATCHING 37

U t
i = {ūi[j] = ((2j − 1)ε, 0, 0) + Shift(i) : 1 ≤ j ≤ m}

U f
i = {ui[j] = ūi[j] + (ε, 0, 0) : 1 ≤ j ≤ m}

u′′
i = (0, ε, 0) + Shift(i)

u′′′
i = ((2m + 1)ε, ε, 0) + Shift(i)

U ′ = {u′
i[j] = (jε, 2ε, 0) + Shift(i) : 1 ≤ j ≤ 2m}

H ′ = {a′i,j = (0.5ε + 2(j − 1)ε, 0.5ε, 0) + Shift(i) : 1 ≤ j ≤ m + 1}

∪ {b′i,j = (1.5ε + 2(j − 1)ε, 0.5ε, 0) + Shift(i) : 1 ≤ j ≤ m}

H ′′ = {a′′i,j = (1.5ε + 2(j − 1)ε, 1.5ε, 0) + Shift(i) : 1 ≤ j ≤ m}

∪ {b′′i,j = (0.5ε + 2(j − 1)ε, 1.5ε, 0) + Shift(i) : 1 ≤ j ≤ m + 1}

H ′′′ = {a′′′i,j = b′′′i [j] = (2.5jε, 2ε, 0) + Shift(i) : 0 ≤ j ≤ m}

Figure 2.7(a) depicts long-distance-edges that connect Ti components to the com-

ponents C/G. All these edges are placed in the same plane (x, y, 0) as Ti:

L = {aL
i,j,k = bL

i,j,k = (jε, (1− 2k)ε, 0) + Shift(i) : 1 ≤ j ≤ 2m, 1 ≤ k ≤ mn}

∪ {uL
i,j,k = (jε,−2kε, 0) + Shift(i) : 1 ≤ j ≤ 2m, 1 ≤ k ≤ mn}

1 ≤ i ≤ n

Figure 2.7(b) depicts components C/G that are placed perpendicular to the plane
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(x, y, 0). The component C consists of the following points:

C = {aC
j,k = bC

j,k = (jε,−2kε, 3ε) : 1 ≤ j ≤ (2mn + 2(n− 1)), 1 ≤ k ≤ m}

∪ {uC
j,k = (1.5jε,−2kε, 3ε) : 1 ≤ j ≤ (2mn + 2(n− 1)− 1), 1 ≤ k ≤ m}

∪ { {aC
i,j = bC

i,j = ((2j − 1)ε,−2jε, ε) + Shift(i)}

∪ {uC
i,j = aC

i,j + (0, 0, ε)}

: ūi ∈ cj, 1 ≤ j ≤ m}

∪ { {aC
i,j = bC

i,j = (2jε,−2jε, ε) + Shift(i)}

∪ {uC
i,j = aC

i,j + (0, 0, ε)}

: ui ∈ cj, 1 ≤ j ≤ m}

1 ≤ i ≤ n

The component G consists of the following points:

G = {aG
j,k = bG

j,k = (jε,−2kε, ε) : 1 ≤ j ≤ (2mn + 2(n− 1)), (m + 1) ≤ k ≤ mn}

∪ {uG
j,k = (1.5jε,−2kε, ε) : 1 ≤ j ≤ (2mn + 2(n− 1)− 1), (m + 1) ≤ k ≤ mn}

The whole construction requires a polynomial number of points.

2.4.3 2D-ε-K-partite-(pivot) Matching

In this section we want to show a schematic proof that the maximal cardinality 2D-

ε-3-partite and 2D-ε-4-partite-pivot problems are NP-Hard.

Lichtenstein[79] introduced an approach to prove NP-Completeness results of pla-

nar instances of some of the graph related problems. He demonstrated that any

3-SAT formula can be reduced to an equivalent 3-SAT formula with the following

planar property. Define a bipartite graph where the nodes of the first partition rep-

resent variables from the 3-SAT formula and the second partition nodes represent

clauses. An edge is defined between a variable and a clause if the variable appears,
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complemented or non-complemented, in the clause (see Figure 2.8(a)). Given a 3-

SAT formula there exists an equivalent formula for which the above defined bipartite

graph is planar. This property of 3-SAT formula allows to prove NP-Completeness

of planar node cover problem, directed Hamiltonian circuits problem, etc[79].

Consider the original 3-partite matching problem. Given a hypergraph with the

edges defined between triplets of nodes, we will define a 4-partite graph in the fol-

lowing manner. If there is an edge e = (a, b, c) then the nodes a, b and c are added

to the first, second and third partition accordingly and the node e is added to the

fourth partition. The edges (a, e), (b, e) and (c, e) are created (see Figure 2.8(b)).

Actually, the final graph is bipartite (there are no edges between the first three par-

titions), but we will consider it as a 4-partite graph (we will use the fourth partition

as a pivot). Dyer and Frieze[35] demonstrated that even for instances of the perfect

3-partite matching problem for which the associated graph defined above is planar,

the problem is NP-Complete. The proof relies on the result of Lichtenstein[79]. In

contrast to the associated graph of a 3-SAT instance, the associated 4-partite graph

uniquely defines the original instance of the 3-partite hypergraph.

We will transform the associated planar 4-partite graph to the 2D-ε-4-partite-pivot

graph. Figure 2.8(c) shows how to apply long-distance-edges to connect between the

nodes. The construction preserves the original matching choices. To assure that no

unwanted relations are created between the nodes within ε distance (for example, we

want to avoid that two long-distance-edges are too close to each other) a geometrical

scaling can be performed on the original (schematic) planar graph. In the construction

of Dyer and Frieze[35] the maximal degree of each node is only 3, therefore we do

not need split or join gadgets. The extensions we perform to the graph add an equal

number of nodes for each partitions. The original graph had the equally sized first

three partitions. Assume that after our extension the size of the first three partitions

equals to N . If we define the fourth partition as a pivot partition then we conclude

with the following theorem:

Theorem 2.16. The problem of existence of a 2D-ε-4-partite-pivot matching of size

N is NP-Complete.
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Figure 2.8: (a) A bipartite graph associated with the 3-SAT formula[79]. (b) An
edge e = (a, b, c) is represented by four nodes a, b, c and e. (c) A long-distance-edge
is added between e and c. This extension does not change the original matching
choices, i.e. either e selects a, b and c or selects none. The extended component has
also two equivalent choices. According to the reduction, all nodes from the first three
partitions should be selected ( a, b, c, a′, b′ and c′). First option, e selects a, b and
c′, then e′ has to select a′, b′ and c. The second and the third option, e or e′ selects
none, then a′, b′ and c′ have to be selected by e′ or e respectively. (d) The 4-partite
component shown in (b) is replaced by a 3-partite component. There are only two
options for perfect matching, either in gray (equivalent to selecting (a, b, c)) or in
white (equivalent to not selecting (a, b, c)). (e) An example of a long-distance-edge
added to the component from (d). The matching options are preserved.



2.4. ε-K-PARTITE MATCHING 41

Notice, that the maximal cardinality 3-partite-ε-pivot matching problem is solv-

able in polynomial time by solving a maximal network flowv. In case we require that

all the pivot nodes should be matched, then the ε-K-partite-pivot matching problem,

for any K, is also solvable in polynomial time by a maximal network flowvi.

The above construction can be reduced to a 3-partite graph while preserving the

same options for matching of the original triplets. In similar manner we can add

long-distance-edges. See Figure 2.8(d), (e). Thus, we obtain the following theorem:

Theorem 2.17. The perfect 2D-ε-3-partite matching problem is NP-Complete.

Notice, that in all the above reductions the maximal node degree is a small con-

stant. In the case of 3D-ε-3-partite/2D-ε-4-partite-pivot/2D-ε-3-partite reduction,

the maximal degree is 6/9/8, and if we consider only edges between any two parti-

tions then the maximal node degree is only 3/3/4. In practical applications, which

are discussed in Chapters (3) and (5), the node degree can be even larger, though

it is bounded by a small constant (ε = 3.0Å). For practical node degree estimates

see Section 5.2.2. Alternatively, we can assume that the point distribution is not too

dense as a function of ε. Formally, we assume that the number of points inside any

circle in 2D (sphere in 3D) of radius ε is bounded by a small constant d (dens(ε) ≤ d).

Therefore, the NP-Completeness results still hold, however, we can utilize the geomet-

ric properties to devise an approximation algorithm which is fix parameter tractable

(FPT). The algorithm is polynomial in n.

Theorem 2.18. Let n be the size of the smallest partition. The size of the ε-K-

partite/ε-K-partite-pivot matching can be approximated in 2D within 1/(1− 4 · ε/c),
vConnect the source node to all the points/nodes of the second point set. Make directed edges

from the second point set to the corresponding ε close points of the pivot/first point set. Then, direct
the edges from the pivot nodes to the corresponding ε close points of the third point sets. Finally,
connect all third set points to the sink node. Set all the edge capacities to one. The maximal flow
in this graph corresponds to the maximal 3-partite-ε-pivot matching.

viConnect the source node to all the points/nodes of the pivot/first point set. Set the minimum
and maximum capacity of these edges to K-1 (this will guarantee that each pivot point is selected).
Then, for each pivot node p add new K-1 nodes {v2, ..., vK} and add edges {(p, vi) : i = 2, ...,K}
with capacity one. These edges will guarantee that at most one node from the point set i will be
matched with p. Then, direct one unit capacity edges from the node vi to the points from the set
i that are ε close to p. Finally, connect nodes from the sets 2, ..,K to the sink node and set the
maximum capacity of these edges to one. The maximal flow in this graph (if a flow exists) will
connect each pivot point with exactly one point from each other point set.
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∀c > 4·ε, in time O(n·d(c/ε)2·d·K), and can be approximated in 3D within 1/(1−6·ε/c),
∀c > 6 · ε, in time O(n · d(c/ε)3·d·K).

Proof. The general idea of the approximation algorithm is to construct a grid that

covers the input points and then to solve optimally the matching problem separately

for each grid face.

Consider the 2D case. We construct a finite size grid, g0, with spacing c such that

it covers all points of the graph. It is enough to cover points and their ε surrounding

only from the smallest point set, hence, the number of grid faces is less than O(n).

The number of points that are covered by each grid face is at most O(K · d · (c/ε)2).

If a point is located on a grid edge we arbitrarily associate it to one of the adjacent

faces. The grid can be constructed in time O(K · n · log(n)).

Given a grid face, consider its covered points. Apply an exhaustive search to

detect the largest matching. A search can be done by iterative selection of ε-K-tuples

according to the vertices from the smallest partition. For each given vertex there

are O(dK−1) ε-K-tuples in which it can participate. There are O((c/ε)2d) vertices

from the smallest partition and this is the depth of the iterative search. Thus, the

exhaustive search takes O(d(c/ε)2·d·K) time.

Define by M(g) the union of optimal matchings from all the grid g faces, detected

by the exhaustive search in each grid face. Notice that the union is a valid matching

since no point is shared between the grid faces.

Let MOPT be the optimal ε-K-partite matching. Define by MOPT (g) ⊆ MOPT a

set of ε-K-tuples that its edges intersect with the grid g edges. Therefore, |MOPT | −
|MOPT (g)| ≤ |M(g)|.

To reduce the maximal size of MOPT (g) we consider (c/ε)2 grids constructed at

slightly different locations, namely, G∗ = {g0 + (i · ε, j · ε) : 0 ≤ i, j ≤ dc/εe}, where

the additive operator is a translation applied to all grid elements.

Consider some ε-K-tuple k ∈ MOPT . Any ε-K-tuple can be covered by a circle

with diameter less than 2 · ε (for the tight bound see Appendix 2.8). The distance

between grid parallel edges is larger than 4 · ε. Hence, only one vertical/horizontal

line from g0 can intersect a circle of diameter < 2 · ε. Since all the grids are generated

at steps ε a vertical/horizontal line from g0 can intersect a circle at most twice.
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For each intersection there are (c/ε) different grids in G∗. Counting separately for

vertical and horizontal lines there are at most 4·(c/ε) grids from G∗ that can intersect

with k. Summing for all grids and all k ∈ MOPT there are at most 4 · (c/ε)|MOPT |
intersected ε-K-tuples. Thus, there exists g ∈ G∗ with at most 4 · (c/ε)|MOPT |/(c/ε)2

intersected ε-K-tuples from MOPT . Hence, the algorithm computes g and M(g) such

that |MOPT |(1− 4 · ε/c) ≤ |M(g)|.

2.5 Largest Common Point Set Problem Between

K Point Sets

2.5.1 mLCP/pmLCP in 1D

For the case of 1D and a constant number of structures we give a polynomial solution

to the pmLCP problem.

First, we start with the algorithm for the pairwise case, K = 2. Consider an

arrangement defined on translations between points of S1 = {pi} and S2 = {qj}.
Tij = {t : |(t + qj) − pi| ≤ ε}. Tij is a contiguous fragment and can be defined

by its two extreme points, Tij = [pi − qj − ε, pi − qj + ε]. All relevant translations

belong to T 2 = {Tij}. Arrangement of {Tij}, A(T 2), is defined by the fragment end

points. The arrangement faces correspond to contiguous fragments between the nodes.

The translations that belong to some face define exactly the same combinations of

possible matched points. Therefore, to solve the pmLCP problem between S1 and

S2 it is enough to consider only one translation from each arrangement face. Such

translation representative can be chosen as a middle point of the face fragment. The

complexity of the arrangement A(T 2) is O(n2). For each face we solve the pmSim

problem which takes O(n log(n)) for two structures. Thus the total time complexity

is O(n3log(n)).
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pmLCP in 1D

First, we compute A(T i) (i = 2, ..., K), which are the translation arrangements be-

tween S1 and Si (i = 2, ..., K). Each face of A(T i) defines an unique solution to

the pmLCP problem with respect to S1 and Si. Therefore, each face (K-1)-tuple,

consisting of one face from each A(T i), defines a multiple superposition between all

K structures. Traversing all combinations of K− 1 face tuples gives all relevant mul-

tiple superpositions. For each K − 1 face tuple we solve the pmSim problem in time

O(K · n · log(K · n)), and output the largest solution. There are O(n2(K−1)) different

K − 1 face tuples. Therefore, the running time is O(n2K−1 K · log(K · n)).

mLCP in 1D

Notice, that in the pmLCP problem, given a K − 1 tuple of faces, there are K − 1

degrees of freedom between relative positions of structures Si and Sj (i 6= j, 1 <

i, j ≤ K). In the case of the pmLCP problem these degrees of freedom are not

relevant, since only the position relative to S1 is taken into account. However, for

the mLCP problem we need to consider relative position between all the structures.

For simplicity, consider the case of three structures, S1, S2 and S3. As previously,

for structures S1 and S2 we define an arrangement A(T 1,2). In contrast to pmLCP,

it is not enough to consider only one representative from a face of A(T 1,2), since the

relative position of S2 and S3 will change the combinations of possibly matched point

triplets. A face of A(T 1,2) is defined by two fragment endpoints [a, b]. Consider a set

S1,2(t) = S1∪(S2+t), t ∈ [a, b], where the additive operator, +, is a translation applied

to each point of S2. Let A(T 1,2,3(t)) be the translation arrangement between S1,2(t)

and S3. Clearly, some nodes (points) of A(T 1,2,3(t)) are static, i.e. do not depend on

t, and some node positions are a function of t. Let us denote by V the static set of

nodes and by V (t) the second set. As t continuously changes in the range [a, b], the

combinatorics of A(T 1,2,3(t)) can also be changed. The combinatorics of A(T 1,2,3(t))

can be changed only when some point from V (t) intersects some point from V . Since

the points of V are static and points of V (t) are all moving with the same velocity,

the intersection events, {t′}, can be computed in time |V | |V (t)| log(|V | |V (t)|) ∈
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O(n4log(n)). Each event t′ defines a translation of point set S2. It also defines, one,

new face of A(T 1,2,3(t′)), i.e. a translation t′′ for S3. Notice, that at each event t′ we

don’t need to update A(T 1,2,3(t′)). Therefore, for each t′ we compute mSim of S1,

S2 + t′ and S3 + t′′.

Therefore, the algorithm is as follows. For each face [a, b] of A(T 1,2) we compute

all combinatorially different arrangements A(T 1,2,3(t)), t ∈ [a, b]. For each, combina-

torially different, face of A(T 1,2,3(t)) we solve the mSim problem. The total running

time is O(n2n4log(n4)(3n · log(3n))) = O(n7log2(n)).

For K structures we apply a recursive algorithm as follows. Similar to the three set

problem, the arrangement A(T 1,2,...,K(t2, ..., tK−1)) is defined between two point sets

S1∪(S2+t2)∪ ... ∪(SK−1+tK−1) and SK . This arrangement contains one static point

set and K − 2 point sets which can be independently translated within some range.

The number of combinatorially different arrangements, as a function of (t2, ..., tK−1),

is not larger than (n2)K−1. Let T (k) denote the time to compute combinatorially

different arrangements for k point sets. Then, T (k) = T (k−1)+(k−2) ·n2 ·(n2)k−2 ≤
k2n2K−2. The number of faces in an arrangement is O((K − 1) · n2). For each face

of combinatorially different arrangement we solve the mSim problem. Therefore, the

running time to solve the mLCP problem is T (K) + (K − 1) · n2 ·K · n · log(K · n).

Theorem 2.19. The mLCP/pmLCP problem in 1D is solvable in polynomial time

for any fixed K.

2.5.2 mLCP/pmLCP in 2D

Akutsu el al.[2] have demonstrated that the mLCP problem between K point sets in

1D is NP-Hard even for ε = 0. For a constant K, however, there is a polynomial

solution. Here we show that in the case of ε > 0 even for three point sets in 2D (4

point sets for the pmLCP problem) the mLCP problem is NP-Hard. In our proof we

use the NP-Completeness results of the matching problem for the ε-K-partite graphs.

Theorem 2.20. The mLCP problem in 2D is NP-Hard for K=3 and ε > 0.

Proof. We will reduce the 3-partite-ε matching problem to the mLCP problem. As-

sume that we are given an ε and three point sets (S1, S2, S3). The idea of the reduction
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Figure 2.9: (a) E1 = {x1, y1, z1} and E2 = {x1, y1, z1} define two triplets of points.
Points {x1, x2}, {y1, y2} and {z1, z2} are added to point sets S1, S2 and S3 respectively.
The points y1 and z1 (y2 and z2) are assigned the same coordinate. The identity
transformation and 180◦ rotation around (x1+x2)/2 are the only two transformations
that can be applied to S2 (S3) that can match with ε-congruence both triplets E1 and
E2. (b) The triplets Ei, i = 1, ..., 4N , are placed on the axis of diametrically opposite
points (a, b) of the point set S1 ∪ S2 ∪ S3.

is to add some new points to the original sets so that the largest common point set

can be obtained only with identity transformations (in the mLCP problem Euclidean

transformations are applied to the point sets S2 and S3 in order to maximize the

matching).

Consider two sets of three points E1 and E2 as depicted in Figure 2.9(a). We

add points {x1, x2}, {y1, y2} and {z1, z2} to S1, S2 and S3 respectively. The identity

transformation and 180◦ rotation around (x1+x2)/2 are the only two transformations

that can be applied to S2 (S3) that can match the two triplets E1 and E2. Other

transformations will match at most one triplet. Let N = min(|S1|, |S2|, |S3|). Let

(a, b) be a pair of points from the set S1 ∪ S2 ∪ S3 with the maximal distance, i.e.

(a, b) = arg maxa,b∈S1∪S2∪S3 |a − b|. Transform the coordinate system so that a and

b lie on the x-axis, b is located at (0, 0) and a to the left of b (see Figure 2.9(b)). Let

d = |a− b|, L0 = 2(d + 3ε), L1 = L0(2N)2. We define 4N sets Ei, i = 1, ..., 4N , (2N

sets of type E1 and 2N sets of type E2), all located on the x-axis (in this construction

we use an idea borrowed from Akutsu el al.[2]) . The leftmost point of E1 is located

at distance L0 from point b, i.e. y1 = z1 = (L0, 0), x1 = (L0 + ε, 0). The set E2 is

defined as x2 = (L1 +3L0, 0), y2 = z2 = (L1 +3L0 +ε, 0). The set E2i−1, i = 2, ..., 2N ,

is defined as E2i−1 = E1 + ((2i− 2)L1 + L0

∑2i−1
k=2 k, 0). The set E2i, i = 2, ..., 2N , is
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defined as E2i = E2 + ((2i − 2)L1 + L0

∑2i
k=3 k, 0). For simplicity, consider that the

leftmost point of each set Ei is located at (L0+(i−1)L1+L0

∑i
k=2 k, 0), i = 2, ..., 4N .

Given three point sets (S1, S2, S3) we extend it with ∪4N
i=1Ei. Let us call the

extended sets (S∗
1 , S

∗
2 , S

∗
3). Let Mmax be the size of the maximal 3-partite-ε matching

of the graph G(S1, S2, S3). From the construction it is clear that for the identity

transformations the size of a common point set of (S∗
1 , S

∗
2 , S

∗
3) is Mmax + 4N . We

want to show that for the non identity transformations the size of any common point

set of (S∗
1 , S

∗
2 , S

∗
3) is not larger than 3N . We examine the following properties of the

construction.

Property I. Notice that for any transformation applied to S2 (S3), points from at

most one set Ei can be matched with transformed points of S2 (S3) (the distance

between any Ei and Ej, i 6= j, is larger than the diameter of S1 ∪ S2 ∪ S3).

Property II. For any given matching, denote by I the matched triplets consisting of

points from the same Ei, i = 1, ..., 4N , i.e. triplets (xi, yi, zi). From the construction

it is clear that |I| = 4N only for the identity transformations, and |I| ≤ 2N for any

other transformations (a small shift by less than ε along the x-axis will match either

even or odd sets Ei).

