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The arrest of the Golden State Killer in April 2018, thirty years after a long series of murders,
burglaries and rapes, was made possible because of a search of his DNA in the GEDmatch, a
genealogy database that was primarily designed to identify potential relatives from direct-to-
consumer genetic testing companies. Since then, many cold cases have been solved using the
same approach. While this scientific advance represents a breakthrough for criminal
investigations, it also poses risks to personal privacy since a significant proportion of the U.S.
population could be re-identified by their DNA similarly (1). In addition, This also illuminates a
new type of risk for research data. Fortunately, the community has foreseen the potential privacy
risks of genomic data, despite not this one. Research participants’ genomic data or genotypes are
under controlled access in designated databases. However, privacy risks inherent in other omics
data, such as RNA-seq, remain underappreciated. The raw omic reads contain genetic variants
and have been regulated similarly as genomic data. High-level summary data, such as personal
gene expression profiles (expression values for all genes) and DNA methylation sites, are
routinely shared without restriction. Massive summary omics datasets are shared without
restriction.For example, over 200,000 personal gene expression datasets generated for research
participants are publicly available, e.g., through Gene Expression Omnibus (GEO) and Genomic
Data Commons (GDC) Data Portal (3, 4).

Our recent work suggests that some types of summary omics data, including gene expression
data from RNA sequencing or microarray, DNA methylation data, and DNase hypersensitive site
data, pose significant privacy risks when combined with consumer genealogy databases (2). We
found that searching a genealogy database using genotypes inferred from summary omics data,
can identify a person’s or their close relatives’ genomic data, if existing in the genealogy
database. Currently, omics data are mostly generated in research studies, usually attached with
private information (e.g., disease status) and quasi-identifiers (e.g., age and sex). The
combination of research participants’ quasi-identifiers and their information in the genealogy
database increases the re-identification risk. Once a research participant is re-identified, all
information attached to their omics data, which had been deemed confidential, becomes public,
violating participant consent and confidentiality. Gene expression data generated a decade ago
were safe to share at the time they were created because the means to re-identify that individual
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did not exist. Today, however, they do. Such risks increase over time, activated by new
techniques, new knowledge, and new databases.

Here we discuss ways to mitigate the risks, including cryptographic security methods, laws and
other policies aimed at addressing these new types of risk inherent in omics data while also
accounting for the needs of biomedical research.

Privacy-preserving computation

One approach for mitigating concerns over privacy breaching, involves privacy-preserving
strategies for sharing summary omics data. Such methods aim to preserve privacy by blocking
the linkage between summary omics and genomic data while still allowing the data to be studied
in biologically meaningful ways. Some privacy-preserving strategies have been applied to
genomic data, including sharing aggregated data, homomorphic encryption and differential
privacy (5).

One solution is to only share aggregated data rather than individual data. For example, for gene
expression data, only the expression statistics (mean, median, or quantiles) are shared without
restriction. However, this strategy will limit the data usage and their scientific impact.

In homomorphic encryption, researchers will download the encrypted summary omics data and
use specifically designed tools to analyze the data. It is an appealing solution to a limited set of
popular problems. However, each use case requires a specifically designed tool. The data will
not be used for the analyses if no related tools have been developed.

Another strategy is differential privacy, that is, adding noise to the sensitive part of the summary
omics data (6, 7). Adding noise to gene expression values can block their linkage to genomic
data. However, our recent study suggested that a significant number of gene expression values
require modification to achieve this goal. Adding more noise to a dataset makes it increasingly
less useful for research purposes. Moreover, the strategy may fail if a new linking strategy is
applied. Cryptographic methods are expected to degrade over time, as has been repeatedly
observed in cyber security. The need to preserve individuals’ genomic privacy for their lifetime
and beyond while effectively sharing high-throughput molecular data poses unigue challenges.

