

Privacy time bombs in omics data: latent risk manifests over time

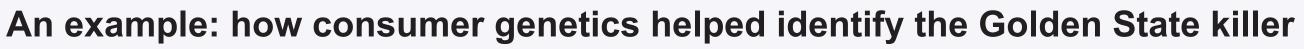
Zhiqiang Hu, Steven E. Brenner

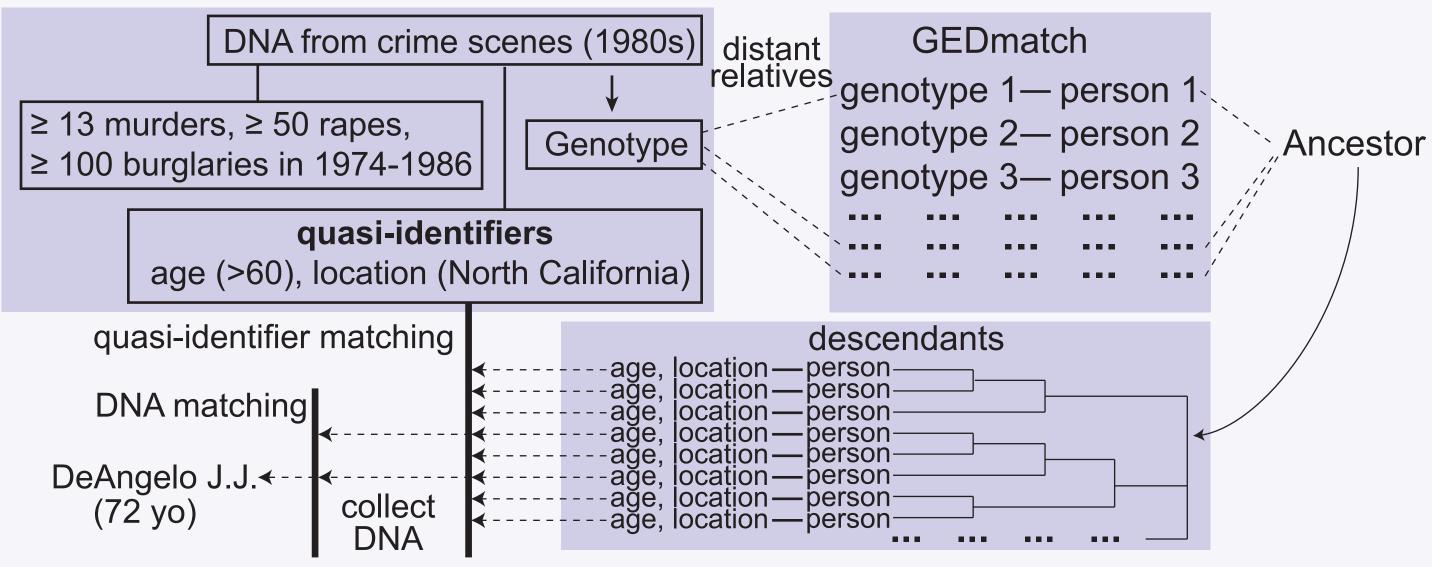
University of California, Berkeley, CA, USA