Property III. For any given matching, denote by I∗ the matched triplets consisting

of points coming from at least two different sets, Ei and Ej, i 6= j, i.e. triplets

(xi, yj, zk), xi ∈ Ei, yj ∈ Ej and zk ∈ Ek, such that either i 6= j or i 6= k or j 6= k. We

want to show that for any transformation |I∗| ≤ 2. Consider a not trivial matching

I∗ of size larger than one. Assume that a point xt ∈ Et is matched with yt′ ∈ Et′ and

xj ∈ Ej (from another triplet) is matched with yj′ ∈ Ej′ . Therefore,

|xt − xj| = |yt′ − yj′|+ δ, where δ ∈ [−2ε, 2ε].

Cases where t 6= j and t′ = j′ (or t = j and t′ 6= j′) are trivially invalid due to the

construction. Assume that t > j, then

(t−j)L1+L0

∑t
k=j+1 k = |t′−j′|L1+L0

∑t′

k=j′+1 k+δ+δ∗, where δ∗ ∈ {−2ε, 0, 2ε}.
Since L1 > L0

∑t
k=j+1 k , it follows that (t− j) = (t′ − j′). Since L0 > |δ + δ∗|, then

L0

∑t
k=j+1 k = L0

∑t′

k=j′+1 k.

It follows that t = t′ and j = j′. Therefore, |I∗| ≤ 1 in case of t > j and t′ > j′.

In case that t > j but t′ < j′ then t = j′ and j = t′ (e.g. 180◦ rotation around
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(xt + xt′)/2), therefore, |I∗| ≤ 2, since according to the construction the equality

t = j′ and j = t′ cannot hold for more than two triplets.

These construction properties give the following result. For identity transforma-

tions the common point set has the size Mmax + 4N . If at least one of the trans-

formations is not identity then the common point set size is less than N + 2N (the

upper bound of the mLCP of (S1, S2, S3) plus the upper bound of a common point set

of ∪4N
1 Ei in case of non identity transformation). Therefore, the maximal 3-partite-ε

matching of (S1, S2, S3) is of size M if and only if the mLCP size of (S∗
1 , S

∗
2 , S

∗
3) is

M + 4N .

The above reduction works as well for the pmLCP problem with four point sets.

The additional elements Ei are extended with points, t1 and t2, which will be added

to the fourth point set, such that y1 = z1 = t1 and y2 = z2 = t2.

Theorem 2.21. The pmLCP problem in 2D is NP-Hard for K=4 and ε > 0.

As we have discussed above in Section 2.2, the optimization LCP problem can

be separated into two sub-problems, transformation search and the mSim/pmSim

problem. For any fixed number of point sets, K, the multiple transformation search

can be computed in polynomial time, either by applying the optimal methods (that

construct arrangement of transformations in high dimensions) or by applying a γ-

additive-approximation method. The optimal method can be extended for any K

similar to the method described for the 1D case. Since the optimal algorithm is not

practical even for two point sets, here we do not consider its extension. Instead, we

consider the approximation technique. Compute all relevant pairwise transformations

between S1 and Si, ∀i = 2, ..., K, that guarantee the γ-additive-approximation to an

optimal transformation. For each combination of K − 1 transformations, one for

each point set, solve the mSim/pmSim problem. In case of the pmSim problem the

γ-additive error remains the same as in the pairwise case. In the mSim case, the

algorithm gives a 2 · γ-additive approximation and this error does not depend on K.

Theorem 2.22. For a constant number of point sets, the δ-(γ-additive)-approximation

to the mLCP/pmLCP problem in 2D/3D can be computed in polynomial time.
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2.6 Largest Common Point Set Problem Between

Point Set Families

Above we have discussed the problem of computing the largest point set that is shared

between all input structures. In practice, several structures may be outliers or the

input may consist of several structurally similar families of point sets. Therefore,

in real applications it is important to detect families of structures that may share

significantly larger common patterns than a common pattern between all the input

point sets. Essentially, this is a generalized version of the mLCP problem.

Problem 8. Family mLCP. The input consists of ε > 0, and K point sets S =

{Si}K
i=1. Denote by F t = {Si1 , ..., Sit} a family consisting of t point sets, Sij ∈ S.

Find, for each t = 2, ..., K, a family F t
opt, such that mLCP (F t

opt) is the largest over

all families of t point sets, i.e. ∀F t mLCP (F t
opt) ≥ mLCP (F t).

For a few input structures it is possible to compute an mLCP (optimal or ap-

proximate solution) for each possible family in polynomial time. However, for large

K, since the Family mLCP problem is a generalization of the mLCP problem, it is

NP-Hard in 1D even for ε = 0 [2]. Let us consider the multiple similarity problem

extended to the Family requirements, i.e. the Family mSim problem. Then the mSim

in 1D, ε = 0, is trivially solvable by sorting points and detecting points with the same

coordinate. However, we conclude that the Family mSim problem is NP-Hard.

Theorem 2.23. The Family mSim problem in 1D is NP-Hard for ε = 0.

Proof. We make a reduction from the maximum edge cardinality biclique problem

(MBP) [98, 26]. Given a bipartite graph G = (V ∪U,E), a subgraph BC = (V ′∪U ′),

V ′ ∈ V and U ′ ∈ U , is a biclique if for every v ∈ V ′ and u ∈ U ′ there is an edge

(v, u) ∈ E. Maximum edge cardinality biclique in G is a biclique with a maximum

number of edges.

Given a bipartite graph G = (V = {v1, ..., vn} ∪ U = {u1, ..., um}, E) we associate

each node vi with a point set Si and each node uj with a coordinate (j) on a line. First,

we define the total set of coordinates and then we assign points to these coordinates.
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The coordinates are {pj = (j) | j = 1, ..., |U |}, i.e. each node uj from U is mapped to

a coordinate (j). A point set Si, i = 1, ..., |V |, is defined as Si = {pj | (vi, uj) ∈ E}.
According to the construction, a biclique defines a family of point sets and their

common point set (not necessarily the largest), and the opposite, a family of point

sets with their common point set correspond to a biclique (not necessarily the largest).

A solution to the Family mSim problem, for each t = 2, ..., |V | returns the largest

biclique BCt = (V ′ ∪ U ′) so that |V ′| = t. Therefore, selecting the largest biclique

from {BCt} ∪ {bicliques with only one node from V } gives the largest biclique in the

graph G.

Notice, that in case ε = 0, the Euclidean dimensionality of the mSim (or family

mSim) problem is irrelevant. It is always possible to arbitrarily change a coordinate

of the coincide points without effecting the size of a common point set. Therefore,

the input point sets can be represented as a pure bipartite graph as defined in the

above proof.

In case of K = 3 and ε > 0 the Family mLCP (mSim) problem is hard in 2D due

to the NP-Hardness of the mLCP (ε-K-partite matching) in 2D for three point sets.

2.7 Conclusions

We have studied the computational complexity of the multiple common point set

problem. We considered the problem of multiple similarity measure, where the point

sets are fixed in space (mSim and pmSim problems), as well as, the general optimiza-

tion version where points are allowed to undergo an Euclidean transformation (mLCP

and pmLCP problems). Several parameters play a role in determining the complexity

of these problems, these are the dimensionality of the Euclidean space; ε - the error

of congruence between the common point sets; K - the number of input point sets;

point set density in a circle/sphere of radius ε. Even the most simply defined prob-

lem of detecting at least one K-tuple of ε-close points (ε-K-tuple), which serves as a

basic primitive of the multiple similarity measure, is NP-Hard. However, while the

generally defined combinatorial problems are hard to approximate, the geometrical
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constraints of the studied problems allowed us to devise polynomial time approxi-

mation schemes which are fixed-parameter tractable. The results are summarized in

Tables 1.1 and 1.2.

2.8 Appendix: Max-Min Enclosing Circle/Sphere

Consider the 2D case. For an ε-K-tuple k denote by r(k) the minimum radius of

a circle that encloses all points of k. Let rmax denote the maximum value over all

possible values of r(k). In other words, for any ε-K-tuple k, and for any K ≥ 3, there

is a circle of radius rmax that encloses the points of k. Without loss of generality,

assume that ε = 1. The radius of a circle that encloses an equilateral triangle with

unit side lengths is 1√
3
. Hence, rmax ≥ 1√

3
. Let us prove that rmax = 1√

3
.

Assume that rmax > 1√
3
, therefore there are r and k such that r(k) > 1√

3
. Denote

the minimum enclosing circle of k (with radius r) by Ck. From the points of k that

lie on Ck select two points, a and b, with the maximal distance. Let x = |a − b|,
c = (a + b)/2, o - center of Ck, d - as depicted in Figure 2.10.

Figure 2.10: For details see the text in the Appendix.

Points a and b are not diametrically opposite, since otherwise r < 1√
3
, therefore,
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|o − c| > 0. Consider a point e ∈ Ca ∩ Cb such that it is located at the side of the

positive direction of vector (d − c) as depicted in Figure 2.10. There are two cases,

either |e− o| < r or |e− o| ≥ r.

Consider the first case, |e− o| < r. It follows that there is no other point from k

on a larger circle arc defined by (a, b). Since there are more than 180 degrees in the

larger arc (a, b) then the circle Ck is not a minimal enclosing circle of k, which is a

contradiction.

Consider the case |e− o| ≥ r. Then we obtain the following inequality:

|c− b|2 + |d− c|2 = |d− b|2 ≤ x2

(
x

2
)2 + [r +

√
r2 − (

x

2
)2]2 ≤ x2. (2.1)

Since r > 1√
3

and r > 1√
3

> x
2

then:

(
x

2
)2 + [

1√
3

+

√
(

1√
3
)2 − (

x

2
)2]2 ≤ x2

It follows that x ≤ x2. Since 0 < x ≤ ε = 1, then x should be equal to one. Sub-

stituting x with one into equation 2.1 we get r ≤ 1√
3

and this leads to a contradiction.

With similar reasoning it can be shown that in 3D the maximal radius of all

minimal enclosing spheres of ε-K-tuples is
√

6
4

ε, and this radius is reached if a ε-K-

tuple contains an equilateral tetrahedron with side lengths ε.



Chapter 3

Multiple Protein Structure

Alignment

3.1 Introduction

The increasing number of determined protein structures opens new horizons for stud-

ies of protein function. There are numerous examples of similar functioning proteins,

e.g. Isomerases, Cytokines, Myoglobins, Immunoglobulins, Transferases, with simi-

lar 3D structure but less than 25% sequence identity. Therefore, in order to study

relationships between such proteins sequence analysis alone is not sufficient. While

methods for sequence analysis have significantly advanced in the past years, meth-

ods for structural analysis are still at an earlier, exploratory stage. Here, we address

one of the most basic structure related problems, the problem of multiple protein

structure alignment.

A number of methods have been proposed to solve the problem of structural

alignment between a pair of proteins, e.g. VAST[82], Geometric Hashing (GH)[11],

CE[115], DALI[29], and others[38]. Obviously, multiple structure alignment can pro-

vide much more information. Recognition of a structural core common to a set

of protein structures has many applications in the studies of protein evolution and

classification[96, 29], analysis of similar functional binding sites and protein-protein

interfaces[81, 22, 10], homology modeling and threading[3, 47] etc. However, despite

53
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this need, the multiple structure alignment problem has not been extensively studied

and, consequently, there are very few available methods that solve this task.

Let us formulate a list of some principle requirements for a multiple structure

alignment method:

• Partial Alignment

• Subset Alignment

• Sequential Alignment

• Sequence Order Independent Alignment

• Time Efficiency

Partial Alignment. There might be only a sub-structure (motif, domain) that is

similar between a set of molecules, for example, in a set of multi-domain proteins

having one or several common domains. Another example is alignment between

multi-protein complexes having some structurally similar combination of molecules.

Thus, a detection of all common motifs, domains or multi-protein combinations may

be required for a multiple structure alignment method. We consider a local alignment

as a special case of partial alignment. For example, a partial alignment may consist

of several locally matched structural elements that can be aligned under the same

Euclidean transformation.

Subset Alignment.i An important aspect of any multiple, sequence or structure,

alignment is a detection of a subset of molecules that are more similar than the whole

input set. For example, consider an input set of 10 proteins from one family and 5

proteins from another family. Assume that the proteins in each family are structurally

similar, but there is little similarity between any two proteins from the first and second

family. A multiple alignment between these 15 molecules would probably detect at

most one common secondary structure element. Therefore it is very important for a

iAbove, in Section 2.6 we denoted this problem by Family mLCP and showed that it is NP-Hard
even in 1D and even in case of ε = 0.
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multiple alignment method to be able to automatically distinguish between two such

subsets.

To demonstrate the significance of the partial and subset alignment ability consider

a schematic example in Figure 3.1 (a). Three proteins share a common small pattern,

and each pair of the proteins share additional, larger, patterns. The desired goal of

a multiple structure alignment method is to detect all four patterns. An additional

example with real protein structures is given below in Section 3.4. It should be clear,

that the number of all possible solutions that may be also biologically meaningful,

could be exponential in the number of input molecules. For example, consider proteins

which contain a large number of α-helices. Each pair of α-helices could be structurally

superimposed (at least partially, if they are different in their lengths). Any multiple

combination of α-helices from different proteins results in some multiple alignment.

Obviously, the number of such multiple alignments is exponential. Therefore, even

if an algorithm is capable of detecting all such combinations, it is not practical to

report them.

Sequential and Sequence Order Independent Alignment. Sequence align-

ment methods naturally produce alignments that follow the protein sequence order,

i.e. aligned amino acids indices are always in increasing order. However protein

evolution imposes less constraints on the sequence than on the structural properties.

Consequently, proteins may have a similar function but topologically different 3D

structure ([134] and references therein). In Section 3.4 we consider one such example.

Time Efficiency. Optimal pairwise structural alignment can be solved in polyno-

mial time, however it is still computationally expensive and currently not practical

for an implementation[7]. Approximation techniques can significantly reduce time

complexity with relatively small degradation in solution accuracy[1, 72]. However,

even for three structures the multiple alignment problem is NP-Hard[112]. While the

worst case scenario may be computationally infeasible for the detection of an exact

solution, considering specific geometrical properties of the protein molecules can, in

practice, significantly reduce the computational cost. Examples of such properties,

which are far from resembling a random point distribution, include sequentiality of



56 CHAPTER 3. MULTIPLE PROTEIN STRUCTURE ALIGNMENT

the protein backbone, secondary structure element composition and protein compact-

ness. Therefore, “smart” heuristic methods that utilize such properties, in practice,

may give results that are sufficient for a biological research. An excellent example

of a heuristic method for multiple sequence alignment is MUSCLE[36]. Still further

research, theoretical and practical, is required for the multiple structural alignment

problem.

Below we briefly review available methods for the multiple structure alignment

task and try to correlate them with the list of requirements defined above.

A center-star approach is one of the efficient ways to compute a multiple sequence

alignment. Analogously, it can be applied for multiple structure alignment. A cen-

ter structure is selected which is most similar to the rest of the molecules. Then,

iteratively, all other structures are joined into a multiple alignment based on their

pairwise alignments with the center structure[45, 3]. Alternatively, one can apply a

tree-progressive approach, where a multiple alignment is created according to some

distance tree [102, 124, 95]. Therefore, a tree-progressive alignment first aligns sim-

ilar proteins, then proceeds to more distant relationships. An advantage of such an

approach is its ability to detect subset alignments of structurally different families.

The center-star and the tree-progressive approaches are essentially based on some

pairwise alignment method that is iteratively applied for the construction of a multiple

alignment. Therefore, such technique is less suitable for detection of small structurally

similar motifs since at each stage of the iterative alignment only one, the best, solution

is selected. Figure 3.1 (a) shows a simple example where a straightforward application

of a pairwise alignment method will fail to recognize a pattern common to more than

two sequences/structures.

The MALECON method[94] aims to avoid the shortcomings of the iterative pair-

wise approaches and considers all possible combination of input molecules. When the

number of input proteins is large, such a combinatorial approach becomes exponen-

tial, therefore, the method considers at least all possible protein triplets while other

proteins are progressively added to the aligned triplets. Consequently, the advantage

of the method is in detection of subset alignments. However, since only one solution

is considered for any given combination of proteins, some smaller local alignments
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can be missed. The method produces sequential alignments.

The MUSTA algorithm[76, 75] computes a common geometric core that appears

simultaneously in all the input molecules, thus avoiding the shortcomings of the itera-

tive pairwise approaches. The method applies the Geometric Hashing technique[130],

which allows detection of the sequence order independent alignments. This technique

was successfully applied in a number of pairwise structure alignment methods[93, 106].

Since the method requires that all input molecules participate in the multiple struc-

tural alignment, the drawback of this method is inability to distinguish outliers. It

is sufficient that one structure is very distinct from the others to result in an empty

alignment. Consequently, this method cannot detect subset alignments. Second, its

efficiency limits practical application for only 10-15 molecules.

Another approach, SPratt2[67], aims to detect small common, local structural mo-

tifs of size 3-20 amino acids. The method describes each residue as a short string of its

spatial neighbors. Then, an efficient sequence pattern discovery technique is applied

to detect sets of residues with common environmental descriptors. The computed

alignments are sequential. The method is efficient and allows subset alignments.

Protein representation by secondary structure elements significantly reduces the

problem input size[88, 49, 9, 100, 90, 65, 4, 60, 51, 17, 119, 133, 5, 114, 23]. If an

average protein has about 300 amino acids, then the number of secondary structures is

only about 10. Recently, a new multiple structure alignment method, MASS[31, 30],

has been proposed. The method utilizes the secondary structure information (SSE’s)

to reduce the computational cost of initial common core detection. Therefore, it

requires that at least two pairs of SSE’s be multiply aligned. The method requires

that α-helix is aligned with α-helix, β-strand with β-strand. This natural assumption

is sufficient for most cases. Though, there are proteins for which alignment between

an α-helix and β-strand has a biological meaning. One such example is given below

in Section 3.4.2. The MASS method is capable of detecting partial, subset, sequential

and non-sequential alignments.

In order to produce structure-based multiple sequence alignment, the recently de-

veloped method 3DCoffee[97] incorporates spatial weights into the multiple sequence

alignment method TCoffee. The spatial weight of an amino acid pair is defined as
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a positive large constant number, when this pair is structurally aligned according to

some pairwise structural alignment method. Therefore, the method does not distin-

guish between amino acids that are structurally aligned at different distances. Since

the method applies information only from the best pairwise structure alignment the

weighting decision may be inaccurate for the multiple alignment problem.

Here, we propose a method that aims to solve the multiple structural alignment

problem with the support of the above defined list of requirements. One of the

advantages of our method is its ability of subset and partial alignment. This is

illustrated in Figure 3.1 (a,b). Consider the set of proteins from Figure 3.1 (a).

The goal of our method is to detect local multiple alignments of all four patterns.

This is achieved by performing all possible local multiple alignments of ungapped

fragments. The final solutions are constructed from these locally aligned multiple

fragments. This makes our approach different from most existing methods, which

generally derive a multiple alignment from the high scoring pairwise superpositions.

If a pattern appears more than once in some protein, our method recognizes only one

combination of this pattern from all possible appearances, however, all sets of possible

combinations are reported by the program. Our method is extremely efficient and is

suitable for simultaneous comparison of up to tens of proteins.

3.2 The MultiProt Algorithm

In MultiProt we try to give an efficient heuristic solution to the multiple structure

alignment problem, which we define as:

(*) Given m molecules, a parameter κ and a threshold value ε, for each r (2 ≤ r ≤
m), find the κ largest ε-congruent multiple alignments containing exactly r molecules.

Here an ε-congruent multiple alignment is defined as: given a pivot molecule M1

and r−1 molecules (M2, ...,Mr), we define an ε-congruent multiple alignment as a set

of r − 1 3D transformations (T2, ..., Tr) (Tj is a transformation which superimposes

molecule Mj onto M1) and a set of K r-tuples (aligned points) {(vi1k
, vi2k

, ..., virk
)}K

k=1,

vijk
∈ Mj, such that ∀k∀ijk ||vi1k

− Tj(vijk
)|| ≤ ε, i.e. the matched points are within ε

distance from the appropriate pivot molecule point.
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This definition is based on the selection of the pivot molecule. In our algorithm,

in order not to be dependent on the choice of the pivot, we iteratively choose every

molecule to be the pivot one.

The above multiple alignment problem definition (*) is general and can be applied

for comparison of any 3-D objects represented as unconnected point sets in 3-D space.

However, we wish to utilize the fact that a protein structure can be represented as an

ordered set of points, e.g. by the sequence of the centers of the Cα atoms. Thus, we

exploit the natural assumption that any solution for the multiple structure alignment

of proteins should align, at least short, contiguous fragments (minimum 3 points) of

input atoms. For example, these fragments could be secondary structure elements

which could be aligned between the input molecules. First we detect all possibly

aligned fragments of maximal length between the input molecules. Then, we select

solutions that give high scoring global structural similarity based on the (*) definition.

Aligning protein fragments is not a new idea. It has been previously applied in several

methods for pairwise protein structural alignment[127, 115]. In our method we use

an algorithm which detects structurally similar fragments of maximal length, i.e.

fragment pairs which cannot be extended while preserving ε-congruence[106, 113].

For any multiple alignment problem we can always assume that the selected pivot

molecule has to participate in all the alignments. If all the molecules are iteratively

selected as pivots, then all solutions can be detected. Therefore, our method is based

on the pivoting technique, i.e. the rest of the molecules are aligned with respect to

the pivot molecule.

Input: m molecules S = {M1...Mm}, ε ≥ 0
for i = 1 to m− 1

Mpivot = Mi

Sp = S \Mpivot

FragmentPairs = Detection of Fragment Pairs(Mpivot, S
p)

Cuts = Multiple Fragment Alignment(FragmentPairs)

Global Multiple Alignment(Cuts)

end
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The input is m protein structures, {Mi}m
i=1, each represented as a sequence of the

centers of the Cα atoms. In addition, the input contains a parameter ε ≥ 0 which is

the distance threshold between the matched Cα atoms. The goal of the algorithm is

to compute, for each r = 2, ...,m, the largest multiple alignments consisting of exactly

r structures. Practically, the number of multiple alignment solutions computed for

each r is a user defined parameter.

First, we pick a pivot structure and require that it is included in all multiple

alignments. In order to prevent dependency on a pivot structure, all input structures

are iteratively selected to be a pivot one.

