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DNA from crime scenes (1980s)

An example: how consumer genetics helped identify the Golden State killer

≥ 13 murders, ≥ 50 rapes,
≥ 100 burglaries in 1974-1986 
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descendantsquasi-identifier matching

quasi-identifiers
age (>60), location (North California) 

DNA matching

collect
DNA

DeAngelo J.J.
(72 yo)

distant

Quasi-identifier Expected information 
content (bits)

Sex 1.0
Ethnic group 1.4
Eye color 1.4
Blood group (ABO and Rhesus systems) 2.2
State of residence 5.0
Height 5.0
Year of birth 6.3
Day and month of birth 8.5
Surname 12.9
Zip code 13.8

Table. Entropy and the contribution of quasi-identifiers.
US population
(327 million)

28.3 bits

World population
(7.5 million)

32.8 bits

Table adopted from [1]
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RNA-seq reads contain genetic variants, thus can be readily linked to public genotypes

Genetic variants
Genetic variants
Genetic variants
... ... ... ...

How do quasi-identifiers help re-identify a person from a population?

Consumer genetics and quasi-identifiers
enable widespread re-identification from a genomes

Birth date plus zip code are often
able to uniquely identify a person
in the 327 million US population

Gene expression profiles can be linked to genetic datasets,
enabling re-identification and revealing medical conditions

Many types of omics data, whose QTLs are less abundant, 
can be linked to genomes

QTL type QTL number
expression QTLs 3,124,346

splicing QTLs 16,483
DNA methylation QTLs 2,907,234

protein expression QTLs 16,602

Reported molecular QTLs.
QTL type QTL number

metabolite QTLs 145
histone modification QTLs 315

ribosome occupancy QTLs 939
DNase sensitive site QTLs 8,902

Year
2017 [2]
2015 [3]
2018 [4]
2018 [5]

Year
2014 [6]
2015 [7]
2015 [8]
2012 [9]

Genomic data are unique fingerprints. Such data can be used to identify a person, as well as be 
used to infer private traits. Recent studies suggest the increasing consumer genetics data and 
the commonly attached quasi-identifiers pose challenges to privacy.
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Project studying depression (2010)
Gene expression (TPM)
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GEDmatch (finding relatives)

ZIP code

ethnicity

inferred surnamerelatives
hair color, eye color, etc.depression

Inferred
genotype

Gene expression levels (without reads) can be used to infer genetic variants
 via expression QTLs, thus can be also linked to public genotypes
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gene expression
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Detailed linking strategy, applied to splicing data
sQTLs are ~0.5% as abundant as eQTLs. Here we use GTEx data, which contains both genotypes and RNA-seq data, 
and the public sQTLs [3], to evaluate the feasibility of sQTL-based linking attack.   
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(3) public sQTLs: variants associated with splicing features 
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(2) A splicing feature (”SF”, can be either PSI or relative
isoform expression) profile of an unknown individual from G

Given: 

Task: Identify the corresponding genome out of the genome pool.

Task description
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Some sQTLs are informative, providing both 
high predictabilities and high distinguishabilities.
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(information contained in each sQTL, measured by entropy)

Using a splicing profile from a sample
and a very small number of sQTLs, 

we can identify the target genome out of ~200 genomes
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Hidden privacy risks exist in omics data (even high-level summary data), 
which will only manifest over time

The security of cryptographic methods is known to degrade over time. Approaches like 
MD5 and DES were state-of-the-art but now deprecated as compromised. 
The need to preserve individuals’ privacy for their lifetimes (and beyond, for descendants) 
poses unique challenges to the effective sharing of omics data, as public data have ~100 
times the impact of controlled access data.

Many types of omics data have numerous QTL usable
for re-identification 
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Given a gene expression profile and the top 100 eQTLs, 
we can identify a genome from world population

Given a splicing profile and public sQTLs, we can identify a genome
from a set of >100,000 genomes. 

Given a DNase hypersensitive site profile and the top
100 dsQTLs, we can identify a genome from US population 

splicing QTL (skin)

identify individual

 more people will make genetic data public
 more omics data and more types of omics data will be available
 more QTLs will be detected, due to accumulated biological knowledge and sequencing
 more phenotypes will be able to be inferred directly from genotypes 
 more powerful linking strategies will be developed, due to improved algorithms and compute resources 

Latent privacy risks in omics data has manifested over time

6.3 + 8.5 + 13.8 = 28.6

How does this work?

low expression