hu.zhiqiang@berkeley.edu; brenner@compbio.berkeley.edu

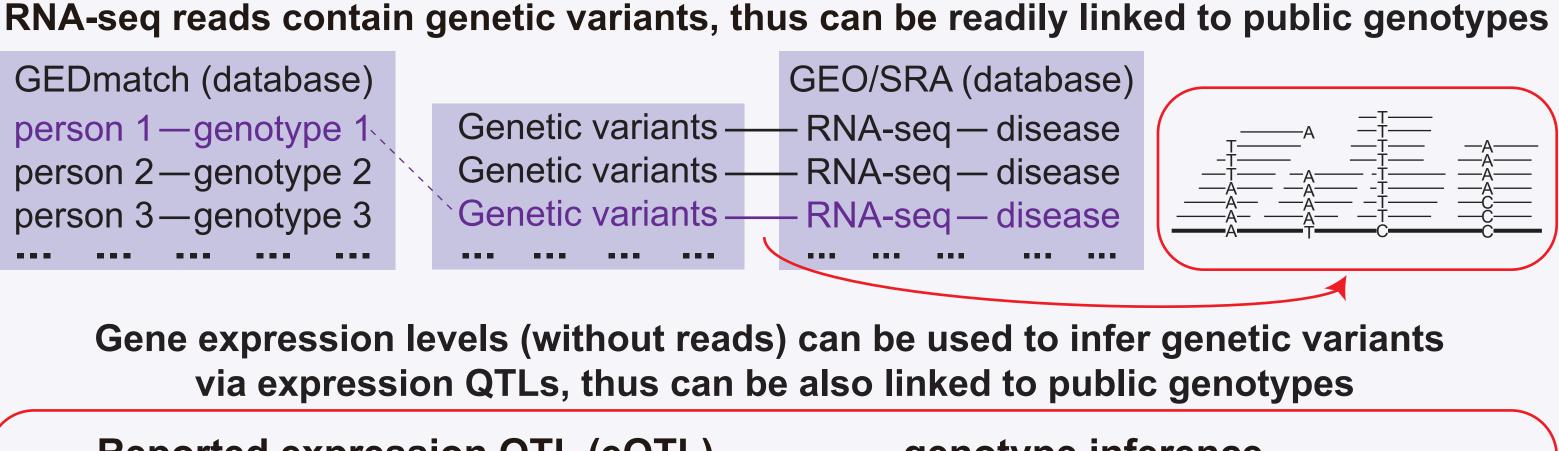
Consumer genetics and quasi-identifiers enable widespread re-identification from a genomes

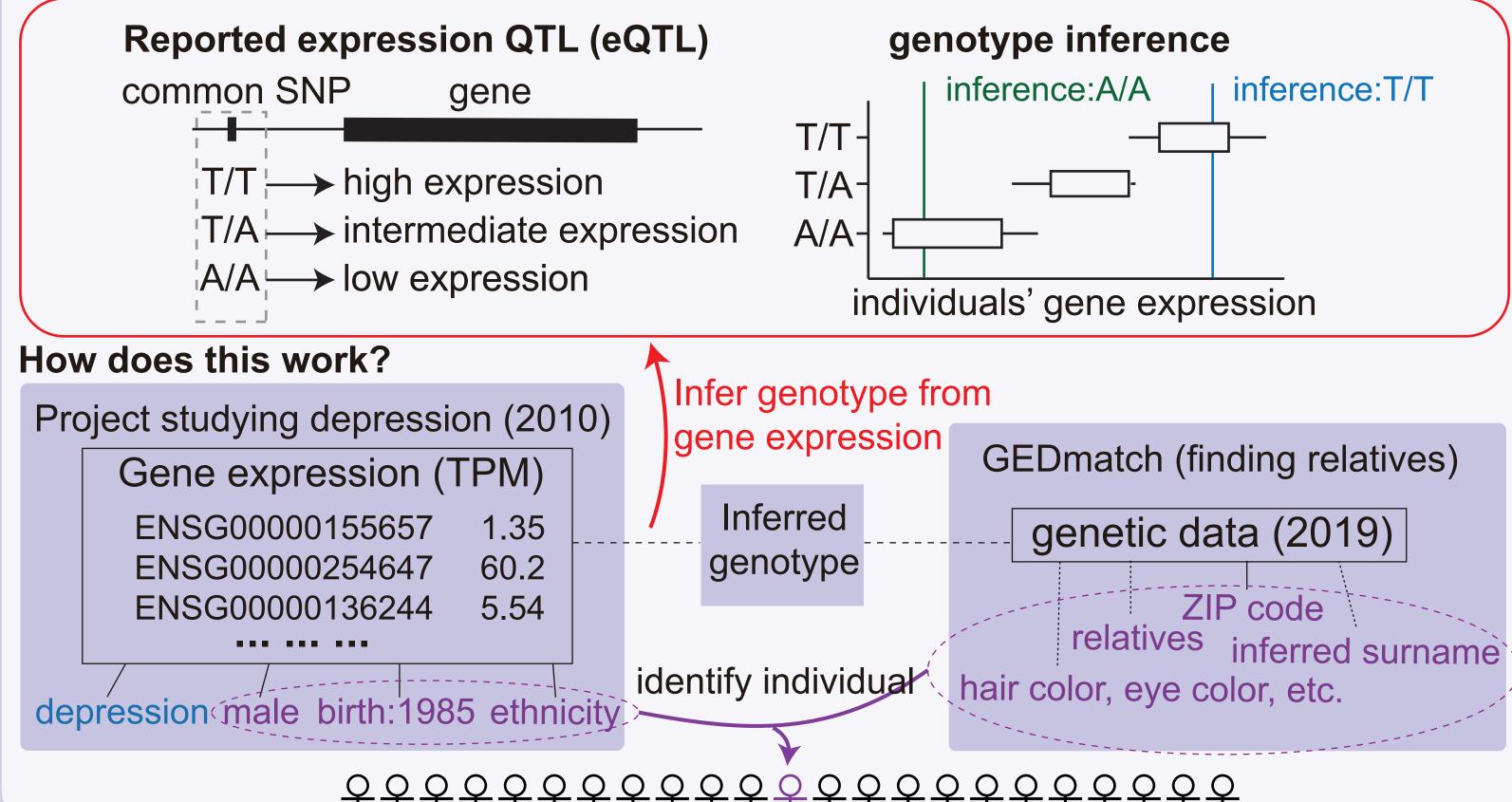
Genomic data are unique fingerprints. Such data can be used to identify a person, as well as be used to infer private traits. Recent studies suggest the increasing consumer genetics data and the commonly attached quasi-identifiers pose challenges to privacy.