The MultiProt algorithm consists of three major stages. We call two sequential

(without gaps) fragments of the same length to be ε-congruent if there exists a Eu-

clidean 3D transformation that superimposes both fragments with rmsd (root mean

square deviation) less than ε. In the first stage (Detection of Fragment Pairs), all

ε-congruent fragment pairs are efficiently detected between the pivot and all other

structures.

At the next stage (Multiple Fragment Alignment), we compute all possible com-

binations of ε-congruent multiple (sub)-fragments. This stage is analogous to the

detection of all non-gaped local multiple alignments. To prevent an exponential num-

ber of multiple local alignments we do not compute them explicitly but rather store

all possible alignments by means of combination sets (Cuts). Such set consists of one

fragment from the pivot structure and its ε-congruent fragments from other structures,

therefore such set may include several fragments from some molecule. The algorithm

requires that the pivot molecule participates in the combination sets (Cuts), but it

does not require that all input molecules from set Sp are included in the Cuts.

Finally (Global Multiple Alignment), for each local multiple alignment set we

heuristically select (the problem of selecting the optimal combination is NP-Hard[2])

a combination of fragments, one fragment from each structure. Once a unique com-

bination is selected we compute a global multiple correspondence between the Cα

atoms. At this stage, we have a choice (user defined parameter) whether to compute

a sequential alignment or a non-sequential one.

The main idea of the MultiProt approach is its ability to efficiently compute a
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large number of local non-gapped multiple structure alignments. Essentially, a local

multiple alignment is computed for each possible fragment of the input molecules.

Such local alignments serve as a basis for the extension to the larger partial multiple

alignments. In addition, in order to detect subset alignments, the solutions are scored

separately according to protein composition, i.e. a scoring of alignment between

proteins {a, b, c} does not effect a ranking of an alignment between {a, b, d} (the

application for this requirement is demonstrated in Figure 3.4.2).

3.2.1 Stage 1. Detection of Fragment Pairs.

Given a pivot molecule Mp, for each molecule Mk from the set Sp we detect all struc-

turally similar fragment pairs between Mp and Mk. Namely, a structurally similar

(or ε-congruent) fragment pair is defined as F p
i F k

j (l) (a fragment starts at point i

(j) in molecule Mp (Mk) and has length l). It also satisfies the following condition:

RMSDopt(F
p
i F k

j (l)) ≤ ε. RMSDopt is defined as:

RMSDopt(F
p
i F k

j (l)) = minT RMSD(F p
i (l), T (F k

j (l))),

where T is a rigid 3-D transformation.

To calculate all ε-congruent fragment pairs two options are implemented in the

program. One can use an exact algorithmii, but in order to achieve a favorable

running time of the program we can apply the same efficient greedy method as in the

FlexProt algorithm[106]. We start by aligning a single matching atom pair (va, ub),

where va ∈ Mp and ub ∈ Mk. Now, we iteratively try to extend the initial match-list.

We do this by adding one matching atom pair to the left and to the right (following

the backbone direction) of the current fragment alignment. This is done iteratively,

until the RMSD of the fragment alignment exceeds a predefined threshold. That is,

we stop when the match list cannot be extended neither to the left, nor to the right.

Given F p
i F k

j (l), the next alignment is initiated at (vi+(l+1), uj+(l+1)). The process can

be viewed as proceeding along the diagonals of the 2D matrix, which represents the

iiAll ε-congruent fragments, {F p
i F k

j (l)}, can be obtained by an exhaustive verification in polyno-
mial time.
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indices of Mp and Mk. Since RMSD can be continuously updated by a constant

number (O(1)) of operations at each step, the time complexity of computing F p
i F k

j (l)

is only O(l) and our greedy iterative approach takes only O(|Mp|·|Mk|). All presented

experimental results are computed with the greedy method.

At the end of this step we have a set of congruent fragment pairs, {F p
i F k

j (l) : k 6=
p, RMSDopt(F

p
i F k

j (l)) ≤ ε}. The experimental number of such fragment pairs is

O(m · n2). The computation takes O(m · n3) time.

Fragment Pair Clustering. Consider a 2D matrix that represents the indices of

two proteins Mp and Mk. The detected congruent fragment pairs can be depicted as

sub-diagonals in this matrix (Figure 3.2). In practice, it can be observed that the

many fragment pairs are located very closely one to each other. This happens due to

repetitive structural elements, like alpha-helices, that allow many structural matches

with small shift in indices. In practice, it produces many spurious fragment pairs that

slow down the program running times at advance stages. To detect such fragment

pairs we perform the following clustering procedure.

Two fragment pairs (sub-diagonals), F p
i F k

j (l) and F p
i′F

k
j′(l′), are considered similar

iff (1) the distance between corresponding diagonals is at most δ1, i.e. ||i− j| − |i′ −
j′|| ≤ δ1 and (2) the overlap on both axes is at least some fraction δ2 of their length,

i.e. min(i + l, i′ + l′)−max(i, i′) ≥ δ2 ·min(l, l′) and min(j + l, j′ + l′)−max(j, j′) ≥
δ2 · min(l, l′). For the clustering procedure we applied a simple iterative method.

We pick some elements and create a cluster. Then, we add other elements that are

similar to all elements in the cluster. When no element can be added, we initiate

another cluster. For each completed cluster we select the longest fragment pair, the

rest elements in the cluster are discarded.

To prevent missing the true-positive solutions, we selected very tight constraints,

δ1 = 5 and δ2 = 0.8. On average, the number of fragment pairs after the clustering

procedure is reduced by 39%.
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Figure 3.2: Fragment pair clustering.

3.2.2 Stage 2. Multiple Fragment Alignment.

Let us represent the above set by a 2 dimensional plot. The x-axis represents the

sequence of the pivot molecule Mp. The y-axis is divided to bins, one bin for each

molecule from set Sp. Fragment F k
j (l), from the pair F p

i F k
j (l), is plotted in bin M(k)

(y-axis) and aligned to F p
i (l), i.e. its projection onto the x-axis is exactly the set

of the corresponding (according to the F p
i F k

j (l) alignment) points of the F p
i (l). The

order of the fragments inside the M(k) bin (on the y-axis) is arbitrary. See Figure

3.3.

Drawing two vertical lines at points α and β defines a cut on the interval [α, β]. A

fragment belongs to the cut if the interval [α, β] lies inside the fragment, i.e. F p
i F k

j (l)

is in the cut if and only if i ≤ α and β ≤ (i + l − 1). Since several fragments from

the same molecule might participate in the cut, such a cut provides us with a set

of multiple choices for the alignment. Choosing from the cut only one fragment for

each molecule gives us some multiple alignment. The number of choices equals
∏

i kMi

where kMi
is the number of fragments from molecule Mi in the cut. Thus, the number
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Figure 3.3: Cuts. The x-axis is the sequence of Mp. Molecules M1, ...,Mm are assigned
into bins on the y-axis. Fragment pairs that include completely fragment [α, β] (shown
in bold) are incorporated into Cut[α, β].

of possible multiple alignments (for the given cut) might grow exponentially with the

number of molecules. This is the nature of the multiple alignment problem (there

is an exponential number of choices to align α-helices from, for example, all-alpha-

proteins). We shall return to this problem later in Stage 3 after we explain how to

detect the cuts.

From Figure 3.3 we can observe that it might be possible to extend a given cut

to the left and to the right so that the cut contains the same fragments. Thus, we

define a locally maximal cut Cut[α, β] as an interval [α, β] such that for any δ > 0,

Cut[α − δ, β] and Cut[α, β + δ] contain different fragments than Cut[α, β]. It is

obvious that any Cut[α, β] starts at the beginning of a fragment and ends at the end

of a (possibly, another) fragment. From now on, we use the terms cut and Cut[α, β]

interchangeably.

All possible cuts can be detected efficiently by a simple algorithm which is similar

to the sweeping technique from Computational Geometry[27]. The idea is to represent
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the projections on the x-axis of the fragment start(end)-points as events on the x-

axis. The fragments left (right) end-point is the start (end) event. Starting from

the first point (Cα atom) of the pivot molecule, Mp, we move along the x-axis (Mp

sequence) with a vertical line and generate cuts. At every moment (i.e. position α

of the vertical line) we remember the fragments that the vertical line passes through.

At every start event we add its fragment to the list of current fragments and generate

new cuts. These new cuts start at the encountered start event and end at end points

of the fragments from the current list.

At an end-event we just remove the fragment from the current list of fragments.

It is easy to see that the described algorithm generates all possible cuts according to

the definition of Cut[α, β].

The complexity of the cut detection stage is linear in the number fragment pairs,

i.e. O(m · n2), where m is the number of input molecules and n is the size of the

longest molecule.

3.2.3 Stage 3. Global Multiple Alignment.

Consider one of the previously detected cuts Cut[α, β]. One of the possible approaches

is to leave the cuts as is, i.e. not to choose the multiple alignment(s) from the set

of possible ones of the specific cut (several fragments of the same molecule might be

included in the cut). These complete cuts are included in the output of the program.

Thus, an end-user can apply additional criteria to filter out the non-relevant fragments

(or 3D transformations).

However, our goal is to detect the best multiple alignments based on the global

structural similarity, as defined in (*). As we have already pointed out, this is a hard

problemiii, so we provide only a heuristic solution.

In this step, we select from every cut only one fragment for each molecule. We

aim to perform this selection, in a way that the resulting multiple alignment would

iiiIn the first two stages we compute a set of transformations. However, even computing all possible
transformations will not reduce the complexity of the multiple structure problem. The problem is
NP hard even in the case of exact congruence (ε = 0). When ε = 0 all possible transformations
can be computed in polynomial time (in 3D it is enough to match all possible triplets of points).
Therefore to select the correct set of transformations is still a NP hard problem.
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give, possibly, the highest score. Namely, given a Cut[α, β] containing {F p
i F k

j (l) : i ≤
α, (i + l − 1) ≥ β}, for each different k (for each molecule Mk) select the fragment

(if there is more than one fragment from molecule Mk) so that its transformation

gives the largest, global, structural (pairwise) alignment with the pivot molecule

(Mp). Let us explain this step in more detail. Given a fragment pair F p
i F k

j (l) and

the transformation Topt that optimally superimposes F k
j (l) onto F p

i (l), we apply the

transformation Topt on molecule Mk. Now, when the two molecules are aligned, we

calculate the size of their maximal structural alignment which preserves ε-congruence.

For more details see Appendix 3.6.1.

At this stage of the algorithm every solution for the multiple structure alignment

problem has a non-ambiguous representation, i.e. each solution contains at most

one representative from each molecule. Now, the task is to score these solutions

based on the size of the multiple alignment. Notice, that the transformation for each

molecule is now fixed, thus we only need to calculate the multiple correspondence

size. Computing multiple correspondence is NP-Hard (Section 2.4.2). We apply a

very efficient procedure which guarantees m approximation to the optimal multiple

alignment size. For the details of this procedure see Appendix 3.6.2. In case of small

ε value (< 1.7Å), for which there is at most one Cα-atom from Mk inside a sphere of

radius ε around Cα-atom from Mp, then this procedure gives the optimal result.

To enlarge the obtained solutions we apply an iterative improvement procedure

as follows. For each solution, after the multiple correspondence between the pivot

molecule with the other molecules is established, we apply a rigid transformation

that minimizes the RMSD between the matching points. Then, we compute the

multiple correspondence once again and repeat this procedure (the default number of

iterations is 3).

Solution Scoring. When a common geometric core is detected, we compute the

multiple RMSD (mRMSD) of the alignment. It is computed as an average of the

RMSD values between the geometric core of the pivot molecule Mp with the corre-

sponding geometric core of each molecule from the multiple alignment. Thus, solu-

tions are grouped according to the number of aligned molecules and each group is

sorted according to the size of the alignment and according to the mRMSD, giving
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priority to the alignment size.

Optimization Schemes and Bio-Core detection. As described above we treated

the problem as a pure geometrical structural alignment. We can apply a somewhat

different scoring scheme, which requires that aligned points are of the same biological

type (still, the points should be close enough in 3-D space). In our method the input

points can be either positions of Cα or Cβ atomic centers, or geometric centers of

amino acids, or residue specific points (see description in Results section for the case

of G-proteins). Therefore, each point represents a specific amino acid and thus, we

can require that only points with similar characteristics be aligned. For instance,

we can require residue identity matching, but it is usually too restrictive. Thus,

we adopted the following classification: hydrophobic (Ala, Val, Ile, Leu, Met, Cys),

polar/charged (Ser, Thr, Pro, Asn, Gln, Lys, Arg, His, Asp, Glu), aromatic (Phe,

Tyr, Trp), glycine (Gly). Let us name this the bio-core classification.

At Stage-2 the method detects a set of possible multiple transformations, while at

Stage-3 the solutions are scored based on the size of the multiple structural alignment.

Therefore, we can apply various scoring schemes, like the bio-core classification, to

Stage-3 to obtain different solution ranking.

One of the ways used to measure sequence similarity of several proteins is to

compute an average sequence identity. However this technique is based on pairwise

properties and is dependent on gap penalty parameters. The bio-core classification

possibly provides a more robust sequence characteristic than an average pairwise

identity, since it is based on multiple structural alignment itself. In case that the bio-

core is small relative to pure structural alignment size, then the common sequence

properties are evolutionary distant. In addition, an optimization according to the bio-

core classification may give a different structure superposition, which may be more

appropriate in some cases. In the Results section we calculate the pure geometrical

structural alignment as well as the bio-core alignment.
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3.2.4 Complexity and Running Time Analysis

Given a pivot molecule we compute O(m · n2) ε-congruent fragment pairs. This

computation takes O(m · n3) time. The stage of cut detection takes time linear in

the number of ε-congruent fragment pairs, i.e. O(m · n2). The number of computed

cuts is O(n2). For each cut we spend O(m ·n) to compute multiple alignment. There

are m iterations over all possible pivots, therefore the total complexity is m · (O(m ·
n3) + O(m · n2) + O(n2) ·O(m · n)) = O(m2 · n3).

In order to verify the MultiProt time complexity, O(m2 · n3), we conducted two

experiments. First, we tested that the time complexity is proportional to O(m2). This

is demonstrated in Figure 3.4. The quadratic running time behavior holds for average

protein set (Figure 3.4 (a)) , as well as for proteins with the fixed size (Figure 3.4 (b)

and Figure 3.5 (a)). In the second experiment, we verified that the MultiProt time

complexity is proportional to O(n3). To demonstrate this, it is enough to run pairwise

alignments for different protein sizes. For this task we selected Transferase, 1lxa,

with Superhelix structural fold. This protein has an extremely repetitive structure

created by beta-strands, see Figure 3.9 (a). Therefore, comparing this protein with

itself creates near maximal number of ε-congruent fragment pairs, which represents

the worst case scenario for our method. Figure 3.5 (b) shows cubic running time

behavior. All experiments were conducted on a standard PC with Pentium(R) 4

2.00GHz.

However, the practical running times are quite low. Structural alignment of up to

seven average size proteins takes less than a minute (Figure 3.4 (a)).

3.3 Multiple Alignment Significance

To compute a significance of a multiple structural alignment we apply a simple es-

timation by the means of p-value. Naturally, the p-value depends on the number of

input proteins, m, and their sizes. Therefore, we computed the multiple alignment

size distribution for different values of m (practically only for m = 2...10). We se-

lected a representative set of 5674 protein structures from the SCOP database (1.65)
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(a)

(b)

Figure 3.4: Two graphs show MultiProt quadratic running time behavior in the
number of structures. (a) Average running time computed based on the random
alignments of SCOP representatives from Section 3.3. Protein average size is 179
amino acids, (b) A protein structure (Transferase, 1lxa, n = 262, Superhelix structural
fold) is compared against its own copies.
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(a)

(b)

Figure 3.5: (a) Myoglobin, 5mbn, n = 153, is compared against its own copies.
(b) Cubic running time as a function of protein size. Pairwise self-alignment of
Transferase, 1lxa, with Superhelix structural fold. In each experiment the protein is
extended with its own copy.
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[92] which have less than 40% of pairwise sequence identity (this data set is provided

by ASTRAL [20]). This resulted in 2304 protein domains (according to the SCOP

classification). For each domain we arbitrarily selected only one structure. For each

m, the number of structures, we applied MultiProt on m randomly selected struc-

tural domains. In total, we performed 10000 such random alignments for each m.

We computed these distributions separately for sequential and non-sequential align-

ments. Example of multiple alignment size distribution is given in Figure 3.6 (a).

Figure 3.6 (b) displays multiple alignment significance thresholds as a function of the

number of input structures. The significance threshold is selected as 5% of the largest

size alignments from the randomly picked protein domains. As it can be observed

from the graph a chance for a large (around 100 amino acids) non-sequential pairwise

alignment is relatively high. As expected, more structures impose tighter geometrical

constrains and for more than five structures the sequential or non-sequential multiple

alignment size larger than 20 Cα atoms is statistically significant.

Clearly, larger structures will likely produce larger alignments. Therefore, in order

to give a more accurate estimation we apply dependence on the structure size. Given

some multiple alignment size and the minimal structure size, smin, of the aligned

molecules, we estimate its significance only from distributions of multiple alignments

with minimal molecule size within 20% of smin. This criterion is used below in the

Results Section.

3.4 Results

Below we provide, along with known results, new multiple protein structural align-

ments. We present applications of the MultiProt method for (1) a non-sequential

structural similarity, (2) subset and partial alignments, (3) identification of func-

tional groups of G-proteins, (4) application to the analysis of binding sites and (5)

protein-protein interface alignment. Protein structures are taken from the Protein

Data Bank[14]. All experiments were performed on a standard PC with Pentium(R)

4 2.00GHz processor with 1024MB internal memory. Software availability: Multi-

Prot is available for download at http://bioinfo3d.cs.tau.ac.il/MultiProt/.
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(a)

(b)

Figure 3.6: (a) Distribution of alignment sizes between randomly selected three pro-
tein structures. The alignments preserve sequential order. 95% of the alignments have
size ≤ 27. (b) Two graphs display alignment significance thresholds as a function of
the number of input structures. The significance threshold is selected as 5% of the
largest size alignments from 10000 randomly picked protein domains. For example,
for the randomly picked three structures the chance that a sequential (non-sequential)
multiple alignment has the size larger than 27 (57) Cα atoms is 0.05.
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The program output consists of 10 (changeable parameter) highest-scoring results

for each number of molecules, i.e. if the number of input molecules is 15, then

there are sets of results for 2, 3, .. 15 aligned molecules. Each result lists (1) 3-D

rigid transformation for each aligned molecule, (2) matrix of aligned amino acids,

(3) RMSD of the multiple alignment (mRMSD), calculated as described above. We

nickname the largest structural (bio) core to be struct-core ( bio-core). The computed

p-value for all the experimental results presented below is less than 0.05, therefore all

reported multiple alignments can be considered as significant.

3.4.1 Comparisons with Other Methods:

Pairwise Alignment Cases.

First, we test our method on “hard to detect” pairwise alignments. We repeated

the experiment presented in Shindyalov & Bourne[115]. The experiment presents a

set of ten protein pairs and pairwise alignments performed by different (pairwise)

methods. The results are presented in Table 3.1. Two kinds of MultiProt results

are given: alignments which preserve protein backbone order and sequence order

independent alignments. As can be observed from the table, our pairwise results are

very competitive. The maximal running time (pair 1crl:534, 1ede:310) is less than 4

s.

Globins.

The globin family has been extensively studied in the literature[12, 132]. We applied

MultiProt on seven globin structures (5mbn, 1ecd, 2hbg, 2lh3, 2lhb, 4hhbA, 4hhbB).

We compared our results with those obtained in Wu et al.[132]. The largest geomet-

rical core detected by their method[132] consists of 105 Cα atoms (or “corresponding

landmarks” as called in the paper). Our program obtains similar results. The size

of the detected common struct-core varied between 93 Cα atoms (ε = 3Å) to 111 Cα

atoms (ε = 4Å). The structural similarity is detected primarily between α-helices,

while loop regions were left un-aligned. The detected bio-core is comparatively small.

It ranged from 18 Cα atoms (ε = 3Å) to 31 Cα atoms (ε = 4Å). The running time
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was about 15 seconds.

Comparison with sequence order independent multiple alignment method.

A comparison with the results achieved by the MUSTA algorithm[75], illustrates

that our method achieved similar alignment results. The test includes the following

cases:

• Serpins family - 7apiA, 8apiA, 1hleA, 1ovaA, 2achA, 9apiA, 1psi, 1atu, 1kct,

1athA, 1attA, 1antl, 2antl.

• Serine Proteinase: Subtilases family - 1cseE, 1sbnE, 1pekE, 3prkE, 3tecE.

• Calcium-binding: EF hand-like superfamily. The protein 4cpv is from the

parvalbu-min family; 2scpA, 2sas, 1top, and 1scmB from the calmodulin-like

family; and 3icb from the Cal-binding D9K family.

• TIM-Barrels: The proteins are taken from the 7 different superfamilies. See

details in Table 3.2.

• Helix-Bundle The proteins are taken from the 6 different superfamilies. Details

are given in Table 3.2.

In all cases the size of the geometric core is at least the same (see Table 3.3 (a)). In

addition, our method produced high-scoring partial alignments and runs significantly

faster (on the same computer).

Comparison with multiple alignments taken from the HOMSTRAD data

base.