Legislation

A potentially more enduring solution for addressing privacy violations, is to pass laws against
the misuse of individuals’ genetic information. Many laws address discrimination, and some of
those protect against genetic discrimination. For example, the U.S. Genetic Information and
Nondiscrimination Act of 2008 (GINA) makes it illegal for health insurers or employers to
request or require an individual’s genetic information. Some U.S. states have enacted state laws
against genetic discrimination in long-term care insurance, life insurance, or disability insurance.
Even in the United States, laws governing DNA data are still patchy and incomplete, and new
genetic privacy laws are urgently required to protect these data (8). While laws can reduce the
level of discrimination and provide aspirational goals for society, laws alone cannot solve the
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problem. If incentives exist, genomic hackers will continue to extract genetic data that reveal
private information, and companies will use them to make profit.

Beyond these considerations, laws end at a jurisdiction's borders. Different cultures place
different weight and value on personal privacy. Data, once available, can easily cross borders
and be used legally in another country in ways entirely unintended at their point of origin.
Therefore, although laws are essential to guard against genetic discrimination, they do not
provide an effective solution.

Controlled access

Controlled access is a widely adopted approach. In this model, a potential user must provide a
good reason to get permissions to access the data, establish they will only use them for the
proposed research and provide assurances that they will keep them secure. dbGaP is one of the
largest controlled access data sources, containing three million genotype data, half a million
genomes and exomes, and about 165,000 transcriptomic sequencing datasets. Controlled access
is an effective method for preventing data redistribution, but compared to unrestricted data, it has
many limitations.

First, we estimated the citations per genome for dbGaP and 1000 Genome Project data. Since
2015, 1000 Genome Project data achieved 4 citations per genome, while dbGaP data had only
<0.04 per genome, which suggests the scientific impact of a fully open genome dataset is about a
hundred times that of a genome under controlled access. However, genomes under controlled
access have more associated medical information. Second, obtaining data from controlled
databases such as dbGaP is a time- and resource-intensive process. In addition to logistical
considerations, controlled access limits the ability to carry out research to its full potential
because it blocks the ability to combine data. Scientific progress is built on other people’s
creations. But this effort is inhibited by controlled access to data, with negative implications for
discoveries that might otherwise be occurring. Ironically, the very research that people made
their data available for may not be taking place. This poses dignitary harm to research
participants because their goals of contributing to research are undermined.

When researchers reassure participants they will keep their data secure, they may be
inadvertently misleading them. For all the restrictions put in place that impede research. the data
may yet not be safe. The National Security Agency and Central Intelligence Agency may not
keep their munitions secure—there are large genome data leaks as well (9). When people whose
primary job is to keep data secure cannot ensure so, neither should we expect that from
undergraduate and graduate students, whose primary job is to learn and do research.

Unrestricted sharing

At first glance, proposing the unrestricted sharing of omics data can come across like a
scandalous idea. But considering we live in a world in which Google and other private
companies know every place we’ve been, every step we take and every choice we are likely to
make, we have already voluntarily given up our rights to privacy in many areas of our lives.
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Consequently, it may not so unreasonable to consider a project like the Personal Genome Project
(PGP), where people agree to have their data be available without restriction, acknowledging and
accepting the risk that they could be re-identified, with all the potential consequences of this
decision. While we cannot know in advance what harm might befall those people in the future,
so are introducing risks we do not know how to quantify, maybe this situation is not so different
from telling people that we will keep their data secure, when in fact we are unable to do so. One
limitation is that fewer people may agree to participate in a project with unrestricted sharing.
Data size of each project may be smaller, and these data as a whole may be more biased.

Omics data can introduce underappreciated privacy risks, and these risks increase over
time. While no perfect solution exists, some measures must be taken to address privacy
concerns. Legislation and global restrictions on genetic re-identification and discrimination
are urgently needed. Although we encourage more unrestricted data availability in the
future, privacy-preserving computation and controlled access should be applied,
particularly for those large-scale datasets.
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