Gene expression profiles can be linked to genetic datasets, enabling re-identification and revealing medical conditions





How do quasi-identifiers help re-identify a person from a population?

Table. Entropy and the contribution of quasi-identifiers.

Quasi-identifier	Expected information content (bits)		US population	World population		
Sex	1.0		(327 million)	(7.5 million)		
Ethnic group	1.4					
Eye color	1.4					
Blood group (ABO and Rhesus systems)	2.2		28.3 bits	32.8 bits		
State of residence	5.0					
Height	5.0	6.3 + 8.5 + 13.8 = 28.6				
Year of birth	6.3					
Day and month of birth	8.5					
Surname	12.9		Birth date plus	zip code are often		
Zip code	13.8	able to uniquely identify a person				
	in the 327 million US population					

Many types of omics data have numerous QTL usable for re-identification

Reported molecular QTLs.

25

QTL type	QTL number	Year	QTL type	QTL number	Year
expression QTLs	3,124,346	2017 [2]	metabolite QTLs	145	2014 [6]
splicing QTLs	16,483	2015 [3]	histone modification QTLs	315	2015 [7]
DNA methylation QTLs	2,907,234	2018 [4]	ribosome occupancy QTLs	939	2015 [8]
protein expression QTLs	16,602	2018 [5]	DNase sensitive site QTLs	8,902	2012 [9]

Many types of omics data, whose QTLs are less abundant, can be linked to genomes

Given a gene expression profile and the top 100 eQTLs, we can identify a genome from world population

Hidden privacy risks exist in omics data (even high-level summary data), which will only manifest over time

• more people will make genetic data public

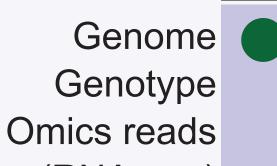
• more omics data and more types of omics data will be available