The HOMSTRAD[89] data base contains multiple alignments of homologous protein

families. An average sequence identity (sID) in the protein families varies between 8

and 94 percent. We performed a comparison of 6 families, calcium-binding protein

(sID 56%), subtilase (sID 52%), serine proteinase inhibitor (sID 34%), reductases

(sID 22%), TPR domain (sID 17%) and plant virus coat protein (sID 13%).
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TIM-Barrels
Superfamily PDB code
Triosephosphate isomerase 7timA
Cellulases 1tml
Glycosyltransferases 1btc
Enolase C-terminal domain-like 4enl
Ribulose-phosphate-binding barrel 1pii
Xylose isomerase 6xia
RuBisCO, C-terminal domain 5rubA

Helix-Bundle
Superfamily PDB code
Protein designs 1flx
Apolipophorin III 1aep
4-helical cytokines 1bgeB,1rcb,3inkC
Apoliporotein 1le2
Cytochromes 256bA,2ccyA,1bbhA
Hemerythrin 2hmzA

Table 3.2: Structural classification of protein sets used for the comparison with the
MUSTA method[75].
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To make an adequate comparison we performed the following procedure. From

the HOMSTRAD data base, for each of the 6 families we extracted the multiple

structural alignments. Then, we computed the alignment size according to the Mul-

tiProt scoring method with the default parameters. No optimization on multiple

transformations was performed. The computed alignment size represents the scoring

of the HOMSTRAD data base. Finally, we run MultiProt on the unaligned struc-

tures. As can be observed from Table 3.4 (b) the performance of both methods is very

close. Additional, large scale comparison of MultiProt with HOMSTRAD multiple

alignments is given in Section 4.3.1.

3.4.2 Applications of MultiProt

Here we demonstrate a variety of biological applications of MultiProt. We start with

case studies of non-topological multiple alignments, unexpected alignment between

alpha-helix and beta-strand, and multiple alignment of Superhelix, Concanavalin and

Supersandwich families. Then, we demonstrate a detection of subset and partial

alignments, identification of functional groups of G-proteins and an application to

the analysis of binding sites and protein-protein interface alignment.

Non-sequential structural similarity

We consider an alignment of a 4-helix bundle. A 4-helix arrangement appears in a

large number of proteins. SCOP includes at least 40 folds with a 4-helix bundle.

Holm & Sander[59] show an alignment of the Rop protein (1rop) with cytochrome

b56 (256b). Both proteins have 4-helix bundle, but the topological arrangement is

different, i.e. when the two structures are aligned, at least one helix-pair is aligned

in an opposite sequential order. Here we show a multiple structural alignment of 4

proteins (1f4n, 2cbl:A, 1b3q, 1rhg:A) which share a 4-helix bundle (see Figure 3.7).

Figure 3.7 (c) shows the direction of the protein sequences according to a structural

alignment when all 4 helices are aligned. As one can see the direction is different for

the last two helices. Thus, none of the commonly used sequence alignment methods

can align simultaneously the 4 α helices. Figure 3.7 (b) shows a multiple structural
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(a)

(b)

(c)

Figure 3.7: 4-helix bundle. (a) There are four structures in our study, 1f4n, 2cbl:A,
1b3q and 1rhg:A. (b) Structural alignment between 1f4n, 2cbl:A, 1b3q, 1rhg:A. 4
-helix bundle is aligned. (c) A multiple alignment of the sequences according to
the multiple structural alignment of the 4-helix bundle. Notice, the directions are
different. Since proteins 1f4n, 1 b3q have two chains, it leads to an additional difficulty
for sequence alignment methods in identifying a 4-helix bundle.
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alignment with the 4 helices aligned. See details in Table 3.6.

Alpha-Helix Beta-Strand Alignment

Protein representation by secondary structure elements significantly reduces the prob-

lem input size. If an average protein has about 300 amino acids, then the number

of secondary structures is only about 10. Such a reduction significantly improves a

search against large databases. Alignment methods that utilize a secondary structure

representation, in essence, try to align α-helix with α-helix, β-strand with β-strand.

However, care should be taken, since in some cases an alignment between an α-helix

and β-strand could have a biological meaning.

A well known CYS-CYS bond is conserved for protein fold stability[87]. We

considered 51 proteins taken from “C1 set domains (antibody constant domain-like)”

family (according to SCOP). A CYS-CYS bond was multiply aligned between all 51

proteins. While in 50 proteins the CYS-CYS bond appears between two β-strands,

in one protein it is created between α-helix and β-strandiv. For details see Figure 3.8.

Superhelix

In this experiment we compare 5 proteins (1lxa, 1qq0, 1xat, 2tdt, 1fwy(A:252-328))

from the Superfamily: Trimeric LpxA-like enzymes. Each protein is taken from a

different family (for details see Table 3.5). While the first 4 molecules are between

208 and 274 residues long, the last one (1fwy, A:252-328), is a truncated form and has

only 77 residues. Our algorithm detected multiple alignment between all 5 molecules

with struct-core of size 64 with mRMSD 0.9 Å. The bio-core for these molecules

consisted of 17 Cα-atoms. See the alignment in Figure 3.9 (a).

Four molecules (the first four) gave 88 (18) Cα-atoms in the struct-core (bio-core).

Molecules 1lxa, 1qq0 and 2tdt gave 114 (27) Cα-atoms in the struct-core (bio-core).

(There are additional combinations of the first four molecules which are presented

in the solutions). Molecules 1lxa.pdb and 1qq0.pdb gave 143 (62) Cα-atoms in the

struct-core (bio-core). For the three molecules there are other molecule pairs that

ivThis test case has been provided by Hadar Benyamini.
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Superhelix
Family PDB code
UDP N-acetylglucosamine 1lxa
acyltransferase
Carbonic anhydrase 1qq0
Xenobiotic acetyltransferase 1xat
Tetrahydrodipicolinate-N- 2tdt
succinlytransferase,
THDP-succinlytransferase, DapD
N-acetylglucosamine 1fwy
1-phosphate uridyltransferase A:252-328
GlmU, C-terminal domain

Concanavalin A-like lectins/glucanases
Family PDB code
Legume lectins 2bqpA
beta-Glucanase-like 1gbg
Galectin (animal S-lectin) 2galA
Laminin G-like module 1d2sA
Pentraxin (pentaxin) 1sacA
Clostridium neurotoxins, the second last domain 1a8d:1-247
Vibrio cholerae sialidase, N-terminal and insertion domains 1kit:25-216
Leech intramolecular trans-sialidase, N-terminal domain 2sli:81-276
Endoglucanase/cellulase I catalitic core 6cel
Xylanase/endoglucanase 12 1xnb

Table 3.5: Structural classification of studied proteins by SCOP database.
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Figure 3.8: The figure shows only two molecules derived from the multiple alignment
of 51 proteins taken from “C1 set domains (antibody constant domain-like)” family.
While in 1iak:A CYS-CYS bond appears between two β-strands (β-strands are in
grey color), whereas in 1r24:A CYS-CYS bond appears between α-helix (in red) and
β-strand. This example demonstrates that structural alignment between secondary
structures of different types may have a biological meaning.

gave high similarities. The running time was about 14 seconds. For details see Table

3.6.

Concanavalin A-like lectins/glucanases

From the SCOP database we selected the Concanavalin A-like lectins/glucanases fold

(sandwich; 12-14 strands in 2 sheets; complex topology). This fold contains only one

superfamily which includes 10 different families. We selected one protein from each

family (for details see Table 3.5): 2bqpA, 1gbg, 2galA, 1d2sA, 1sacA, 1a8d:1-247,

1kit:25-216, 2sli:81-276, 6cel, 1xnb.

Aligning all 10 molecules results in a geometric core of size 54. Interestingly,

Tetanus Neurotoxin (1a8d:1-247) participated in all alignments containing different

numbers of molecules. This protein has 5 (A, B, C, D, E) β-sheets. A, C and D create

almost one β-sheet (let us call it S1), and so do B and E (S2). In the alignment of all
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(a) (b)

(c)

Figure 3.9: (a) Superhelix. Figure (a) shows the structural core between 5 molecules,
(1lxa, 1qq0, 1xat, 2tdt, 1fwy(A:252-328)). The complete backbone of 1lxa is shown in
blue. For the other molecules only the common detected core is shown, by assigning
a different color to each molecule. (b) Concanavalin A-like lectins/glucanases. Struc-
tural core of 6 molecules - 1a8d:1-247, 1d2sA, 1gbg, 1sacA, 2galA, 2sli:81-276. The
two-sheet sandwitch is conserved. The backbone of molecule 1a8d:1-247 is shown com-
pletely in light green. The aligned core is in purple color. (c) Supersandwich. Multiple
structural alignment of proteins 1bgmI:731-1023, 1cb8A:336-599 and 1oacA:301-724.
The backbone of 1bgmI:731-1023 is shown in its entirety in light green. The aligned
core is in purple color. 3 β-sheets are aligned.
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Proteins No. of Average Sal run
Mols Size time

4-helix bundle 3s
1f4n, 2cblA, 1b3q, 1rhgA 4 284 75
1b3q, 1rhgA 2 451 102
Superhelix 14s
1lxa, 1qq0, 1xat, 2tdt, 1fwyA:252-328 5 205 64
1lxa, 1qq0, 1xat, 2tdt 4 238 84
1lxa, 1qq0, 2tdt 3 248 114
1lxa.pdb, 1qq0.pdb 2 235 143
Supersandwich 12s
1bgmI:731-1023, 1cb8A:336-599, 1oacA:301-724 3 360 118
1cb8A:336-599, 1oacA:301-724 2 393 187
Concanavalin 54s
2bqpA, 1gbg, 2galA, 1d2sA, 1sacA, 1a8d:1-247, 10 220 54
1kit:25-216, 2sli:81-276, 6cel, 1xnb
1a8d:1-247, 1d2sA, 1gbg, 6 194 75
1sacA, 2galA, 2sli:81-276
1a8d:1-247, 1gbg, 6cel 3 298 128
tRNA synthetase 39s
1adjA, 1hc7A, 1qf6A, 1atiA-AntiCodon 4 409 75
1adjA, 1hc7A, 1qf6A 3 508 176
G-proteins 29s
1agr, 1tad, 1gfi, 1tx4, 1grn, 1wql 6 370 13
1agr, 1tad, 1gfi 3 350 199
PTB domain 8s
1x11,1irs,1shc,1ddm,2nmb,1evh 6 147 66
1shc,1ddm,2nmb 3 168 111

Sal is the number of aligned atoms.

Table 3.6: Multiple structural alignment results performed by MultiProt.
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10 molecules only β-sheet C is aligned well (from 7 β-strands 3 were aligned well and

2 received only small partial alignments) and β-sheet E obtains only a small partial

alignment. Investigating multiple alignments containing fewer molecules, we notice

that the common core of β-sheet S1 increases and so does that of S2. See Figure

3.9 (b) for a geometric core of 6 molecules - 1a8d:1-247, 1d2sA, 1gbg, 1sacA, 2galA,

2sli:81-276. The size of the struct-core is 75 Cα atoms with mRMSD 2.0 Å. The

bio-core size of these molecules is 9 atoms. The running time was 54 seconds. For

details see Table 3.6.

Supersandwich

In this experiment we selected from the SCOP database[92] the Supersandwich fold

from the All beta proteins class. This fold contains three superfamilies. From each

superfamily we selected one protein, β-Galactosidase (1bgmI:731-1023), Chondroiti-

nase Ac (1cb8A:336-599) and Copper Amine Oxidase (1oacA:301-724). Our multi-

ple alignment result contains 118 Cα atoms with mRMSD 2.21 Å. β-Galactosidase

(1bgmI:731-1023) has 17 strands. Only two strands (914-921,894-901) are not in the

alignment. This example demonstrates that our method does not totally depend on

the order of the residues in the backbone chain. A number of strands were aligned

in the opposite order. Below is part of the alignment (notice the alignment between

1bgmI and 1oacA):

1bgmI: 738 739 740 741 746 747 748 749 750

1cb8A: 444 442 340 341 348 342 350 351 339

1oacA: 327 325 324 323 332 331 330 329 328

See Figure 3.9 (c) for the aligned core. The bio-core of this multiple alignment contains

23 atoms, which is a subset of the largest detected struct-core. The running time was

about 12 seconds. For details see Table 3.6.
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Detection of Subset Alignment

In this experiment, in order to show the ability of our method to detect subset align-

ments, we included in the input set 18 proteins. 5 proteins from the Superhelix exper-

iment (1lxa, 1qq0, 1xat, 2tdt, 1fwy(A:252-328)), 3 proteins from the Supersandwich

experiment (1bgmI:731-1023, 1cb8A:336-599, 1oacA:301-724) and 10 proteins from

the Concanavalin A-like lectins/glucanases experiment (2bqpA, 1gbg, 2galA, 1d2sA,

1sacA, 1a8d:1-247, 1kit:25-216, 2sli:81-276, 6cel, 1xnb).

It took only 8 minutes for the program to compare these 18 molecules. The multi-

ple structural alignments for 3 molecules contained an alignment of the Supersandwich

family. The results for 5 molecules contained the alignment of the Superhelix family.

The results for 6 molecules contained the alignment of 6 proteins from Concanavalin

A-like lectins/glucanases family (1a8d:1-247, 1d2sA, 1gbg, 1sacA, 2galA, 2sli:81-276),

shown in Figure 3.9 (b). Therefore, MultiProt detected the correct subset alignments.

Since both families Supersandwich and Concanavalin A-like lectins/glucanases con-

tain a number of β-sheets, 10-13 molecules contained the mixed alignments of proteins

from these two families.

Detection of Partial and Subset Alignments

Here we demonstrate the ability of MultiProt to detect partial and subsets multiple

alignments. We consider five multi-domain molecules. Some domains are structurally

similar. Our task is to identify these structurally similar domains.

The five proteins included in this study are Histidyl-tRNA Synthetase (1adj:A),

Prolyl-tRNA Synthetase (1hc7:A), Threonyl-tRNA Synthetase (1qf6:A), Asparagine

Synthetase (12as:A) and Anticodon Binding Domain From Nuclear Receptor Coac-

tivator 5 (1v95:A). Our goal in studying such a set of proteins is to identify the two

common domains (see Figure 3.10), Class II aminoacyl-tRNA synthetase (aaRS)-like,

catalyic domain and Anticodon-binding domain of Class II aaRS (the classification is

according to SCOP[92]). For simplicity we call these domains A and B.

The multiple alignment for all five structures resulted in a common structural
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(a) (b)

(c) (d)

Figure 3.10: Partial and Subset Alignments. (a) Simplified schematic view of protein
domains of 1adj:A, 1hc7:A, 1qf6:A, 12as:A, 1v95:A. (b) All five proteins are aligned.
The common core is 39 amino acids (p-value < 0.001). (c) Domain A is aligned
between the first four proteins. The common core has 125 amino acids, this is highest
ranked solution for four structures. (d) Domain B is aligned between 1adj:A, 1hc7:A,
1qf6:A and 1v95:A. The common core has 76 amino acids, this is the second ranked
solution with molecule id composition different from the larger alignment of domain
A.
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core of size 39 amino acids, consisting mainly of beta-sheet and alpha helix. De-

spite the fact that these two domains are differently classified there is some par-

tial non-random (p-value < 0.001) structural similarity. The solutions containing

four structures revealed two high scoring multiple alignments with different protein

composition. These multiple alignments are alignments of the first domain (1adj:A,

1hc7:A, 1qf6:A, 12as:A) and of the second domain (1adj:A, 1hc7:A, 1qf6:A, 1v95:A).

Therefore in this example, MultiProt successfully carries out the task of subset and

partial multiple alignment. The running time is 2 minutes.

It is worth noting that multiple alignment of the first three proteins (1adj, 1hc7

and 1qf6) does not align domains A and B at the same time. This is due to a

hinge motion between domain A and B. Thus, there is no 3D transformation that

simultaneously aligns both domains. Consequently, since domain B is significantly

smaller than A, it is found ranked at the 20th place. Therefore, in such case a multiple

flexible structural alignment would produce a more meaningful result by aligning A

and B at the same time.

G proteins

In this experiment we performed a multiple alignment of 6 G-proteins[73]. A binding

site of these proteins has two conserved amino acids Gln and Arg. In three proteins

1agr, 1tad and 1gfi the conserved amino acids are located on the same chain while

in the 1tx4, 1grn and 1wql these amino acids are on different chains. Therefore, no

sequence analysis method can detect these structurally conserved functional groups.

Thus, to detect this structurally conserved pattern, a proper protein representation

should be selected. The distance between Cα atoms of the conserved Arg of the first

group (1agr, 1tad and 1gfi) and the second group (1tx4, 1grn and 1wql) is about

10 Å. Therefore, a method that aligns Cα atoms will not be able to recognize the

functionally conserved Arg, since a distance threshold of 10 Å is not realistic.

For this experiment we represented the proteins by side-chain specific points. For

Phe, Tyr, His and Pro a geometric center of the ring was selected. Trp, Val, Ile,

Thr were represented by a side chain geometric center; Ala, Ser - by Cβ atoms;

Gly - by a pseudo Cβ atom; and Cys, Met - by a sulfur atom. For Asp, Glu, Lys,
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Asn, Gln, Arg the last side chain carbon atom was chosen. Leu was represented by a

geometric center of the last 3 carbon atoms. Using such a representation, MultiProt

successfully detected conserved Gln and Arg (Figure 3.11), as well as other 11 amino

acids. The selected side-chain specific representation was encouraged by this example.

We are currently looking for other cases where such a representation would detect a

correct structural alignment of conserved functional residues. Interestingly, multiple

alignment using Cα atoms produces the same 3D superposition, but as explained

above, the functionally conserved arginines are not ’detected’ to be aligned. This

problem could be resolved by applying some post-analysis method. However, using

a priori the correct representation is more advantageous, since the chance for false-

positive solutions is lower.

Figure 3.11: The binding site of G-proteins has two functionally conserved amino
acids Gln and Arg. In proteins 1agr, 1tad and 1gfi the conserved amino acids are
located on the same chain while in 1tx4, 1grn and 1wql these amino acids are on
different chains. For illustration, 1agr is colored dark-gray and 2 chains of 1grn are
colored light-blue and red. The distance between the Cα atoms of the conserved Arg
is about 10Å, therefore a structural representation with Cα atoms is not appropriate.
Using the amino acid representation described in text, MultiProt detected correctly
the multiple alignment. The functional Gln and Arg were among the 13 structurally
aligned residues.
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PTB-domain

The PTB (phosphotyrosine-binding domains) are particulary interesting. Recent data

indicate that these modular domains form part of a superfamily of recognition do-

mains. They can interact with different targets on different parts of their surfaces.

While they were originally believed to bind only phosphorylated targets, they are now

known to bind also non-phosphorylated targets, some of which lack Tyr altogether.

This diverse binding makes them a good case study. The PTB example demonstrates

MultiProt’s ability to handle protein binding sites. MultiProt is able to compare all

binding sites of available PTB domains, to obtain a consensus, common binding site

core.

We selected 6 proteins (X11 PTB domain 1x11, Irs-1 PTB domain complexed

with a Il-4 receptor phosphopeptide 1irs, Shc PTB domain complexed with a trka

receptor phosphopeptide shc, Numb PTB domain complexed with a nak peptide

1ddm, Dnumb PTB domain complexed with a phosphotyrosine peptide 2nmb and

Evh1 domain in complex with acta peptide 1evh). These molecules were taken from

a study by Forman-Kay & Pawson[42]. The first five molecules are from the PTB

family, while 1evh is from the EVH family. The detected common structural core

contains 66 amino acids. For details see Figure 3.12.

Interface Alignment

v

Protein-protein interactions occur on the surface of a protein and are governed by

physical-chemical forces. Thus, inspection of protein-protein interfaces should provide

clues to the associations between different protein chains. Toward the ultimate goal

of understanding how proteins interact, a good starting point is inspection of the

interfaces structurally. A protein-protein interface consists of residues that interact

with each other across the binding interface. At least two chains are involved. To be

able to investigate the structural features of interfaces, we use our algorithm which

does not take into account the linear sequence information. Because interfaces are

vThese results are contributed by Ozlem Keskin okeskin@ku.edu.tr
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.12: (a-f) Proteins (1x11,1irs,1shc,1ddm,2nmb,1evh) are displayed in orien-
tation according to the multiple structural alignment by MultiProt. The common
structural core is in red, whereas in gray are the structurally mis-aligned parts. The
first five molecules are from the PTB family, while 1evh is from EVH. (g) All pep-
tides/ligands are superimposed according to the same multiple alignment as (a-f).
While the first five ligands bind to almost the same surface region, the ligand on the
right is taken from 1evh. Comparing structures (a-e) with (f) one can see that the
binding site of 1evh is different from others.
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composed of at least two chains, and most of the time only discontinuous segments

from each chain are involved in the binding, a structural alignment method which is

independent of the order of the residues on the chains is essential. There is another

very important point one should be careful in aligning interfaces: chain identities

should be taken into consideration. Let us say we have two interfaces: Interface1 and

Interface2. The first of these two interfaces is composed of chains ChainA and ChainB,

and the latter ChainC and ChainD. If a method aligns the interfaces, all the segments

from Chain A should be aligned with segments from ChainC (or ChainD) but not a

combination of segments from both ChainC and D. MultiProt has the capability of

aligning different interfaces simultaneously taking this criterion into account. With

MultiProt, one can also detect sequentially conserved residues at a specific position

on the alignments. This is an invaluable tool for finding the conserved residues hot

spots at the interfaces.

Here, we apply our algorithm to clusters of protein-protein interfaces that are

pre-filtered so that they are known to share common motifs at their interfaces. Only

the interfaces are compared. The remainder of the chains are not considered. Figure

3.13 (a-d) shows alignment of four different families of interfaces. Table 3.7 gives the

results of the interface alignment. These results have been obtained from O. Keskin

et al. (Full details will be given elsewhere; Keskin, Tsai, Wolfson and Nussinov,

unpublished).

Figure 3.13 (a) is an example of the Glutathione S-transferases. The green part in

the figure shows the results of the structural alignments of 10 interfaces. The yellow

and the gray parts are the ribbon diagrams of the two complete chains of Glutathione

S-transferases 1c72 (Chains A and B). There are four α-helices and two β-strands in

the interface that are being alined by MultiProt.

In Figure 3.13 (b), the interfaces of 6 serpins are displayed. The red and the

cyan residues are the conserved residues of these 6 families. Note that only the

conformations of the side chains of antichymotrypsin (1as4) are shown in the figure.

Cyan depicts the conserved residues in Chain A and in red are the conserved residues

in Chain B.