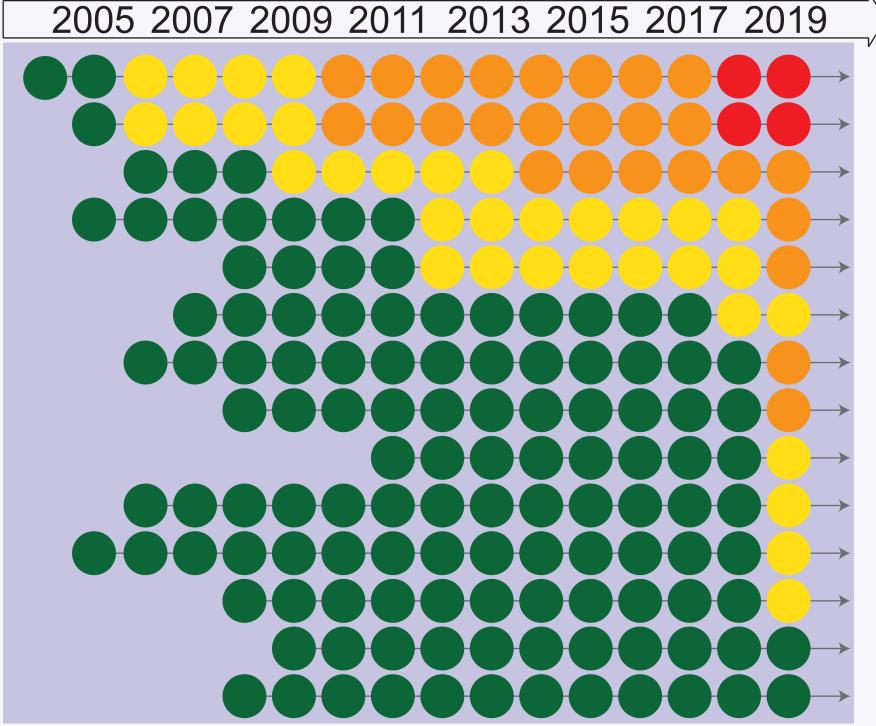
• more QTLs will be detected, due to accumulated biological knowledge and sequencing

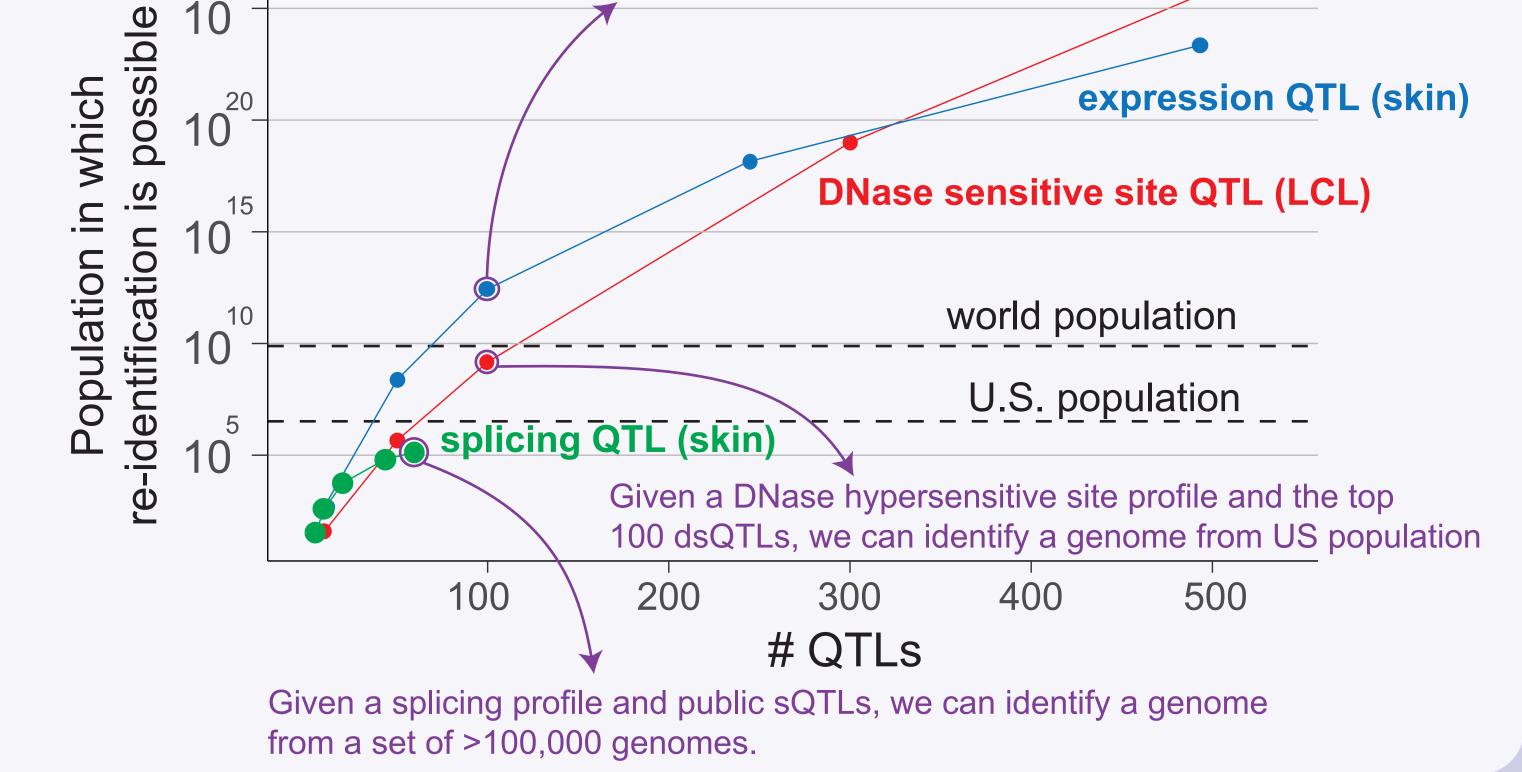
• more phenotypes will be able to be inferred directly from genotypes

• more powerful linking strategies will be developed, due to improved algorithms and compute resources

Latent privacy risks in omics data has manifested over time







Gene expression (RNA-seq) Gene expression (array) ChIP-seq signals DNA methylation site DNase hypersensitive site Ribosome occupancy Metabolite level Protein expression (MS) Splicing (junction count) Hi-C interaction **RIP-seq peaks**

The security of cryptographic methods is known to degrade over time. Approaches like MD5 and DES were state-of-the-art but now deprecated as compromised. The need to preserve individuals' privacy for their lifetimes (and beyond, for descendants) poses unique challenges to the effective sharing of omics data, as public data have ~100 times the impact of controlled access data.

Detailed linking strategy, applied to splicing data

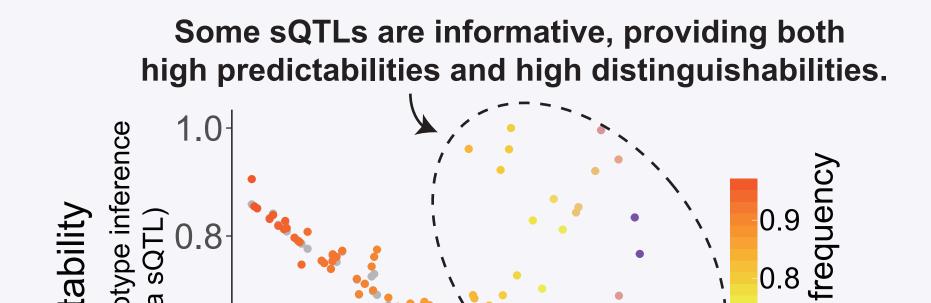
sQTLs are ~0.5% as abundant as eQTLs. Here we use GTEx data, which contains both genotypes and RNA-seq data, and the public sQTLs [3], to evaluate the feasibility of sQTL-based linking attack.

allele

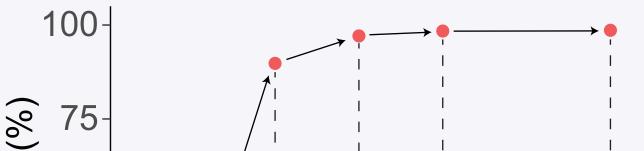
Major

0.6

1.6



Using a splicing profile from a sample and a very small number of sQTLs, we can identify the target genome out of ~200 genomes