In Figure 3.13 (c), the gray region displays the aligned five interfaces of DNA
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Family Name PDB No. of Sal Sbio SCOP classification
codes Mols (Superfamily)

Transferases 10gsAB, 1axdAB, 10 67 17 Glutathione S-transferases,
1c72AB, 1f2eAB, C-terminal domain
1gwcBC, 1jlvAB,
1pd212, 1b48AB,
1gnwAB, 1ljrAB

Ribonuclease, 1a2pBC, 1axcAC, 5 18 0 DNA clamp
DNA binding 1b77AB, 1b77AC
proteins 1axcAE
Serine proteases 1antLI, 1as4AB, 7 67 20 Serpins

1d5sAB, 1hleAB,
1paiAB, 1c8oAB,
1jjoCE

Transferase S 1c2yAE, 1c41AB, 8 41 3 Lumazine synthase
1ejbAB, 1hqkAB,
1rvv12, 1rvvZ1,
1c41AE, 1hqkAE

Sal is the number of aligned amino acids, Sbio is the size of the bio-core.

Table 3.7: Protein interface families. For the multiple alignment only the interface
part was used, not the complete structure.
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binding proteins, again the green and red chains are the ribbon diagrams of A and B

chains of the DNA clamp 1b77.

Figure 3.13 (d) displays the alignment of 8 interfaces for the Lumazine synthase

family. The magenta and the cyan regions show the ribbon diagram of the chains A

and E of the Lumazine Synthase 1c2y. Gray depicts the interface. All the aligned

interfaces have at most 3.5 A rmsd amongst them. These examples are important,

indicating that MultiProt can successfully align interfaces of different sizes and dif-

ferent numbers simultaneously and very efficiently. The interface examples presented

here would not be aligned structurally with the other available structural alignment

programs since the remainder of the chains would determine the alignments.

3.5 Conclusions

Here we have presented a powerful tool for a simultaneous alignment of multiple

protein structures. The advantage of MultiProt over previous methods is a combina-

tion of (i) simultaneous structure superposition (no side effects of pairwise alignment

methods), (ii) solutions are detected for any number of molecules (separation between

more similar structures and outliers), (iii) proteins can consist of several chains, and

(iv) the final alignments can optionally preserve the sequence order or be sequence

order independent. That is, MultiProt has the ability to detect non-topological simi-

larities. Consequently, if there are at least three consecutive residues in the match, (v)

MultiProt can be applied to multiply align binding sites. The case studies presented

here demonstrate these abilities. Despite the complex task, MultiProt is extremely

efficient and is suitable for simultaneous comparison of up to tens of proteins.
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(a) (b)

(c) (d)

Figure 3.13: (a-d) The structural alignments of four different protein-protein interface
families. In each figure, in addition to the aligned interfaces, the ribbon diagrams of
the two chains which the interfaces belong to are displayed. These two chains are for
the representatives of the family. See discussion in the text.
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3.6 Appendix

3.6.1 Pairwise Correspondence

Given two point sets in 3-D, A and B, and a threshold ε, find two equal size subsets

A′ and B′ (A′ ⊂ A, B′ ⊂ B) satisfying the following criterion: there exist a one-to-

one correspondence, f , between A′ and B′, such that ∀a ∈ A′, ||a− f(a)|| ≤ ε. The

task is to maximize the size of A′ and B′. This problem can be solved by detecting

maximal matching in a bipartite graph.

Let us construct the bipartite graph G = (A ∪ B, E). A graph edge e = (u, v),

u ∈ A and v ∈ B, is created if and only if the distance between these points is less than

ε. Now, the task is to select the maximal number of edges that satisfy the “matching”

criterion - “A matching in a graph G is a subset of the edges of G such that no two

share an end-point”. This set of edges would give us a one-to-one correspondence of

maximal size. This is exactly the problem of finding “maximal cardinality matching

in the bipartite graph” [84], which can be solved with time complexity O(
√

n · m),

where n = |A| + |B| and m = |E|. In practice (for the case of protein molecules), a

straightforward greedy method has been proven to work adequately well. It works as

follows. An edge e = (u, v) is added to the matching if and only if nodes u and v are

not already matched. In other words the edge e should not violate the already created

matching in the graph. The complexity of this greedy algorithm is only linear in the

number of the graph edges O(m). We show in the next paragraph that m ∈ O(n).

A naive approach of building the “correspondence” graph G = (A ∪ B, E) takes

Θ(n2) steps, since every pair of nodes, one node from each part, is considered in order

to decide, whether there is an edge between the nodes. To resolve this we have to

find for each query point u ∈ A all the points v ∈ B within a ball of radius ε from

u. Taking into consideration the geometrical constraints on atomic centers of protein

molecules, this task can be accomplished in almost linear time O(n).

We place one molecule, say A, on a three dimensional geometric grid, with grid

size max(ε, 3). Then, for each center of atom v of molecule B, which is just a point

in 3-D space, we access the geometric grid and extract all atoms of A within radius

ε from atom v. If ε is small enough, and it should be small since otherwise there
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is no meaning for alignment of two atoms, then we extract from the grid a constant

number of atoms. If ε = 3Å, then in the ball of radius ε there are at most 2 or 3

Cα atoms. Therefore, the degree of each vertex in the graph is at most 3 (using the

notation defined above, dens(ε) is bounded by a small constant). It follows that the

number of edges is linear in the number of nodes. Thus, the experimental complexity

of building the graph G is (|Putting A onto a grid| + |B|· |Number of atoms within

radius ε|) ∈ O(n).

To summarize, the complexity of solving the correspondence task using a greedy

approach is linear in the number of atoms (O(n)), while using an exact algorithm of

“Maximal Cardinality Matching in the Bipartite Graph” is O(n3/2) (since m ∈ O(n)).

3.6.2 Multiple Correspondence

Our aim is to give a practical solution to the 3D-ε-K-partite-pivot matching. As

we have discussed above in Section 2.4.2, this optimization problem is NP-Hard,

therefore, in practice we adopted two heuristic strategies.

The first method aims to combine optimal pairwise solutions. For each i = 2...K

solve Pairwise Correspondence for S1 and Si, as described above. The resulted

correspondence-lists might contain different points from the set S1. We are inter-

ested only in those that appear in all correspondence-lists. Thus we create a list of

K-tuples, where each K-tuple contains - (1) a point p from S1, which appeared in all

correspondence-lists, (2) K − 1 points which are corresponding to p from Pairwise

Correspondences. Assuming that the maximal point density, dens(ε), is bounded by

a small constant, the time complexity is O(K · n1.5).

The second method is a greedy approximation. Iteratively select an ε-K-tuple-

pivot until no selection is possible. The method guarantees to find a matching of size

at least OPT/min(dens(2 · ε), K). The running time is linear in the total number of

points, O(K · n).

In practice we tried to apply both methods, but in most cases the difference

between the results was minor. While two options are available in MultiProt, the

second method is used by default.
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Chapter 4

Structure-Derived Multiple

Sequence Alignment

4.1 Introduction

High protein sequence identity (> 30%) usually implies structural similarity and

similar protein function. However, the opposite does not always hold. Examples of

Isomerases, Cytokines, Myoglobins, Immunoglobulins, Transferases and other protein

families show that proteins may share a similar 3D fold but nevertheless have less than

25% sequence identity. Yet, despite low sequence similarity, some specific amino acids

are evolutionarily conserved for function. This presents a major challenge: how to

accurately explore multiple protein sequence and structure information?

Methods for multiple sequence alignment have become almost everyday tools for

computational biologists, for example Psi-BLAST[6] or ClustalW[58]. Structural

alignment of pairs of proteins is also acquiring a similar status. On-line resources

are available for high quality pairwise alignments: CE[115], DALI[29], Geometric

Hashing (GH)[11], VAST[82] and others[38]. Obviously, much more information can

be derived from multiple structure alignment. Recognition of a structural core com-

mon to a set of protein structures has many applications such as in the studies of

protein evolution and classification, analysis of similar functional binding sites and

homology modeling[3, 47]. A number of methods have been developed to perform

101
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multiple alignment of protein structures[107, 30, 89].

Given a protein molecule, one may ask: what is the evolutionary conservation of

each of its amino acids? A natural assumption is that highly conserved positions may

indicate conservation of protein function. Several methods have been developed to

compute amino acid conservation (or mutation rate) from phylogenetic information

derived from protein sequences [78, 46]. Can we obtain additional information from

protein structures? An accurate multiple alignment is one of the most critical steps

toward the answer to this question. Most of the available multiple structure alignment

methods aim to maximize the number of spatially aligned Cα atoms. The result is

the superimposed protein structures. In addition these methods may compute a set

of simultaneously spatially aligned residues. These are analogous to columns without

gaps in sequence alignment. Consider the following scenario, where we are given

three proteins a1a2a3, b1b2b3, c1c2c3 and a multiple structure alignment between them.

Assume that the following groups of amino acids have been found to be close in 3D

space: (a1, b1), (a2, b2, c1), (a3, b3, c2) and (a3, b3, c3). There are several combinations

of spatially consisted structural alignments between these three proteins. For example

the following three combinationsi:

I.

a1 a2 a3 -

b1 b2 b3 -

- c1 c2 c3

II.

a1 a2 - a3

b1 b2 b3 -

- c1 c2 c3

III.

a1 a2 - a3

b1 b2 - b3

- c1 c2 c3

Which alignment is better? All three satisfy the geometrical constraints. However,

a structural superposition does not uniquely define a sequence alignment. Obviously,

in this case we would prefer an alignment that places more similar amino acid types in

the same column. Therefore, we face an optimization problem which is similar to the

multiple sequence alignment problem but has additional geometrical constraints. To

the best of our knowledge, only two methods, SSAPM [124] and CE-MC[50] (CE-MC

is readily accessible on the Internet), have been devised to compute a global multi-

ple structural alignment (i.e. to align all protein amino acids, like global sequence

alignment, while minimizing the number of gaps). However, both methods do not

iIn this work we will assume that all sequence and structural alignments are according to protein
sequence order, i.e. alignments preserve the protein topological order.
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perform optimization according to amino acid types, i.e. they consider only 3D in-

formation. The CE-MC method requires that in a multiple alignment column only

some ratio of amino acids have to be close in 3D space, others may be distant. This

may result in discrepancies in the alignment as demonstrated in Figure 4.4 of the

Experimental Results section. Other available multiple structure alignment methods

[135, 108, 30] only report columns without gaps, e.g. the second and the third column

from combination (I). Obviously, non-gap regions provide only a limited information

and for general applications a complete multiple alignment is required. Recently,

a new method 3DCoffee[97] incorporated pairwise structural alignment information

into the construction of multiple sequence alignments. However, only structurally

aligned residue pairs (according to some pairwise structural alignment method) are

used to increase the weight for that particular pairs during the construction of a se-

quence alignment. That is, the approach is not able to optimally solve the situation

described above. COMPARER[103] represents a protein structure as a sequence of

amino acid features (other element types such as secondary structure elements, motifs

etc. can also be encoded). The features include amino acid biochemical properties as

well as structural properties such as local main-chain dihedral angles, side-chain ac-

cessibility, side-chain orientation etc. In addition, relations between a pair of amino

acids from the same protein structure are also encoded. These include hydrogen

bonds and hydrophobic interactions. The method uses a combination of simulated

annealing and dynamic programming to solve the alignment problem between two

proteins. The multiple alignment is solved iteratively according to a dendrogram

tree. While COMPARER can produce a global multiple sequence alignment it does

not aim to find a good global structural superposition. Its encoded structural prop-

erties are of local nature including pairwise relations. Similarity of related pairs does

not necessary imply congruence of the global 3D shapes.

For a better analysis of protein families there is a need for a multiple alignment

that optimizes both sequence and structure information. Since protein structure is

generally more conserved than sequence, we propose to perform an optimization of

the multiple alignment, first, according to structure and then according to amino acid

types with combination of 3D information. Namely, we propose the following scheme:
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Given a set of protein structures, first, perform a multiple structural alignment (in

this work we used the MultiProt[107, 108] method). Second, based on the multiple

structural alignment, perform a multiple sequence alignment optimizing our newly

defined scoring function. The scoring function is a likelihood of amino acid a to

substitute b assuming that a (b) is located in secondary structure X (Y ) and the

3D distance, according to a multiple structural alignment, between Cα atoms of a

and b is d. To solve the multiple alignment we apply an iterative profile-profile

alignment procedure. Our method is implemented in a program named STACCATO

(STructural-sequence Alignment, Correspondence and Conservation Analysis TOol).

To summarize, STACCATO solves the following tasks: (1) Given multiple structures

compute the multiple sequence alignment optimizing a sequence-structure scoring

function (defined below). The resulted alignment can be used as a profile for alignment

of a set of protein sequences. (2) Compute the sequence-structure conservation for a

column of the multiple alignment.

In the Results section we compare STACCATO with other available methods. Our

tests include comparison with the HOMSTRAD[89] benchmark of multiple structure

based sequence alignments. We argue that our approach produces more accurate

alignments. We present some applications of STACCATO, which include analysis

of loop motion in Tyrosine Kinase and improving the accuracy of protein-protein

docking methods.

4.2 Methods

Our goal is to devise a scoring function that reflects the likelihood of matching two

amino acids a and b given a structural alignment. We will call it a 3D substitution.

The likelihood ratio (LR) of such an event can be defined as:

LR(a,b)=
P (a,b)
P ′(a,b)

P3D(d(a,b))
P ′

3D(d(a,b)) ,
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where P (a, b)/P ′(a, b) is a commonly used likelihood ratio of amino acid substitu-

tions, P (a, b) is the probability for a to substitute b and P ′(a, b) is the randomly ex-

pected probability (our default values are taken from the Blosum62 matrix[57]), d(a, b)

is the 3D distance between the Cα atoms in the structural alignment, P3D(d(a, b)) is

the observed probability of distance d(a, b) in a set of structural alignments of closely

related proteins and P ′
3D(d(a, b)) is the randomly expected probability of 3D dis-

tances. We computed the P3D and P ′
3D values in the following way. We selected a

representative set of 5674 protein structures from the SCOP database[92] which have

less than 40% of pairwise sequence identity (this data set is provided by ASTRAL

[20]). This resulted in 1033 protein domains (according to the SCOP classification)

each containing at least 2 structures. Therefore, in order to compute the distribution

of P3D values (observed probabilities of related structures) we performed structural

alignments for each protein pair from the same SCOP protein domain. For struc-

tural alignment we applied the MultiProt method[107, 108]. Each pairwise structural

alignment defines a set of observed distances between aligned amino acids. However,

here we face exactly the same problem of correct alignment definition, since the ob-

served distances are influenced by the definition of the alignment. To overcome this

problem, first, we required the structural alignment to be sequential (i.e. we are not

interested in non-topological alignments) and global. Second, to overcome the am-

biguity of alignment we selected a minimal 3D distance from a window of length 5

around a structurally matched amino acid. This set of distances defined the distri-

bution of P3D. The number of all pairwise alignments in this data set is 16,919 and

the number of distances used to compute probabilities is 2,858,443. To compute ran-

domly expected distances, P ′
3D, we used the same data set and the same technique,

but performed alignments between structures from different protein domains.

Practically, we computed distance distributions for the interval [0,10] with unit

size bins. Since the actual distance range is larger, we performed the following scaling:

D(d) =


9 if d > 22.62Å,

1

f +
(1− f)

d

otherwise,
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Figure 4.1: Function used (colored red) to map 3D distances (x-axis) of aligned amino
acids. Distances larger than 22.62Å are mapped to 9.

The value of f is operationally set to 0.07. This function was selected to reflect the

relevant distance range for the alignment. It behaves almost linearly for small values

less than 5Å (this is arguably the most sensitive range), and gradually decreases for

large values (basically, alignment at 25Å distance is not much different from alignment

at 40Å). See the function graph in Figure 4.1. The computed distance distribution

values, 2log2(P3D(d)/P ′
3D(d)), are presented in Table 4.1 (a).

Secondary Structure Information. Knowledge of secondary structure type can

improve the correctness of alignment[125, 123]. A score of aligning two amino acids

from the same kind of secondary structure should be higher than a score of amino

acids coming from different secondary structure types even when both pairs are placed

at the same distance in a structural alignment. Therefore, to stress the significance

of secondary structure information we extend the definition of LR(a, b) to:

LR-SSE(a,b)=
P (a,b)
P ′(a,b)

P3D(d(a,b)|SSE(a),SSE(b))
P ′

3D(d(a,b)|SSE(a),SSE(b)) ,

where SSE(a) is the secondary structure type of a. To compute conditional

probabilities P3D and P ′
3D we repeated the same steps as described above and the

resulted values, 2log2(P3D(d|s1, s2)/P
′
3D(d|s1, s2)), are presented in Table 4.1 (b). In
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(a)

Distance [0,1) [1,2) [2,3) [3,4) [4,5) [5,6) [6,7) [7,8) [8,9) [9,∞)
Score 6.54 3.98 2.64 1.48 -0.85 -2.18 -3.07 -3.50 -3.83 -3.85

(b)

Distance [0,1) [1,2) [2,3) [3,4) [4,5) [5,6) [6,7) [7,8) [8,9) [9,∞)
H H 5.23 4.23 3.82 2.62 -0.19 -1.93 -3.06 -3.37 -3.28 -3.13
H S -5.01 -5.45 -4.90 -5.23 -5.79 -6.26 -6.40 -6.17 -6.09 -5.94
H U 2.36 1.07 0.92 0.15 -1.17 -2.26 -3.15 -3.58 -3.98 -4.23
S S 9.09 5.80 3.99 3.11 -2.07 -3.67 -4.33 -4.61 -4.97 -4.11
S U 4.73 2.37 1.63 0.81 -2.28 -3.54 -4.26 -4.56 -4.56 -4.72
U U 8.66 5.26 3.97 3.04 1.19 -0.30 -1.58 -2.42 -3.21 -3.63

Table 4.1: Distance Scores. H - helix, S - strand, U - undefined

all the experimental results we used only SSE conditional probabilities.

Finally, the score for the 3D substitution is defined as log-odds:

ScoreSM(a, b) = 2log2(
P (a,b)
P ′(a,b)),

Score3D(a, b) = 2log2(
P3D(d(a,b)|SSE(a),SSE(b))
P ′

3D(d(a,b)|SSE(a),SSE(b))),

Score(a, b) = 2log2(
P3D(d(a,b)|SSE(a),SSE(b))
P ′

3D(d(a,b)|SSE(a),SSE(b))) = ScoreSM(a, b) + Score3D(a, b)

4.2.1 The Optimization Method

The input to our optimization method is a set of protein structures superimposed

by some multiple structure alignment method. In our work we used MultiProt[107,

108] that performs a simultaneous structure superposition and does not have the

drawbacks of the methods which are based on pairwise structural alignments. The

proposed method, STACCATO, is based on progressive alignment, or profile-profile

alignment. This strategy has been applied in many multiple alignment methods.

First, each protein is initialized as a singleton profile. Then, the most similar pair of

profiles is detected and merged. This progressive alignment is repeated until only one

profile, which includes all the sequences, is left. Most sequence alignment methods,
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like ClustalW[58], apply progressive alignment steps according to a dendrogram tree

computed at the beginning of the procedure. A dendrogram tree defines similarity

between sequences and consequently it defines similarity between created profiles.

Here, we recompute similarity between sequences/profiles each time a new profile is

created. Such a method is slower, but is more robust. Each time, a new profile

is created it defines more precisely the protein family characteristics, therefore an

evolutionary distance between the new profile and other sequences/profiles can be

calculated with higher precision.

Iterative Profile−Profile Alignment :

Input : S1, ..., SK

P = {Profile(Si)}

do until |P | == 1

select Pi, Pj ∈ P, s.t. maxi6=j=1...|P |Score(Profile(Pi ∪ Pj))

P = P ∪ {Profile(Pi ∪ Pj)} (join two profiles)

P = P \ {Pi, Pj}

end

The step of joining two profiles, Profile(Pi ∪ Pj), and computing its score,

Score(Profile(Pi ∪ Pj)), is done by a standard dynamic programing[120]. We need

to define a score of joining column ci, from the first profile, with column cj, from the

second profile. We join ci with cj by applying the sum-of-pairs scheme:

Score(ci, cj) = Σx,y∈ci∪cj ,x 6=y ScoreSM(x, y) + Score3D(x, y)

ScoreSM(x, y) is taken from an amino acid substitution matrix. Our default ma-

trix is Blosum62. Score3D is as defined above. The columns may include gaps,

Score3D(x,−) = Score3D(−, y) = Score3D(−,−) = 0. For Blosum62 we define
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ScoreSM(x,−) = ScoreSM(−, x) = −4 and ScoreSM(−,−) = 0ii.

Assume that the number of sequences in the first and second profile is n and m

respectively. Let us define a column cn
− which contains exactly n gaps. Note that

aligning column ci with a gap means aligning it with a column of m gaps. Analo-

gously, aligning column cj with a gap means aligning it with n gaps. Thus, the score

of introducing a gap into an alignment equals to:

Score(ci,−) = Score(ci, c
m
− ) and Score(−, cj) = Score(cn

−, cj),

i.e. the gap penalty is also calculated by the sum-of-pairs scheme. The default

gap opening penalty is set to -7.

In case we are given a set of protein structures, S1, and a set of sequences, S2 (for

which structural information is not available), we compute an alignment of the two

sets in the following way. First, we compute a multiple structure based alignment of

S1 as described above. Then, the same iterative scheme is applied on the profile of

S1 and singleton profiles initialized from each sequence of S2. In the second iterative

stage the structural information (Score3D) is not used. Thus, the final alignment is

based on the first structure set S1.

Distance Constrained Multiple Alignment. Our method allows to produce

structurally constrained alignments. We can require that all pair-wise distances be-

tween the Cα atoms of amino acids from the same column are less than ε (user defined

parameters). To adopt this requirement we only need to update the scoring function

as follows:

iiThere is no yet a commonly agreed standard to measure a gap against a gap for the sum of pairs
scoring method. For example, consider three columns c1, c2 and c3. Half of column c1 are characters
’a’, and half are ’b’. Half of column c2 are ’a’ and half are gaps. One third of column c3 are ’a’, one
third are ’b’ and one third are ’c’. Assume that ScoreSM (a, a) = ScoreSM (b, b) = ScoreSM (c, c) =
k and ScoreSM (a, b) = ScoreSM (a, c) = ScoreSM (b, c) = ScoreSM (a,−) = −k. We want the
following property: Score(c3) < Score(c2) < Score(c1). If selecting ScoreSM (−,−) = −k then for
ten (or more) proteins in the multiple alignment Score(c3) > Score(c2). This would be an undesired
property. This is one of the reasons why we chose ScoreSM (−,−) = 0.
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Score∗(ci, cj) =

{
Score(ci, cj) if ∀x, y ∈ ci ∪ cj d(x, y) ≤ ε

−∞ otherwise,

The constrained multiple alignment allows identification and clustering of struc-

turally similar regions. We show an application in the Experimental Results section.

4.2.2 Structure-Sequence Conservation Score

For each column c of multiple alignment we compute a conservation score, which

combines the sequence information, i.e. amino acid types and the structural infor-

mation, i.e. amino acid superposition in 3D. For reasons of practical convenience to

display an alignment along with a conservation score for each column, we scaled the

conservation score into the range [0, 9]. In the program output the score values are

rounded to the nearest integer. Such representation allows a quick visual estimation

of alignment regions whether they are conserved (low values) or not. See examples in

the Experimental Results section.

Computation of sequence conservation (amino acid type conservation), Consseq(c),

has been extensively addressed[126]. Here, we adopt a weighted sum-of-pairs scheme:

Consseq(c) = ΣN
i ΣN

j>i wi wj Score∗SM(c(i), c(j)) / W ,

where N is the number of sequences in the alignment and c(i) is the amino acid

in column c of sequence i. A modified scoring matrix Score∗SM is defined as:

Score∗SM(a, b) =

{
ScoreSM(a, b) if a 6= b,

Σ20
i=1 ScoreSM(i, i)/20 if a = b,

i.e. only the matrix diagonal is changed (for discussion see [126]). To overcome

an over-weight of similar sequences their contribution is balanced by an appropriate

weighting scheme. The weight of sequence i and the normalized weight W are defined

as:

wi = ΣN
j 6=i d(i, j)/(N − 1), W = ΣN

i ΣN
j>i wiwj ,
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where d(i, j) is the distance between sequence Si and Sj, which is defined as:

d(i, j) = 1− PercentIdentity(Si, Sj)/100,

i.e. if the sequences are identical then d(i, j) = 0, while as sequence identity di-

minishes d(i, j) approaches one. Therefore, using the Blosum62 matrix, the sequence

conservation score Consseq ranges from -4 to 5.75. In order to obtain a [0, 9] scale,

with low values indicating a higher conservation, a linear transformation is applied:

Consseq = 9 ∗ (1− (Consseq + 4)/9.75).

The structural conservation Consstr is defined as D(rmsd(c)), where rmsd(c) is

the RMSD of the Cα atoms from column c (gaps are not counted) and D is the

function defined above in the beginning of the section. The Consstr(c) range is [0, 9]

(if all Cα atoms are in the same 3D position, then it is equal to 0).

The final sequence-structure conservation score is defined as a combination of

structural and sequence scores:

Cons(c) = w ∗ Consseq(c) + (1− w) ∗ Consstr, Cons(c) ∈ [0, 9]

where w is set to 0.5. Below, in the Experimental Results section, residues with

a score Cons(c) less than 5 have been defined as ’conserved’.

4.3 Experimental Results

The output of the STACCATO program is a multiple alignment in ClustalX or PIR

formats. In addition, for each column the following scores are optionally displayed:

Consstr - structural score, Consseq(c) - sequence score, Cons(c)- combined score and

|Consstr − Consseq| - the absolute difference between the structural and sequence

scores. In addition, for each input protein file the amino acid temperature factor
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field can be set to the corresponding conservation score. This allows convenient 3D

visualization in color of the amino acid conservation scores (see Figure 4.5).

4.3.1 Comparison against HOMSTRAD data base of bench-

mark multiple alignments.

HOMSTRAD (the first version) is a database of multiple alignments of 1032 homolo-

gous protein families with available 3D structures[89]. Here we want to compare the

quality of multiple alignments produced by STACCATO against the HOMSTRAD

database. To perform the most objective comparison we need to know either (1) the

ultimate scoring function (yet generally unknown) or (2) the correct alignment (which

will require to know, for instance, the exact phylogenetic tree of the protein family).

Therefore, due to the lack of the ultimate measure, we selected two kinds of scores.

First, Seq score, is a normalized sum-of-pairs score according to the BLOSUM62 ma-

trix, i.e. a commonly used sequence similarity measure. Second, we measure how

well the structures are fit according to a multiple sequence alignment. We aim for an

intuitively simple and informative definition. We define the Str score as a normal-

ized number of columns in a multiple alignment which contain at least half non-gap

positions and their 3D root mean square deviation is less than 3Å. We conjecture

that if an alignment improves both kind of scores, than it is closer to the optimum.

However, it is not clear which alignment is better if one score is increased while the

other is decreased. Notice, that Str scores is not used explicitly in the scoring func-

tion of the STACCATO optimization method, while the Seq score is only part of the

optimization score.

Table 4.2 shows average improvement of STACCATO over HOMSTRAD applying

Seq and Str scores. Different gap opening penalties were used to show robustness of the

results. For example, for a scoring function based on conditional SSE distributions,

and gap opening penalty -7 STACCATO gave the following results. In total, there are

1032 multiple alignments. The number of alignments where STACCATO improved

either Seq score or Str score is 1000. The number of alignments where STACCATO

improved at least one score while the other score was at least as good as HOMSTRAD
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Figure 4.2: (a) A multiple sequence alignment as produced by STACCATO. Consstr

score is displayed. Most of the region is aligned within 2-3Å. (b) A multiple alignment
produced by ClustalW[58] on the same set of sequences. Notice the discrepancies in
the alignment (some are marked with boxes).

score is 587. The number of alignments where both scores were the same is 4. The

number of alignments where STACCATO degraded both Seq score and Str score is

only 16.

According to Table 4.2 a preferable gap opening penalty is in the range of [-7,-10].

Outside this range either the number of gap openings is increased, or the Seq and Str

scores are decreased.

Notice that the use of conditional SSE distributions decreases the Str score since

well matched SSE’s do not reward the Str score. Despite that, STACCATO still

improves over the HOMSTRAD alignments. Therefore, STACCATO alignments are

arguably more accurate.

4.3.2 Low Sequence Identity with High Structural Similarity.

Here, we analyze proteins from the Glutathione S-Transferase family (GST): 1gnwA:86-

211 (Class phi GST from Arabidopsis thaliana), 1g7oA:76-215 (Glutaredoxin 2 from

Escherichia coli) and 1gwcA:87-224 (Class tau GST from Triticum tauschii l.). Only

the C-terminal domain is considered.

Despite the fact that all three proteins are from the GST family, they have less

than 15% of pairwise sequence identity, which is extremely low. Therefore, it is not
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surprising that sequence alignment methods may produce an inaccurate alignment.

However, in this case, an accurate alignment can be obtained from the structural

information, since all GST proteins share high structural similarity. Figure 4.2 shows

a structure based multiple sequence alignment produced by STACCATO and discrep-

ancies in the multiple sequence alignment produced by ClustalW[58]. Therefore, this

simple example demonstrates that it is essential to use structural information (when

protein structures are available) and our proposed scheme is adequate for this task.

4.3.3 Glutathione S-Transferase active site residues

Zhang et.al.[135] showed that the standard sequence alignment methods can not align

correctly the GST active site residues. Their method, SAPS, using multiple structure

alignment information does produce a correct alignment. Figure 4.3 demonstrates

that STACCATO succeeds to achieve the correct multiple alignment as well. The

SAPS method aligns only non-gap fragments, therefore the advantage of STACCATO

is in its ability to produce a complete multiple alignment including gaps.

4.3.4 Loop Movement in Tyrosine Kinase.

Tyrosine kinase is a large family of evolutionarily conserved enzymes which are critical

in cellular signaling pathways[62]. Here, we consider four protein structures, two in

the active (1ir3A, 1cdkA) and two in the inactive state (1irk, 1iep). Proteins 1ir3A,

1irk are insulin receptors from human, 1cdkA is a cAMP-dependent protein kinase

catalytic subunit from pig, and 1iep is Abelsone tyrosine kinase from mouse. In this

case study we focus on the activation loop. A well conserved DFG motif, which

is involved in Mg-ATP binding, is located at the beginning of the activation loop.

During activation the loop must undergo a substantial conformational change. Some

amino acids in the loop change their position by as much as 31Å (see Figure 4.4 (a)).

A question which can be asked is what kind of analysis should be performed in order

to detect and distinguish between the two states, and which residues participate in

this rearrangement?
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The multiple sequence alignment of these four proteins does not distinguish be-

tween the active and inactive forms. In Figure 4.4 (b), the DFG motif as well as

the whole activation loop are multiply aligned. However, the structurally constrained

multiple alignment does distinguish between the two states. In Figure 4.4 (c-d) it

can be seen that the loop forms two separate clusters, of the active and inactive

states. Only the aspartic residue from the DFG motif is spatially conserved (within

5Å distance threshold).

4.3.5 Applications to Improve Protein-Protein Docking.

Given the structures of two molecules, whether two proteins or a protein and a small

molecule, the task of a docking method is to computationally predict their possible in-

teraction. A result of a docking program is a 3D complex between the input molecules.

There are two major stages in docking methods: a 3D search for potential complexes

and a quantitative estimation of the quality of each sampled solution. Quantitative

estimation is done by some scoring function, which usually considers geometrical and

biochemical properties of a predicted complex. The bottleneck of the current docking

methods is the quality of the scoring function. In most cases a near native (“correct”)

solution is detected during the 3D search. However, hundreds of false-positive solu-

tions are ranked higher than near native ones. One of the possible ways to reduce the

number of false-positives is to reduce the combinatorial space during the 3D search,

i.e. to reduce the number of potential solutions. Knowledge of the protein binding

site significantly reduces the number of false-positives, but usually such information

is not available. Yet, evolutionary conservation of amino acids may indicate potential

binding sitesiii. Given a list of conserved amino acids this information can be used

in the following way. During a 3D search, only those solutions are considered that

place at least one conserved residue on the molecular surface into the protein-protein

interface, i.e. at least one conserved residue should participate in binding.

To illustrate the above mentioned application, we consider the prediction of the

complex between Methylamine Dehydrogenase (2bbkLH) and Amicyanin (1aan) from

iiiAntibody proteins have an opposite property, their highly variable binding site allows adaptation
for binding specific antigens. We consider antibody-antigen binding as an exception from the rule.
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Paracoccus denitrificans. First, we run the PatchDock[33] algorithm without any in-

formation about conserved residues. The first near native solution (RMSD with

correct solution less than 3Å) was ranked 159, i.e. there were 158 false-positives

(the native complex of these proteins 2mta is used as a reference). Second, we used

the ConSurf[46] method to compute the conserved residues of the Amicyanin protein

(1aan). The method computes an evolutionary conservation (or alternatively a mu-

tation rate) based on sequences alone. For the conservation list, we selected amino

acids having a rank higher or equal to 6 (from 1-9 range). It contained 54 amino

acids. With this list as input to PatchDock, a near native solution was ranked 133’rd.

However, not all amino acids conserved in sequence are conserved in structure. Third,

we applied the STACCATO method on the Plastocyanin/azurin-like family, to which

Amicyanin (1aan) belongs. According to SCOP[92] this family contains 8 proteins.

Each protein has several PDB representatives belonging to different species. We ar-

bitrarily selected one representative for each protein (1aan, 1plc, 1paz, 2cbp, 1azcA,

1qhqA, 1e30A, 1jer). According to STACCATO, there are 24 conserved amino acids

in 1aan. Conserved amino acids were defined as those for which the Cons(c) score is

less than 5. This list results in ranking a near native solution in the 62 place, which is

a considerable improvement over both previous results. See Figure 4.5 for additional

details.

4.4 Conclusions

Here we have presented an optimization method unifying sequence and structural

information. When protein structures are available, a multiple sequence alignment

consistent with a multiple structural alignment overcomes the problems inherent to

sequence alignment methods. The results presented here show a high potential for

the STACCATO method. On the benchmark of 1032 protein families STACCATO

produces multiple alignments as good (and arguably slightly better) as multiple align-

ment from the HOMSTRAD data base.

Structures contain considerable information. Combining multiple sequence align-

ment with a multiple structure alignment should yield improved results particularly
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in cases where the alignment is more difficult, due to different sizes, lower sequence

identity, presence of variable loops, etc. The caveat is however, the existence of the

respective structures in the Protein Data Bank. Yet, as the number of these increases

very rapidly, a method such as the STACCATO should be increasingly applicable.
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Figure 4.4: (a) Tyrosine kinase activation loop in the active and the inactive state.
Structural changes may be as large as 31Å. The DFG motif is colored red-blue-yellow.
(b) Multiple sequence alignment by ClustalW[58]. Only the activation loop and some
region around it is shown. Obviously, the sequence alignment cannot distinguish be-
tween the two structural states. (c) Multiple alignment produced by STACCATO.
Investigating the structural conservation score, Consstr, reveals a high structural vari-
ability of the activation loop region. (d) Applying the distance constrained multiple
alignment with the threshold value of 5Å clearly reveals two clustered regions for ac-
tive and inactive states. For these structural constraints only the aspartic acid from
the DFG motif is aligned. (e) Alignment produced by the CE-MC[50] method. While
it correctly aligns the DFG motif and identifies the two states of the activation loop,
one column (colored blue) incorrectly aligns residues from the beginning of the loop
with residues from the end.
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Figure 4.5: Prediction of a protein-protein complex. The complex of Methylamine
Dehydrogenase, 2bbkLH (backbone), with Amicyanin, 1aan (surface), is shown. The
surface of 1aan is colored according to the conservation score as calculated by the
STACCATO method, red - the most conserved, blue - the least conserved. Notice
that in the binding site of 1aan there are two highly conserved residues, PRO-94 and
HIS-95. The list of conserved residues provided to the docking program helped to
raise the rank of a nearly native solution from 159 to 62.
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Chapter 5

Recognition of Common Binding

Patterns

5.1 Introduction

Binding sites with similar physico-chemical and geometrical properties may perform

similar functions and bind similar binding partners. Such binding sites may be created

by evolutionarily unrelated proteins that share no overall sequence or fold similarities.

Their recognition has become especially acute with the growing number of protein

structures determined by the Structural Genomics project. Multiple alignment of

binding sites that are known to have similar binding partners allows recognition of

the physico-chemical and geometrical patterns that are responsible for the binding.

These patterns may help to understand and predict molecular recognition. Moreover,

multiple alignment of binding sites allows analysis of the dissimilarities of the binding

sites which are important for the specificity of drug leads.

Sequence patterns have been widely used for comparison and annotation of pro-

tein binding sites[39]. Several methods search for patterns of residues that are con-

served in their 3D positions and amino acid identities[128, 101, 8]. However, there

are numerous examples of functionally similar binding sites that cannot be detected

by PROSITE-like sequence patterns[39] or by amino acid identity based structural

patterns[91, 28]. Figure 5.1 gives an example of four proteins that bind the same

123
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molecule, estradiol, however, these proteins don’t have similar overall sequence or

3D structural fold. Multiple structure alignment of functionally similar binding sites

might help to reveal a common binding pattern. Several methods have been devel-

oped for protein multiple structural alignment[102, 124, 76, 108, 31]. To overcome

the alignment complexity of large protein structures these methods apply a variety

of heuristics as well as some assumptions on properties of protein backbone, e.g. se-

quentiality of some backbone fragments. However, similar binding site patterns may

appear in proteins with different overall folds. In addition, such patterns may be

relatively small and can be easily missed when applying heuristic approaches used for

protein backbone alignment. Methods for recognition of a pharmacophore common

to a set small ligands[77, 32] share some methodological aspects with problems of

protein backbone or binding site alignment. However, most developed methods for

common pharmacophore detection are optimized for the specific problem definition,

e.g. assume a tree-like ligand topology or, in order to overcome a large number of

different ligand conformations, apply randomized techniques[40]. Consequently, the

methods for protein backbone alignment or common ligand pharmacophore detection

are generally not suitable for recognition of common patterns of protein binding sites.

Several works have analyzed complexes of different proteins with the same ligand.

The superimposition between the binding sites has been obtained by alignment of

their common ligands[74, 28]. This approach has several limitations. First, it can

analyze only protein structures with exactly the same partner ligands. Second, the

same ligand can bind in alternative modes even to the same protein binding site[28].

Therefore, alignment according to ligands may fail to recognize the binding pattern.

Computational methods have been developed for direct alignment of protein bind-

ing sites. From the algorithmic standpoint, this involves solving a problem of spa-

tial labeled/unlabeled pattern detection. Most of the methods apply clique detec-

tion algorithms. Recently, several methods have been proposed that recognize sim-

ilarity of functional sites in the absence of the overall sequence or fold similarity

[128, 101, 122, 104, 66, 70, 71, 117]. However, all of these methods perform a compar-

ison of only two molecules or a comparison of a predefined structural motif against

a protein structure during a database search[21]. Pairwise alignments may contain a
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large number of features that are not necessarily required for the binding. Multiple

alignments of binding sites with the same function may help to recognize the smallest

set of features, a consensus, that is essential to achieve the desired biological effect.

This may improve sensitivity in the database searches of remotely related binding

sites. Although it is possible to combine the results of various pairwise comparisons,

high scoring pairwise solutions do not necessarily lead to a high scoring solution for

a set of molecules[2].

Figure 5.1: Example of four proteins, with different overall function, different amino
acid sequence and different overall 3D fold, yet they bind the same molecule, estradiol
(depicted in spacefill).

The review of computational methods to solve the geometrical problem of the

largest common pattern detection (LCP problem) is given in Chapter 2. Here, we

briefly state the main results. For two structures the LCP problem is polynomial,

though unpractical for implementation. The multiple LCP, mLCP, is NP-Hard even

for three structures. Practical approximation algorithms apply alignment technique

to generate a polynomial number of Euclidean transformations. Given a set of trans-

formations the problem is reduced to computation of the matched points, which we
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denoted as the mSim problem. For K structures and for the bottleneck metric, we

defined it as the 3D-ε-K-partite matching problem. As we have shown above, the

3D-ε-K-partite matching problem is NP-Hard even for three structures.

Despite the theoretical difficulty, we present an efficient, practical, method, Multi-

Bind, for identification of common protein binding patterns by solving the multiple

structure alignment problem. The problem we aim to solve is NP-Hard, therefore

our goal is to find a trade-off between practical efficiency and theoretical bounds of

solution accuracy, while validating the biological correctness of the results. Here,

we solve the multiple alignment problem defined above as pmLCP (Problem (7))

with modifications introduced to adopt the protein physico-chemical properties. We

represent a protein binding site as a set of 3D points that are assigned a set of physico-

chemical and geometrical properties important for protein-ligand interactions. The

implementation of our method includes three major computational steps. The first

one is a generation of 3D transformations that align the molecular structures. Here,

we apply the time efficient Geometric Hashing method[131, 130]. The advantage of

this method is that it enables to avoid processing of points that cannot be matched

under any transformation. In other words, its time complexity is proportional to the

number of potentially matched points included in the defined set of transformations.

The second step is a search for a combination of 3D transformations that gives the

highest scoring common 3D core. For this step we provide an algorithm that guar-

antees to find the optimal solution by applying an efficient filtering procedure, which

practically overcomes the exponential number of multiple combinations. The final

step is a computation of matching between points under multiple transformations,

namely 3D-ε-K-partite matching. Here, we give a fast approximate solution with

factor min(d,K), where d is the maximal point density in a sphere of radius 2ε. The

overall scheme guarantees to approximate the ε-congruence as well as the cardinality

of multiple alignment. We apply MultiBind to some well studied biological exam-

ples such as estradiol, ATP/ANP and transition state analogues binding sites. Our

computational results agree with the available biological data.



5.2. THE MULTIBIND ALGORITHM 127

5.2 The MultiBind Algorithm

5.2.1 Input Representation: Physico-Chemical Properties

Selection of the proper representation is crucial for the biochemical significance of the

recognized patterns. Given the atomic coordinates of a protein structure, we follow

Schmitt et al.[104] and for each amino acid we group atoms with similar physico-

chemical properties to functional groups. These are localized by 3D points in space,

denoted as pseudocenters. Each pseudocenter represents one of the following proper-

ties important for protein-ligand interactions: hydrogen-bond donor(DON), hydrogen-

bond acceptor(ACC), mixed donor/acceptor(DAC), hydrophobic aliphatic(ALI) and

aromatic(PI) contacts. Each amino acid is represented by a set of such pseudocen-

ters (both its backbone and side-chain atoms are considered) (for examples see Figure

5.2). We construct the smooth molecular surface as implemented by Connolly[24] and

retain only pseudocenters that represent at least one surface exposed atom. When

considering binding sites, we refer only to the surface regions that are within 4Å from

the binding partner.

In practice, a comparison of the spatial locations of the retained pseudocenters is

not sufficient for the accurate prediction of protein-ligand interactions. Thus, we are

interested in the maximal number of matching pseudocenters that are most similar in

all the physico-chemical and geometrical aspects. For each pair of pseudocenters, p

and q, we define a scoring function PC-Score(p,q) which measures the similarity of the

properties important for the specific type of interaction in which they can participate.

For example, we consider the similarity of partial charges for pseudocenters that can

form hydrogen bonds, whereas for aromatic properties we compare the directions of

normal vectors to the aromatic moieties. The similarity score between two binding

sites, S1 and S2 is denoted by PC-Score(S1, S2) and is defined as a sum of the matched

pseudocenters scores. The exact definitions and default parameters are detailed in

Appendix A. Therefore, practically, we extend the original pmLCP problem (Problem

(7)) to a weighted pmLCP problem that we define asi:

iIn our implementation we consider only the pmLCP problem since the 3D-ε-K-partite matching
of the mLCP problem introduces additional complications even for greedy approaches, see Section
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Figure 5.2: Pseudocenter representation[104]. Atoms with similar physico-chemical
properties are grouped into functional groups, or pseudocenters. Examples of pseudo-
center representation are depicted for amino acids Lryptophan, Lysine and Tyrosine.