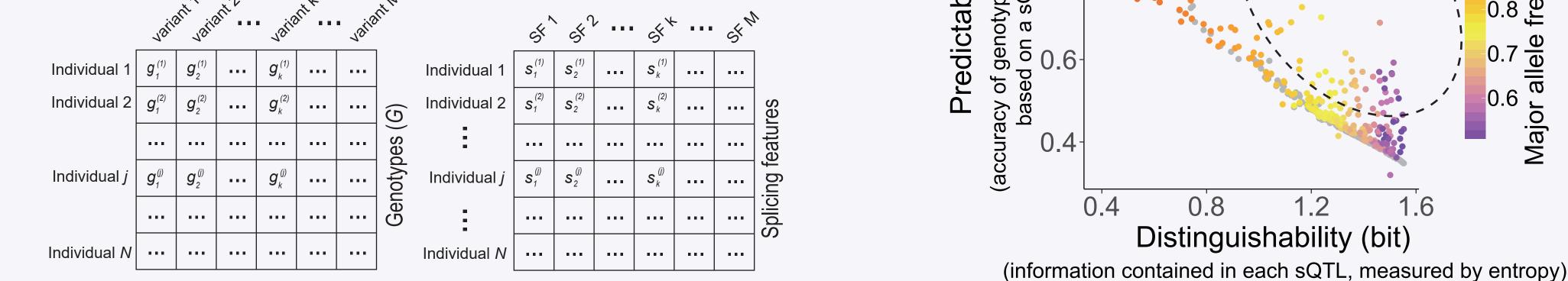


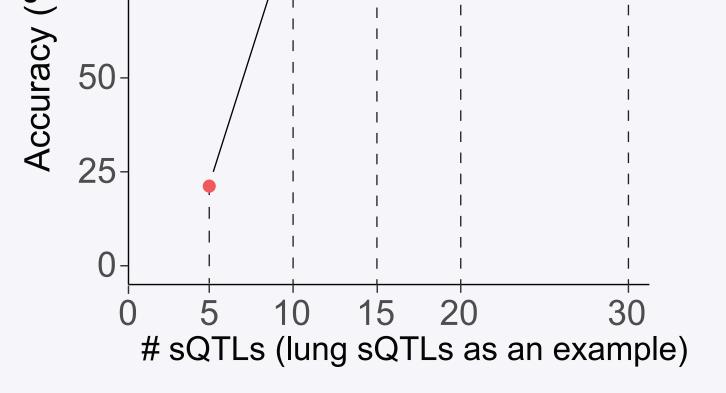
Task description

Given: (1) A pool of individual genotypes (G)

(2) A splicing feature ("SF", can be either PSI or relative isoform expression) profile of an unknown individual from G (3) public sQTLs: variants associated with splicing features

Task: Identify the corresponding genome out of the genome pool.





References

5. Yao C, et al. 2018. Nature Communication. doi:10.1038/s41467-018-05512-x 1. Erlich Y, et al. 2014. Nature Review Genetics. doi:10.1038/nrg3723 6. Sin S, et al. 2014. Nature Genetics. doi:10.1038/ng.2982 2. GTEx Consortium. 2017. Nature. doi:10.1038/nature24277 7. Wasak SM, et al. 2015. Cell. doi:10.1016/j.cell.2015.08.001 3. GTEx Consortium. 2015. Science. doi:10.1126/science.1262110 8. Battle A, et al. 2015. Science. doi:10.1126/science.1260793 4. Hannon E, et al. 2018. AJHG. doi:10.1016/j.ajhg.2018.09.007 9. Degner JF, et al. 2012. Nature. doi:10.1038/nature10808

Acknowledgments

H.Z. was supported by an NIH/NIBMB grant U01 EB023686 to Mark Gerstein and by Tata Consultancy Services.

We thank Jingqi Chen for pre-processing of the GTEx data. We thank Gamze Gursoy and Arif Harmanci from Yale University for discussions.