Problem 9. (Max-Min Weighted pmLCP Problem) Given ε > 0, a scoring

function PC-Score, a pivot set S1 and K − 1 point sets Si, i = 2, ..., K find trans-

formations {Ti}, i = 2, ..., K, and equal sized sets {S ′
i ⊆ Si}, i = 1, ..., K, such that

d(S ′
1, Ti(S

′
i)) ≤ ε, i = 2, ..., K, and miniPC-Score(S ′

1, Ti(S
′
i)) is maximal.

5.2.2 The Pattern Matching Algorithm

The algorithm consists of three major computational steps: (1) generation of 3D

transformations and potential points for matching; (2) combinatorial search for a

combination of 3D transformations that gives the highest scoring common 3D core

(Traversal stage); and (3) computation of 3D-ε-K-partite-pivot matching. The short

description of the algorithm flow is given in Figure 5.3.

2.3.
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Figure 5.3: MultiBind algorithm main three stages.

Preprocessing Stage

In our approach we follow the efficient strategy of the Geometric Hashing method[131,

130]. The Geometric Hashing method consists of two stages, preprocessing and recog-

nition. At the preprocessing stage each triplet of pseudocenters, (a, b, c), from each

molecule except the pivot is considered as a local reference frame r = LRF (a, b, c)

(definition of local reference frame is given in Section 2.2.1). The coordinates of

the other pseudocenters are calculated with respect to the local reference frame r.

This information is stored in a Geometric Hash Table. The key to the hash table is

(xr, yr, zr, p), where (xr, yr, zr) are pseudocenter coordinates with respect to the local

reference frame r, and p is the physico-chemical property of the pseudocenter. Only

pseudocenters with the same property can be matched ii. The data stored in the

iiPseudocenters that can function both as hydrogen bond donors and acceptors are encoded twice,
once as donors and once as acceptors.
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hash table includes the key itself and the identifiers of the molecule and the reference

frame.

Recognition Stage

In the recognition stage the same process as in the preprocessing stage is repeated for

the pivot molecule. However, instead of storing data in the hash table, all entries

close to the key within radius ε and with the same physico-chemical property are

retrieved. For each reference frame r of the pivot structure a voting table is created.

It counts the number of matched pseudocenters for each reference frame stored in the

hash table. For simplicity, we explain the method for the pure geometrical case, i.e.

for the pmLCP problem. If a reference frame r′ from structure i received v votes that

means the following. Define a 3D transformation Tr,r′ that superimposes the triplets

of points r′ on r according to the Alignment Rule. Applying Tr,r′ on Si will result in

v point pairs from the pivot and i’th structure that are within ε distance. Thus, the

size of a maximal matching between Spivot and Tr,r′(Si) is less than v. Therefore, if

v < M∗, where M∗ is the size of the largest multiple solution found so far (initially

M∗ = 0), there is no need to consider transformation Tr,r′ for the next steps of the

algorithm. For each survived transformation T we store the list of matched points,

{(p, q) : p ∈ Spivot, q ∈ Si, |p− T (q)| ≤ ε}.

Traversal stage

For each reference frame of the pivot structure we create a combinatorial bucket that

contains transformations that received a high number of votes. Namely, a combina-

torial bucket for the reference frame r is defined as CBr = {T 2, T 3, ..., TK}, where

T i is a set of transformations for structure i that received v > M∗ votes. A multiple

alignment is a combination of K − 1 transformations, (Ti2 , Ti3 , ..., TiK ). The number

of all possible combinations equals to |T 2| · |T 3| · ... · |TK |, which is exponential in

K. However, we have implemented a branch-and-bound traversal method which in

practice is very efficient. First we provide some definitions. Given a transformation

vector of the first t structures, T = (Ti2 , ..., Tit), create a 3D-ε-t-partite-pivot graph,
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G(T ) = G(S1, Ti2(S2), ..., Tit(St)). Define single sides of the graph G(T ), G(T )[j] =

{pj : pj ∈ Sj, ∃p1 ∈ S1 (p1, pj) ∈ G(T ) and ∀k ≤ t ∃pk ∈ Sk (p1, pk) ∈ G(T )}. Let

M(G(T )) be a maximal 3D-ε-t-partite-pivot matching of the graph G(T ). Obviously,

M(G(T )) ≤ M(G(Spivot, Tij(Sj))) ≤ |G(T )[j]|.

Given a combinatorial bucket CB = {T 2, T 3, ..., TK} we iteratively traverse it in

the following manner. Assume that we have created a vector T = (Ti2 , Ti3 , ..., Tit),

Tij ∈ T j. We try to extend it with a transformation Tit+1 ∈ T t+1, T ∗ = (Ti2 , Ti3 , ...

,Tit , Tit+1). Clearly, |G(T ∗)[j]| ≤ |G(T )[j]|, j = 2, ..., t. Therefore, if for some index

j holds |G(T ∗)[j]| ≤ M∗, then we can disregard the vector T ∗ and start to build

another combination of transformations (a simplified schematic diagram is given in

Figure 5.4). Essentially, we continue with the vector T and try to add another

transformation from T t+1, and so on. The number of traversals may be exponential,

however in practice M(G(T )) drops very quickly below M∗ as the algorithm advances

in iterations in the recognition stage iii. Still, the theoretical bound is O(n3n3(K−1)).

3D-ε-K-partite-pivot Matching

During the traversal stage, once we reach the last bucket we have a uniquely defined

3D-ε-K-partite-pivot graph. The next step is to solve the matching problem. As

we have shown above this problem is NP-Hard. We apply a greedy method, which

iterates over pivot points and selects K-tuples, from non-selected points. This method

gives a K approximation to the largest matching since at each greedy selection of K-

tuples it may violate at most K nodes that may belong to the optimal matchingiv. In

the context of molecular structures for small ε (around 3Å) the maximal node degree

is bound by a small constant. Therefore the time complexity of the greedy method

is O(Kn).

iiiIn the second example from the Results section, the total number of combinations for all combi-
natorial buckets is about 1.3 ·1011, which shows the exponential nature of the problem. The filtering
procedure leaves only 246310 combinations of multiple alignments. Most filtering is done already at
the third structure (t = 3).

ivThe best known approximation algorithm for hyper-graphs gives K/2 ratio[63]
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Figure 5.4: Traversal stage. The bucket i contains pairwise transformations that
superimpose molecule Si onto S1. Each time a transformation from the next bucket
is added to the multiple alignment, a possible common core is reduced. If its upper
bound size becomes less then the size of the largest solution found so far, then this
multiple combination is discarded.

Experimental Properties of ε-K-partite Graphs

The running times the algorithm depend on the maximal node degree of experimental

ε-K-partite graphs. Specifically, it depends on the maximal node degree of any sub

2-partite graph. Therefore, it is enough to estimate node degree properties from

pairwise alignments. We conducted 150 pairwise binding site alignments to estimate

the node degree properties (the number of graphs in each pairwise alignment is O(n6)).

In the case of ε = 3Å, the maximal node degree of the constructed graphs is 7,

while average degree is only 0.28 with standard deviation 0.65. Therefore, for any

practical purpose the size of the graphs is linear in the number of points.

As discussed above, the approximation ratio of the greedy algorithm for the 3D-ε-

K-partite-pivot matching is K. At each greedy selection of a K-tuple it may violate at
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most K nodes that may belong to the optimal matching. However, the approximation

ratio depends on the point distribution density. If for each input point a sphere of

radius 2ε centered at the point contains at most d points (from the same point set),

then any greedily selected K-tuple may violate at most d K-tuples from the optimal

matching. Therefore, the approximation ratio of the greedy algorithm is min(d,K).

In the case of ε = 3Å, we computed point distribution densities in spheres of

radius 6Å centered at each input point. Notice, that the counted points should

have the same physico-chemical properties as the point at the sphere center. We

considered 250 different binding sites. The maximal density is 12 points, while average

density is only 4.2 with standard deviation 2.9. Therefore, in practice the worst case

approximation ratio is 12 and it is independent of the number of structures.

Theorem 5.1. MultiBind algorithm is an [δ = min(d,K)]-[γ = 7ε-additive]- approx-

imationv for Problem 7 and has time complexity O(n3KnK).

In practice, when solving the Max-Min Weighted pmLCP we introduce the follow-

ing modifications. First, we define M∗ to be the highest physico-chemical score of

the multiple solution found so far. Given equally sized sets (S1, ..., St) the physico-

chemical score M is defined as in Problem 4 by M = minjPC-Score(S1, Sj), j = 2...t.

When traversing the combinatorial buckets, instead of looking at the cardinality of

the side j, |G(T ∗)[j]|, we estimate the upper bound of PC-Score(S1, Tj(Sj)) as PC-

Score(G(T ∗)[j])=
∑

q∈Tj(Sj)
maxpPC-Score(p, q). Therefore, we disregard vectors T ∗

for which PC-Score(G(T ∗)[j]) ≤ M∗ for some j. We retain a user defined number

of high scoring solutions, which are then evaluated by an additional Overall Surface

Scoring[117] function which compares the corresponding surfaces of the binding sites.

5.3 Biological Results

Below we present examples of application of MultiBind for recognition of patterns re-

quired for binding of different ligands. In each of the presented examples, we describe

vIt is possible to reduce the 7ε-additive approximation to any accuracy γ, 0 < γ, by applying a
discretization technique of the transformational space[56, 44]. However, the payoff is increasing the
time complexity factor proportional to ( ε

γ )5 (see Section 2.2.1).
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the details of a single solution that received the highest score. Additional examples of

application of MultiBind are presented in [86, 13]. The running times are measured on

a standard PC, Intel(R) Pentium(R) IV 2.60GHz CPU with 2GB RAM. The default

distance threshold for the ε-congruence is 3.0Å .

5.3.1 ATP/ANP Binding Sites of Protein Kinases.

To validate the performance of the method on a well studied example we have selected

a set of ATP/ANP binding sites extracted from 5 different protein kinases: cAMP-

dependent PK (1cdk), Cyclin-dependent PK, CDK2 (1hck), Glycogen phosphorylase

kinase (1phk), c-Src tyrosine kinase (2src), Casein kinase-1, CK1 (1csn). We applied

MultiBind to perform a multiple alignment of the corresponding ATP/ANP binding

sites. These were recognized to share 13 pseudocenters, 4 of which are created by

amino acids with the same identity (see Figure 5.5 and Table 5.1). The RMSD

between the adenine moieties (which are not a part of the input and are used for

verification only) under these transformations is less than 1.2Å . This indicates that

the multiple superposition is computed correctly. The average size of the binding sites

is 69 pseudocenters, and the running time is 62 minutes. It must be noted that since

these proteins share similar overall folds, the 3D superposition problem of the binding

sites can be solved by multiple backbone alignment methods[108, 31]. However, these

methods do not give solution to the 3D-ε-K-partite matching problem of physico-

chemical features (since these are not-ordered on the protein surface). Below we

present two examples for which both the superimposition and the matching problems

can not be solved by standard protein backbone alignment methods.

5.3.2 Transition State Analogue Binding Sites.

We have selected five binding sites complexes with endo-oxabicyclic transition state

analogues (TSA/BAR). The binding sites were extracted from proteins of three dif-

ferent SCOP[92] folds: (1) Chorismate mutase II (1ecm, 4csm, 3csm); (2) Bacillus

chorismate mutase-like (2cht); (3) Immunoglobulin-like beta-sandwich (1fig). Figure

5.6 depicts these five structures.
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Figure 5.7 presents 8 functional groups that were recognized by MultiBind to be

shared by all the binding sites. Table 5.2 presents the exact details of the pattern and

calculated K-partite matching. Two of the compared proteins (1ecm and 4csm) were

previously aligned by Schmitt et al[104]. Most of the pseudocenters recognized by

MultiBind are indeed a subset of those obtained by their pairwise alignment method

(except for two donors contributed by 1ecm:Arg28). However, 10 of the functional

groups common to a pair of chorismate mutases according to their study, were not

recognized to be common to the five structures compared by MultiBind. Alignment

of multiple structures with different folds helps to identify the minimal set of features

required for the binding of endo-oxabicyclic transition state analogues. The average

size of a binding site is 30, and the running time is 8 minutes.

5.3.3 Estradiol Binding Sites.

Estradiol molecules are known to bind to protein receptors with different overall se-

quences and folds. The dataset of this study (Figure ) was comprised of the binding

sites of 7 proteins from 4 different SCOP[92] folds: (1) Nuclear receptor ligand-

binding domain (3ert, 1a52, 1err, 1gwr); (2) NAD(P)-binding Rossmann-fold (1fds);

(3) Concanavalin A-like lectins/glucanases (1lhu); (4) P-loop containing nucleoside

triphosphate hydrolases (1aqu). Two of these structures were crystallized with Ralox-

ifen (1err) and 4-hydroxytamoxifen (3ert), which are different from estradiol. In spite

of the conformational changes required to accommodate these ligands, MultiBind has

recognized 6 functional groups shared by all the binding sites (see Figure 5.9). One of

them is a conserved Phenylalanine (1lhu:Phe67) with an aromatic property shared by

all the binding sites. The mean binding site size is 39 pseudocenters and the running

time is 16 minutes.
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(a)

(b)

Figure 5.5: ATP/ANP binding sites of protein kinases. (a) Five ATP/ANP binding
site represented by pseudocenters. (b) Common pattern as detected by MultiBind.
The labeling is according to 1cdkA. The pseudocenters that are common to identical
amino acids are marked with asterisk. The ligand molecules, adenine moieties, are
presented for verification purpose only and are not a part of the input to MultiBind.
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(a)

(b)

Figure 5.6: Transition state analogue binding proteins. (a) Five different proteins,
from three different SCOP folds, bind endo-oxabicyclic transition state analogues
(TSA/BAR). (a) Binding sites represented by pseudocenters.
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Figure 5.7: Multiple alignment of five endo-oxabicyclic transition state analogue bind-
ing sites as detected by MultiBind. The labeling and the surface (depicted in dots) is
according to 1ecm. The ligand molecules are presented for verification purpose only
and are not a part of the input to MultiBind.

Figure 5.8: Estradiol binding proteins.
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(a)

(b)

Figure 5.9: Estradiol Binding Sites. (a) Binding sites represented by pseudocenters.
(b) Multiple alignment of eight estradiol binding sites, the labeling is according to
1lhu.

5.3.4 Evaluation of the Recognized Pattens

There are four approaches which we have used to evaluate the quality of the obtained

patterns. First, as discussed above, we have compared them to patterns which were

previously described in the literature for alignment between pairs of molecules. Sec-

ond, the recognized common patterns were compared with the results of the LPC
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program[121], which computes a protein-ligand interactions of the input protein-

ligand complexes. In all the patterns detected by MultiBind, the common core is

a subset of interactions computed by LPC.

Third, we have superimposed the binding sites which are complexed with the same

ligand molecules and compared the obtained pattern with that of MultiBind. Fourth,

for each pattern, we have calculated the frequency of its occurrence in PDB and

analyzed the influence of the common pattern size on the algorithm running times.

Specifically, in order to compare the patterns recognized by MultiBind with the

results obtained by superimposition of ligand molecules, we performed such an align-

ment for cases where the proteins are complexed with the same binding partners. In

this case, the transformations were calculated by the superimposition between the

ligand molecules (i.e. no transformational search is performed by MultiBind), while

the rest of the MultiBind stages remained the same. As expected, in the first ex-

ample of ATP/ANP binding sites of protein kinases the results of MultiBind were

similar to those obtained by the superimposition of the adenine moieties. However,

in the last two examples alignment by ligands failed to recognize any significant pat-

tern (less than 3 pseudocenters), while MultiBind identified patterns of size 8 and 6

pseudocenters.

Next, we calculate the frequency of occurrence of patterns recognized by Multi-

Bind on the surfaces of proteins from the PDB[14]. For each of the above mentioned

examples we searched the patterns recognized by MultiBind on the complete surfaces

of proteins in the non-redundant PDB representation by the ASTRAL dataset[19] (re-

lease 1.65, less than 40% sequence identity). Specifically, for each example we searched

the recognized structural pattern represented by pseudocenters of the pivot molecule.

Each pattern recognized on the surface of some protein was scored according to the

PC-Score function of MultiBind described in the Appendix. We count the number

of times that a pattern with a score higher than the score of the multiple alignment

was observed and calculate its ratio to the total number of searched proteinsvi. The

obtained ratio represents the frequency of occurrence of the recognized pattern in the

viThe score of the multiple alignment is defined according to Problem 4 as miniPC-
Score(S1, Ti(Si)), where S1 is the pivot and Si is the outlier.
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ASTRAL dataset. The lower the ratio the more significant and rare is the pattern. It

must be noted, that using the score of the outlier for our measurements provides the

highest ratio, i.e. using non-outliers will increase the rarity and the significance of

the pattern. The ratio obtained for the transition state analogues binding pattern is

0.006, which means that its frequency of occurrence in the ASTRAL dataset is 0.6%.

The ATP/ANP binding pattern of protein kinases was found in 0.2% of the AS-

TRAL dataset. Half of the proteins that were found to contain this pattern are

protein kinases, which are the top ranking solutions. The specificity of this pattern

can be explained by the fact that it was constructed from a set of binding sites all

of which are extracted from protein kinases (as opposed to other examples where the

pattern was constructed by multiple alignment of proteins with totally different over-

all sequences and folds). Thus, the obtained pattern may contain features which are

important for the structure or activity of this family and are not necessarily required

for the binding of ATP/ANP molecules.

A different picture was observed when the ASTRAL dataset was searched with

the estradiol binding pattern obtained by the alignment of 7 proteins from 4 different

folds. The size of the pattern is 6 pseudocenters and it was found in 10% of the

ASTRAL dataset. Next, we performed multiple alignment with MultiBind, without

the outlier (PDB:1aqu), which is the binding site most different from the rest of the

aligned binding sites. Alignment of 6 binding sites from 3 different folds revealed a

pattern of 7 features. The frequency of occurrence of this pattern in the ASTRAL

dataset is 0.6%. This shows that addition of the seventh molecule of Estrogen sul-

fotransferase (PDB:1aqu) to the multiple alignment with MultiBind, significantly

reduces the rarity and the specificity of the common pattern. Furthermore, we have

removed one additional molecule (PDB: 1fds) and aligned between 5 molecules of

3 different folds. This time, the recognized common pattern was of size 9 and its

frequency of occurrence was 0.2%.

To summarize, patterns recognized by multiple alignment with MultiBind can

be used to search for other proteins that have similar binding patterns and biolog-

ical functions. The results of such searches depend on the number and diversity of

structures used in the multiple alignments. When the structures are very diverse the
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common patterns are smaller and their frequency of occurrence in PDB is higher.

Searches with these patterns will lead to a high number of false positive solutions but

may reveal unexpected similarities to structurally different proteins. On the other

hand, when the structures are similar or when the number of aligned structures is

small, the obtained pattern is larger and less frequent. Searches with these patterns

will usually lead to less false positives but may fail to recognize novel similarities to

members of different protein families. For example, the results of pairwise alignments

usually provide patterns that are not found in other proteins except the compared

pair and their homologues.

5.3.5 Algorithm Performance

For each of the above described biological examples we evaluate the practical influence

of the number of molecules (K) on the algorithm running times. In each example

we gradually reduce the number of aligned molecules by excluding the outlier (the

molecule most different from the pivot). The rest of the parameters were left un-

changed. As we have shown in Section (5) the theoretical complexity of MultiBind is

O(n3KnK). However, as can be seen in Figure 5.10 the practical running times are

significantly better.

To estimate the influence of the common pattern size on the algorithm running

time, we used an additional example of adenine binding sites. Here, we took the

dataset used in our first example of ATP/ANP binding patterns, but have made

two modifications. First, we have limited the compared binding sites to regions in

the vicinity (4Å) of the adenine moieties. This has significantly reduced the size

of the binding sites, and, as can be seen in Figure 5.10, lead to significantly lower

running times. However, when we added two additional adenine binding sites (PDB

codes: 1mjh and 1e8x) and aligned between 7 molecules the running times jumped

significantly. This is explained by the fact that the size of the common pattern

became small (was reduced from 8 to 5 pseudocenters) and the bound stage of our

branch-and-bound algorithm became inefficient. Our method is more effective when

the common pattern is larger. However, its running times may become exponential
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Figure 5.10: MultiBind running times as function of the number of the alignment
molecules. The size of the binding sites used in the alignments are detailed in the
legends of the series and are measured by the number of pseudocenters.

as the common pattern drops to 3-4 pseudocenters, though the significance of such a

pattern drops as well.

An additional parameter, which has a significant impact on the practical running

times, is the distance threshold, ε, for the maximal allowed distance between the

matched pseudocenters. In all of the described examples we have used a rather

permissive default threshold of ε = 3.

5.4 Conclusions

We have presented a novel computational method, MultiBind, for recognition of

physico-chemical binding patterns. The presented method is practically efficient for

multiple alignment of protein binding sites and guarantees to detect an approximate

solution for the case of pure geometrical problem. Despite the computational hardness

of the general structural alignment problem, we have presented an efficient filtering

procedure which in our applications practically overcomes the exponential number of
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multiple combinations.

MultiBind was applied to several biological targets, such as the binding sites of

estradiol, ATP/ANP and transition state analogues. MultiBind is the first method

that performs multiple alignment of binding sites in the absence of overall sequence,

fold or binding partner similarity. To the best of our knowledge, the presented results

can not be obtained by any other existing computational method. We hope that it

will be a useful tool in prediction of molecular recognition and in identification of

consensus binding patterns. These common patterns computed from known binding

sites, can help to locate and specify binding sites on protein surfaces with unknown

function.

However, from the biological standpoint the method has several limitations. First,

there is no explicit treatment of protein flexibility which is introduced only through

a set of thresholds to allow variability in locations. Second, due to the hardness of

the problem the method is practically limited to point sets of size about 100. Third,

scoring functions are known to be one of the major problems in all types of in silico

predictions. The scoring function of MultiBind suffers from the same limitations[117].

5.5 Multiple Alignment of Protein-Protein Inter-

faces

Above, we studied the problem of protein binding site similarity without considering

the information about the binding partner. Clearly, when structural data on a protein-

protein complex with both partners is available, then much more information about

the binding properties can be gained. With the increasing significance for study

of protein association and dissociation, the number of high resolution structures of

protein-protein complexes grows rapidly in the Protein Data Bank. This, motivates

use to study the computational problem of protein-protein interface (PPI) alignment.

Given a complex of two protein structures, a PPI is defined by a pair of cor-

responding binding sites. In addition, two interacting binding sites introduce a set
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of interactions defined by non-covalent bonds. Comparison and analysis of physico-

chemical properties of PPI families may assist in recognition of certain binding con-

figurations that are responsible for the formation and stability of protein-protein

complexes[80, 85]. This, may further assist in developing more specific drugs that

target the conserved non-covalent interactions.

Sequential information is not sufficient to annotate protein binding sites and

PPIs[128]. The MultiProt method (Chapter 3) was used by Keskin et al.[69] to

classify all known PPIs according to their Cα patterns. However, backbone atoms

may not be enough to capture the binding properties, thus, the complete residues

at the atomic level must be considered[104]. The methods developed for the bind-

ing site comparison[128, 104, 70, 117, 101, 16, 66], in general, are not applicable for

the PPI comparison, since such methods optimize the similarity of a single binding

partner without considering the second partner and the common interactions present

in the PPIs. Recently, a method for alignment between a pair of PPIs has been

developed[116, 86].

Here we propose and discuss several formulations of the the Largest Common

Interface problem between K ≥ 2 PPI’s. Our main motivation is that a feature

common to a number of proteins is (probably) functionally more significant than a

similar feature found only between a pair of proteins. We present a novel method,

MAPPIS, for PPI multiple structural alignment and detection of common interaction

patterns shared by the set of PPIs. The computational approach is similar to the

MultiBind algorithm (Chapter 5). The implemented method is practically efficient,

it takes only minutes on a standard PC.

5.5.1 PPIs Representation and Comparison

Given a complex of two protein structures, a PPI is defined by a pair of corresponding

binding sites and by non-covalent bonds created between the binding sites. Specifi-

cally, for the binding site representation we use the same model of pseudocenters as

described in Section 5.2.1.
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Putative Interactions. An interaction is defined by a pair of close enough pseu-

docenters, one from each side of the interface, possessing complementary physico-

chemical properties. Specifically, hydrogen bond donors are complementary to ac-

ceptors, while hydrophobic aliphatic and aromatic properties interact with similar

ones. The interaction distance thresholds are 3.9Å [83] for hydrogen bonds and

8Å for interactions between other functional groups. We will denote these inter-

actions as putative since in practice, defining the exact non-covalent interactions is

not straightforward[83]. Because of this problem, for some pseudocenters, our defi-

nition may result in a larger number of non-covalent interactions than the maximal

number of theoretically possible (from the perspective of chemistry) interactions. For

each pseudocenter we define its maximal number of interactions in which it can be in-

volved, we call this number the pseudocenter interaction degree. For the final solution

of a common PPI pattern we restrict the number of interactions per pseudocenter to

its interaction degree. We will address this issue both in the problem formulation and

implementation.

Similarity. We define two pseudocenters, a and a′, to be similar, a ∼ a′, if |a −
a′| ≤ ε and if they have the same physico-chemical properties, except for mixed

donor/acceptor that can be matched to both donor and acceptor. Two interactions

i = (a, b) and i′ = (a′, b′) are considered similar, (a, b) ∼ (a′, b′), if the corresponding

pseudocenters (a, a′) and (b, b′) are similar and |a−b| ≤ εi and if |a′−b′| ≤ εi. Below we

describe several computational approaches using a general similarity scoring function

and propose our own in the Appendix 5.6.2.

Biological Motivation. Given a set of PPIs our goal is to find a set of 3D transfor-

mations (superpositions) that maximize the similarity of their physico-chemical and

geometrical properties as well as the number of interactions between them. We will

refer to a set of features (pseudocenters or interactions) shared by all the compared

interfaces as conserved. Thus, the goal of an alignment algorithm is to maximize the

number of the conserved features. Since there is no consensus regarding the assess-

ment of similarity between PPIs we suggest several alternative criteria for this task.
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We define two, biologically relevant, goals:

1. Maximize the similarity of pseudocenters.

2. Maximize the similarity of interactions.

In general, patterns of conserved interactions are biologically more significant than

patterns of pseudocenters conserved in a single binding site[99]. Moreover, the second

goal seems to be more suitable for drug design, where the interest is to prevent the

formation of protein-protein interactions. However, consideration of the interactions

alone is not always sufficient, and there are cases in which the optimal solution may

be missed. For example, such a situation may occur, when we align between inter-

faces created by the same protein with different binding partners. Since the same

protein may create slightly different interactions with different binding partners the

algorithms that consider only the interactions between the proteins will not neces-

sarily provide a perfect superimposition of the backbones of the same protein. It is

not clear which of the two goals is more important. Moreover, there are additional

considerations that may be important for the biological analysis:

Optional Requirements:

3. Recognize features conserved in one binding site that are not in direct contact

with the binding partner (e.g co-factor binding sites).

4. Recognize correlated mutations that may lead to similar interactions created

by different properties (e.g. swapped hydrogen bonds in which donors and

acceptors are replaced).

5. Tolerance to flexibility, water mediated interactions and crystallographic arti-

facts.

It must be noted that it is impossible to achieve all the goals and requirements

simultaneously. For example, the similarity optimization according to (1) does not

necessary optimize the goal (2) and vice versa. Recognition of correlated mutations (4)
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implies tolerance to the differences between the pseudocenters of the aligned binding

sites, which immediately contradicts the first goal. Therefore, below, we describe

algorithms to achieve each of the proposed goals separately and present the MAPPIS

method which attempts to achieve both.

5.5.2 The Largest Common Interface Problem

In this work we extend the LCP problem to the Largest Common Interface problem.

The input is K PPIs {(Ai, Bi)}K
i=1. We assume that correspondence between the

interface sides (interacting protein chains) is given, i.e. we do not seek for an alignment

between Ai and Bj
vii.

Detection of LCP involves two interrelated problems, a transformation search and

a matching problem. As we described above, the approximation methods with rea-

sonable time complexity, treat these two sub-problems sequentially. A polynomial

size set of 3D transformations is generated by some alignment technique and then for

each transformation the similarity measure is calculated. Therefore, in the sequel, for

the sake of clear description, we explain the LCP problem for the protein interface

alignment assuming that the 3D transformation is given, i.e. there is only the opti-

mization problem of 3D matching between PPIs. As above, we denote this problem

pmSim. The final approximation ratio depends on the alignment technique and the

matching technique.

We denote by INK = {(ai, bi)}K
i=1 a set of similar interactions and by PC[A]K =

{ai}K
i=1, ai ∈ Ai (PC[B]K = {bi}K

i=1, bi ∈ Bi) a set of similar pseudo-centers be-

tween K molecules. Here, as in the case of multiple binding site alignment (the

pmSim problem), we calculate a multiple similarity with respect to a pivot inter-

face, i.e. INK = {(ai, bi)}K
i=1 iff ∀i = 2...K (a1, b1) ∼ (ai, bi), PCK = {pi}K

i=1 iff

∀i = 2...K (p1) ∼ (pi). In the general case we are given similarity scoring func-

tions, SIN(INK [i]) = SIN((a1, b1), (ai, bi)) and SPC(PCK [i]) = (p1, pi). We define

viiThis correspondence can be obtained from the biological data. Otherwise, it can be estimated
by running twice the pairwise alignment between (A1, B1) - (Ai, Bi) and (A1, B1) - (Bi, Ai), for each
i 6= 1.



5.5. MULTIPLE ALIGNMENT OF PROTEIN-PROTEIN INTERFACES 151

the scoring function of multiple alignment to be the minimumviii of the scores be-

tween the pivot PPI and the rest of PPI’s: SK = mini=2...KSi, where Si is either∑
t SIN(INK [i]t) or

∑
p SPC(PCK [A][i]p) +

∑
l SPC(PCK [B][i]l) or a sum of them.

Below we discuss these combinations. Our goal is to maximize SK .

We extend the original δ-(γ-additive)-approximation definition (Section 2.2.1) to

(δpc,δin,γpc, γin)-approximation, where δpc (δin) is the approximation factor of scoring

function SPC (SIN), γpc is the approximation of the original maximal allowed distance

between the matched pseudo-centers (additive approximation to ε) and γin is the

additive approximation to εi (the interaction threshold).

Approach I: Similarity of Pseudocenters.

Sum of binding site similarities[116], i.e. Si =
∑

SPC(PC[A]K [i]) +
∑

SPC(PC[B]K [i]).

This problem is equivalent to the original pmSim problem. Therefore for two struc-

tures it is solvable by applying the weighted bipartite matching for each side sepa-

rately. For the case of several interfaces the problem is NP-Hard (Chapter 2). A

(δpc,γpc)-approximation algorithm in this case is the straightforward extension of the

MultiBind method (Section 5.2), to a simultaneous alignment of both sides of an

interface.

Advantages: Optimizes goal (1) and fulfills optional requirements (3) and (5). In

the case of two interfaces the optimal solution can be found in polynomial time.

Disadvantages: Does not consider directly goal (2) and does not fulfill optional

requirement (4).

Approach II: Similarity of Interactions.

There are two approaches to solve this problem. In the first approach, we maximize

the number of similar interactions, among all the potential interactions that can be

created, i.e. Si =
∑

SIN(INK [i]). Computationally this problem is similar to the

first approach, and is solvable by bipartite matching for 2 interfaces (the nodes are

interaction pairs) and is NP-Hard for more than two. Notice, that some pseudocenters

viiiIn this definition the similarity score is measured by the distance of the outlier from the pivot.
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may participate in several interactions. This approach requires an assumption that

the interactions are well defined, i.e. there is no problem of putative interactions.

The second option is to maximize the number of similar disjoint interacting pairs,

i.e. Si =
∑

j SIN(INK [i]j), s.t. ∀t 6= j INK [i]t ∩ INK [i]j = ø. For two interfaces

this problem is similar to the 3D 4-partite matching problem. Two interfaces de-

fine four partitions (A1, B1, A2, B2). There are interaction edges between (A1, B1)

and (A2, B2), and there are edges between similar type pseudocenters, i.e. between

(A1, A2) and (B1, B2). There are no edges between partitions (A1, B2) and (A2, B1).

The goal of the optimization is to find disjoint 4-tuples that maximize the scoring

function. Since these 4-tuples are actually 4-node circles (there are no edges between

(A1, B2) and (A2, B1)), this problem may appear more simple than the 3D 4-partite

matching. However, the ε-3-partite matching can be trivially reduced to the two in-

terface matching, by splitting each vertex of the first partition into two vertices and

connecting them by an edge. Therefore, maximizing the number of similar disjoint

interacting pairs is NP-Hard even for K=2. Here, we propose two simple approxima-

tion algorithms to solve the matching problem for 2 interfaces. The first algorithm,

in case SIN = constant, is (δin = 1,γpc = 0,γin = 2ε)-approximation. Consider the

network flow depicted in Figure 5.11 (a). Edges between the nodes of the partitions

(A1, A2) and (B2, B1) are created iff the nodes are similar and the distance between

them is less than ε. Edges between (A2, B2) are created iff the nodes are chemically

complementary and the distance between them is less than εi. All edges have one

unit capacity. The maximum flow capacity of each node of A2 and B2 is set to its

corresponding interaction degree. Therefore, the largest flow in this network will give

the optimal solution with εi approximated by εi + 2ε.

Using a similar greedy approach as in Section5.2.2 we can obtain a (δin= min(2K,

2d),γpc = 0,γin = 0)-approximation algorithm, where d is the maximal point density

in a sphere of radius 2ε. The δin factor is increased twice, comparing to the point set

matching, since each greedy selection of an interaction edge can intersect with two

edges from an optimal matching.

Advantages: Optimizes goal (2) and fulfills (4). Approximate solution for two

interfaces.
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Disadvantages: Does not treat (1), (3) and (5).

Figure 5.11: Flow networks: (a) Approach-II-b, (b) Approach-III.

Approach III: Similarity of Interactions and PseudoCenters.

Si =
∑

t SIN(INK [i]t)+
∑

p SPC(PCK [A][i]p)+
∑

l SPC(PCK [B][i]l). The problem is

NP-Hard even for two interfaces since it is an extension of Approach II-b. As above,

for K = 2, we propose two polynomial time approximation algorithms. The first

algorithm, for the case SPC = c1, SIN = c2, where c1, c2 are integer constants, is a

(δin = δpc = 1,γpc = 0,γin = 2εi)-approximation. Consider the network depicted in

Figure 5.11 (b). The structure of the network from Approach II-b is extended as

follows. We add edges {(s, b) : ∀b ∈ B2} and {(a, t) : ∀a ∈ A2}. We assign cost

−c1 for each edge between (A1, A2) and for each edge between (B2, B1). For edges

between (A2, B2) we assign cost −(c2−2c1). The rest of the edges have zero cost. All

the edges have one unit capacity. Therefore the min-cost-max-flow in this network

will maximize the above scoring function (the same method is also applicable in case

SPC is an integer function and SIN((a, b), (a‘, b‘)) = c2 + SPC(a, a′) + SPC(b, b′)). It
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is not clear how to extend this method to K PPI’s with less than γpc, γin ∈ O(Kε)

approximation. Such approximation, O(Kε), will produce biologically meaningless

results. Therefore the greedy approach represents a better choice. We apply two stage

greedy selection. First, we greedily select a matching of interaction edges, then, for

each interface side separately, we greedily select a matching of pseudocenters. This

results in (δin = min(2K, 2d), δpc = min(K, d),γpc = γin = 0)-approximation, where

d is dens(2ε).

Additional advantage of this greedy approach is that it allows us to overcome the

problem of putative interactions, since the interaction degree is easily incorporated

into iterative greedy selection. The approximation factors still hold.

Advantages: Optimizes aim (1) and (2) and fulfills (3) and (5). Approximate

solution for two interfaces.

Disadvantages: Does not treat (4).

5.5.3 MAPPIS Algorithm

In our implementation we solve the problem defined in Approach III. We use the model

of the pmLCP problem where the scoring function is the minimum of the scores

between the pivot PPI and the rest of PPI’s: SK = mini=2...KSi. The implemented

method is similar to the MultiBind algorithm. First we generate a polynomial number

of transformations with approximation error ε + γ. Then, we apply the branch-and-

bound technique to effectively filter out the low scoring multiple alignments. Third,

we apply the greedy method of Approach III to solve the multiple matching problem.

The scoring functions SIN and SPC are defined in the Appendix 5.6.2.

The time complexity depends mainly on the second combinatorial stage. Assume

that the maximal depth of the filtering iterations is K ′ ≤ K. Therefore, the time

complexity O(n3K′
nK log(n)). The major advantages of our technique are (1) poly-

nomial time approximation algorithm for two PPI’s, (2) polynomial space for any

K, (3) in practice the method quickly detects a high scoring solution and the expo-

nential number of iterations is avoided (as the input structures are more similar the

bound filter is more effective, thus K ′ << K). The practical running times are low
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as reported in the Results section.

Results

Here we present examples of application of MAPPIS for recognition of physico-

chemical properties and interactions shared by different groups of interfaces (following

Approach III). We have analyzed five different families of PPIs.

Serine proteases include three Trypsin-like serine proteases (4sgb, 1ppf, 1acb)

and three Subtilisin-like (1cse, 2sic, 1oyv).

Two PPI clusters, Cluster 99 (1l3bAD, 1l0oAB, 1b99AD, 1e7pAD, 1gttBC,

1iunAB) and Cluster 673 (TNF (tumor necrosis factor) family: 1i9rAB,1jh5AB,

1d0gAB, 1a8mAB), were taken from the PPI data set composed by Mintz et al.[86].

G proteins with GAPs is a set PIIs of G proteins which are regulated by

GTPase activating proteins (GAPs) includes GAPs from two different folds, GTPase

activation domain, type p50 RhoGAP (1tx4, 1ow3, 1am4, 1grn, 2ngr) and Four-helical

up-and-down bundle (PDB: 1he1, 1g4u).

G proteins with GEFs is a set PIIs of G proteins which are regulated by Gua-

nine nucleotide Exchange Factors (GEFs) includes GEFs from two different SCOP

folds, DBL homology domain (1lb1, 1foe, 1kz7, 1ki1) and GEF domain of SopE toxin

(1gzs)[34].

The results produced by MAPPIS are given in Table 5.4 and in Figure 5.12. Only

a solution with the highest score is considered. The running time as a function of PPI

number is discussed in Figure 5.13. The running times are measured on a standard

PC, Intel(R) Pentium(R) IV 2.60GHz CPU with 2GB RAM.
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(a)

(b)

Figure 5.12: (a) Number of matched interactions (see legend (b)). (b) Number of
matched pseudocenters on both interface sides (does not include the matched inter-
actions).
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Figure 5.13: Running time on PPIs of Serine Proteases. When the number of common
features becomes too small the branch-and-bound method becomes less effective, thus,
the running time begins to behave exponentially in the number of PPIs.

5.5.4 Summary and Conclusions

Here we presented a novel computational method, MAPPIS, for recognition of pat-

terns of interactions shared by a set of protein-protein interfaces (PPIs). We discussed

several approaches to the problem with the related computational aspects. We pre-

sented the MAPPIS method with application to several biological case studies. The

results of MAPPIS on examples which were previously analyzed by other sources, are

consistent with the available biological data.

To the best of our knowledge, MAPPIS is the first method that performs multiple

structural alignment of PPIs in the absence of overall sequence or fold homology.

It allows recognition and analysis of the conserved binding organizations that are

shared by different protein families. These are important for drug discovery as well

as functional annotations. However, there is still a lack of biological understanding

in assessment of similarity between PPIs. We hope that this work will stimulate

additional research in the field. Additional issue, that has to be addressed in future

research, is the estimation of the biological significance of the recognized patterns.
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Specifically, it is unclear what is the minimal number, combination, and type of inter-

actions that are responsible for the similarity in binding and function. Consequently,

there is a difficulty in the discrimination between randomly obtained patterns and a

small set of essential interactions that are required for the desired biological effect.

Another issue is the extent of the flexibility and variability of interactions that should

be incorporated in the algorithm. Finally, the scoring function, is known to be one of

the major problems in all types of in silico predictions, like protein folding, docking,

pharmacophore detection etc.[53].

5.6 Appendices

5.6.1 Appendix: MultiBind Physico-Chemical Scoring

Let p and q be the two matched pseudocenters.

• dist(p, q) - the distance between p and q after the superimposition.

• max dist(p, q) - maximal allowed distance between a pair of pseudocenters, by de-

fault defined by ε =3.0Å.

• chem(p) - the physico-chemical property of the point p. There are three types

of properties: Hydrogen Bonding (HB), Aliphatic Hydrophobic (ALI) and Aromatic

(PII).

• charge(p) - the partial atomic charge of the atom p, which can form hydrogen

bonds. charge(p, q) = |charge(p)− charge(q)| - measures the similarity of charges.

• shape(p) - the average curvature of the surface region created by p. Calculated

as an average of the solid angle shape functions[25] with spheres of radius 4,5,6

and 7Å . The sphere centers are located at projection point of p to the surface.

shape(p, q) = |shape(p)− shape(q)|.
• nS(p) - normal vector at projection point of p to the surface, nS(p, q) = nS(p)·nS(q).

• nPII(p) - for aromatic pseudocenters denotes the normal to the plane of the aro-

matic ring. nPII(p, q) = nPII(p) · nPII(q).

• vALI(p, q) - the overlap of the hydrophobic group spheres of p and q, approximated

by the difference between sum of radiuses and the distance between the centers.



160 CHAPTER 5. RECOGNITION OF COMMON BINDING PATTERNS

Each pair of matched pseudocenters is assigned a score according to the similarity

of the properties important for the specific type of interaction:

PC Score (p, q) =

0, dist(p, q) > max dist(p, q) or chem(p) 6= chem(q)

0, shape(p, q) > 0.2 or nS(p, q) > 0.2

(max dist(p, q)− dist(p, q))/(1 + charge(p, q)) chem(p) = HB

(max dist(p, q)− dist(p, q))/(1 + shape(p, q) + nPII(p, q)) chem(p) = PII

(max dist(p, q)− dist(p, q) + vALI(p, q))/(2 + 20 · shape(p, q)) chem(p) = ALI

5.6.2 Appendix: MAPPIS Physico-Chemical Scoring

Similarity between two superimposed interactions i = (a, b) and i‘ = (a‘, b‘) is mea-

sured by:

S(i, i‘) = I Score(i) + I Score(i‘) + PC Score(a, a‘) + PC Score(b, b‘)

Where the similarity between two superimposed interactions is defined by:

I Score (i) =
0, dist(i) > max dist(i)

(max dist(i)− dist(i))/(1 + charge comp(i)) chem(i) = HB

(max dist(i)− dist(i))/(1 + shape comp(i)) chem(i) = ALI

(max dist(i)− dist(i))/(1 + shape comp(i) + nPII(i)) chem(i) = PII

The PC Score(a, b) is defined in the above Appendix.

• dist(i = (a, b)) - the distance between interacting pseudocenters a and b.

• chem(i) - the physico-chemical property of the interaction i. There are three types

of properties: Hydrogen Bonding (HB), Aliphatic Hydrophobic (ALI) and Aromatic
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(PII).

• max dist(i) - the maximal distance allowed for the specific type of interaction. The

default thresholds are εi =3.9Å for hydrogen bonds[83] and εi =8.0Å for hydropho-

bic aliphatic and aromatic interactions.

• charge comp(i) = |charge(a) + charge(b)| - measures the complementarity of

charges.

• shape comp(i = (a, b)) = |1−shape(a)−shape(b)| - measures the complementarity

of shapes which sums to one.

• nPII(i = (a, b)) = nPII(a) · nPII(b) - represents the angle between two interacting

aromatic ring.
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